-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
129 lines (110 loc) · 4.93 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""Network architectures."""
from typing import *
import torch
from torch.nn import *
def print_model_summary(model: Module) -> None:
"""Print information about a model."""
print(f"\n{type(model).__name__}")
print(f"\tTotal parameters: {sum(p.numel() for p in model.parameters()):,}")
print(f"\tLearnable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad):,}")
residual = lambda input_channels, output_channels: Sequential(
Conv2d(input_channels, output_channels, kernel_size=3, stride=1, padding='same'),
BatchNorm2d(output_channels),
ReLU(inplace=False),
Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding='same'),
BatchNorm2d(output_channels),
)
class ThermalNet(Module):
def __init__(self, c: int, output_channels: int) -> None:
super().__init__()
input_channels = 3
self.convolution_1 = Sequential(
Conv2d(input_channels, c*1, kernel_size=3, stride=2, padding=1),
BatchNorm2d(c*1),
ReLU(inplace=True),
)
self.convolution_2 = Sequential(
Conv2d(c*1, c*2, kernel_size=3, stride=2, padding=1),
BatchNorm2d(c*2),
ReLU(inplace=True),
)
self.convolution_3 = Sequential(
Conv2d(c*2, c*4, kernel_size=3, stride=2, padding=1),
BatchNorm2d(c*4),
ReLU(inplace=True),
)
self.residual_11 = residual(c*1, c*1)
self.residual_12 = residual(c*1, c*1)
self.residual_13 = residual(c*1, c*1)
self.residual_14 = residual(c*1, c*1)
self.residual_21 = residual(c*2, c*2)
self.residual_22 = residual(c*2, c*2)
self.residual_23 = residual(c*2, c*2)
self.residual_24 = residual(c*2, c*2)
self.residual_31 = residual(c*4, c*4)
self.residual_32 = residual(c*4, c*4)
self.residual_33 = residual(c*4, c*4)
self.residual_34 = residual(c*4, c*4)
self.pooling = AdaptiveMaxPool2d(output_size=(1, 1))
self.linear = Linear(c*4, 2*8)
self.deconvolution_1 = Sequential(
ConvTranspose2d(1, c*2, kernel_size=2, stride=2, padding=0, output_padding=0),
BatchNorm2d(c*2),
ReLU(inplace=True),
)
self.deconvolution_2 = Sequential(
ConvTranspose2d(c*2, output_channels, kernel_size=2, stride=2, padding=0, output_padding=0),
ReLU(inplace=True),
)
self.residual_41 = residual(c*2, c*2)
self.residual_42 = residual(c*2, c*2)
self.residual_43 = residual(c*2, c*2)
self.residual_44 = residual(c*2, c*2)
self.residual_51 = residual(output_channels, output_channels)
self.residual_52 = residual(output_channels, output_channels)
self.residual_53 = residual(output_channels, output_channels)
self.residual_54 = residual(output_channels, output_channels)
print_model_summary(self)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.convolution_1(x)
x = torch.relu(x + self.residual_11(x))
x = torch.relu(x + self.residual_12(x))
x = torch.relu(x + self.residual_13(x))
x = torch.relu(x + self.residual_14(x))
x = self.convolution_2(x)
x = torch.relu(x + self.residual_21(x))
x = torch.relu(x + self.residual_22(x))
x = torch.relu(x + self.residual_23(x))
x = torch.relu(x + self.residual_24(x))
x = self.convolution_3(x)
x = torch.relu(x + self.residual_31(x))
x = torch.relu(x + self.residual_32(x))
x = torch.relu(x + self.residual_33(x))
x = torch.relu(x + self.residual_34(x))
x = self.pooling(x)
x = self.linear(x.reshape(x.size(0), -1))
x = x.reshape((x.size(0), 1, 2, 8))
x = self.deconvolution_1(x)
x = torch.relu(x + self.residual_41(x))
x = torch.relu(x + self.residual_42(x))
x = torch.relu(x + self.residual_43(x))
x = torch.relu(x + self.residual_44(x))
x = self.deconvolution_2(x)
x = torch.relu(x + self.residual_51(x))
x = torch.relu(x + self.residual_52(x))
x = torch.relu(x + self.residual_53(x))
x = torch.relu(x + self.residual_54(x))
return x
def load_encoder(self, weights: Dict[str, torch.Tensor]):
"""Load weights for the encoder only."""
# Define the prefixes for all layers in the decoder.
decoder_layer_prefixes = ['deconvolution', 'residual_4', 'residual_5']
# Remove the decoder layers from the given dictionary of parameters.
weights_encoder = {
key: value for key, value in weights.items()
if not any(key.startswith(_) for _ in decoder_layer_prefixes)
}
self.load_state_dict(weights_encoder, strict=False)
for name, parameter in self.named_parameters():
if not any(name.startswith(_) for _ in decoder_layer_prefixes):
parameter.requires_grad = False