Skip to content

Commit 35d9836

Browse files
authored
Update documentation (#2279)
* Update MLCFlow commands for v5.1 (#2237) * updating for 5.1-dev (inference doc)
1 parent 9a1990e commit 35d9836

File tree

13 files changed

+309
-27
lines changed

13 files changed

+309
-27
lines changed

compliance/nvidia/TEST06/run_verification.py

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,12 @@ def get_args():
5353
"--scenario",
5454
"-s",
5555
required=True,
56-
choices=["Offline", "Server", "Interactive", "SingleStream", "MultiStream"],
56+
choices=[
57+
"Offline",
58+
"Server",
59+
"Interactive",
60+
"SingleStream",
61+
"MultiStream"],
5762
)
5863
args = parser.parse_args()
5964
return args
Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
---
2+
hide:
3+
- toc
4+
---
5+
6+
# Reasoning using DeepSeek-R1
7+
8+
=== "MLCommons-Python"
9+
## MLPerf Reference Implementation in Python
10+
11+
{{ mlperf_inference_implementation_readme (4, "deepseek-r1", "reference", devices=["CUDA"]) }}
Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
---
2+
hide:
3+
- toc
4+
---
5+
6+
# Reasoning using DeepSeek R1
7+
8+
## Dataset
9+
10+
The benchmark implementation run command will automatically download the validation and calibration datasets and do the necessary preprocessing. In case you want to download only the datasets, you can use the below commands.
11+
12+
=== "Validation"
13+
14+
### Get Validation Dataset
15+
```
16+
mlcr get,preprocessed,dataset,deepseek-r1,_validation,_mlc,_rclone --outdirname=<path to download> -j
17+
```
18+
19+
=== "Calibration"
20+
21+
### Get Calibration Dataset
22+
```
23+
mlcr get,preprocessed,dataset,deepseek-r1,_calibration,_mlc,_rclone --outdirname=<path to download> -j
24+
```
Lines changed: 60 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,60 @@
1+
---
2+
hide:
3+
- toc
4+
---
5+
6+
# Text Summarization using LLAMA3.1-8b
7+
8+
## Dataset
9+
10+
The benchmark implementation run command will automatically download the validation and calibration datasets and do the necessary preprocessing. In case you want to download only the datasets, you can use the below commands.
11+
12+
=== "Validation"
13+
14+
=== "Full dataset (Datacenter)"
15+
16+
### Get Validation Dataset
17+
```
18+
mlcr get,dataset,cnndm,_validation,_datacenter,_llama3,_mlc,_rclone --outdirname=<path to download> -j
19+
```
20+
21+
=== "5000 samples (Edge)"
22+
23+
### Get Validation Dataset
24+
```
25+
mlcr get,dataset,cnndm,_validation,_edge,_llama3,_mlc,_rclone --outdirname=<path to download> -j
26+
```
27+
28+
=== "Calibration"
29+
30+
### Get Calibration Dataset
31+
```
32+
mlcr get,dataset,cnndm,_calibration,_llama3,_mlc,_rclone --outdirname=<path to download> -j
33+
```
34+
35+
- `--outdirname=<PATH_TO_DOWNLOAD_LLAMA3_405B_DATASET>` could be provided to download the dataset to a specific location.
36+
37+
## Model
38+
The benchmark implementation run command will automatically download the required model and do the necessary conversions. In case you want to only download the official model, you can use the below commands.
39+
40+
=== "Pytorch"
41+
42+
=== "From MLCOMMONS Google Drive"
43+
44+
> **Note:** One has to accept the [MLCommons Llama 3.1 License Confidentiality Notice](http://llama3-1.mlcommons.org/) to access the model files in MLCOMMONS Google Drive.
45+
46+
### Get the Official MLPerf LLAMA3.1-405B model from MLCOMMONS Cloudfare R2
47+
```
48+
TBD
49+
```
50+
51+
=== "From Hugging Face repo"
52+
53+
> **Note:** Access to the HuggingFace model could be requested [here](https://ai.meta.com/resources/models-and-libraries/llama-downloads/).
54+
55+
### Get model from HuggingFace repo
56+
```
57+
mlcr get,ml-model,llama3,_hf,_meta-llama/Llama-3.1-8B-Instruct --hf_token=<huggingface access token> -j
58+
```
59+
60+
- `--outdirname=<PATH_TO_DOWNLOAD_LLAMA3_8B_MODEL>` could be provided to download the model to a specific location.
Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
---
2+
hide:
3+
- toc
4+
---
5+
6+
# Text Summarization using LLAMA3_1-8b
7+
8+
=== "MLCommons-Python"
9+
## MLPerf Reference Implementation in Python
10+
11+
{{ mlperf_inference_implementation_readme (4, "llama3_1-8b", "reference", devices=["CPU","CUDA"]) }}
Lines changed: 40 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
---
2+
hide:
3+
- toc
4+
---
5+
6+
# Speech to Text using Whisper
7+
8+
## Dataset
9+
10+
The benchmark implementation run command will automatically download the validation and calibration datasets and do the necessary preprocessing. In case you want to download only the datasets, you can use the below commands.
11+
12+
=== "Validation"
13+
14+
=== "Preprocessed"
15+
16+
### Get Preprocessed Validation Dataset
17+
```
18+
mlcr get,dataset,whisper,_preprocessed,_mlc,_rclone --outdirname=<path to download> -j
19+
```
20+
21+
=== "Unprocessed"
22+
23+
### Get Unprocessed Validation Dataset
24+
```
25+
mlcr get,dataset,whisper,_unprocessed --outdirname=<path to download> -j
26+
```
27+
28+
## Model
29+
The benchmark implementation run command will automatically download the required model and do the necessary conversions if any. In case you want to only download the official model, you can use the below commands.
30+
31+
=== "Pytorch"
32+
33+
=== "From MLCOMMONS"
34+
35+
### Get the Official MLPerf Whisper model from MLCOMMONS Cloudflare R2
36+
```
37+
mlcr get,ml-model,whisper,_rclone,_mlc s-j
38+
```
39+
40+
- `--outdirname=<PATH_TO_DOWNLOAD_WHISPER_MODEL>` could be provided to download the model to a specific location.
Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,11 @@
1+
---
2+
hide:
3+
- toc
4+
---
5+
6+
# Speech to Text using Whisper
7+
8+
=== "MLCommons-Python"
9+
## MLPerf Reference Implementation in Python
10+
11+
{{ mlperf_inference_implementation_readme (4, "whisper", "reference", devices=["CPU","CUDA"]) }}

language/deepseek-r1/README.md

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,11 @@
11
# Mlperf Inference DeepSeek Reference Implementation
22

3+
## Automated command to run the benchmark via MLFlow
4+
5+
Please see the [new docs site](https://docs.mlcommons.org/inference/benchmarks/language/deepseek-r1/) for an automated way to run this benchmark across different available implementations and do an end-to-end submission with or without docker.
6+
7+
You can also do pip install mlc-scripts and then use `mlcr` commands for downloading the model and datasets using the commands given in the later sections.
8+
39
## Model & Dataset Download
410

511
> **Model**: [deepseek-ai/DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) (revision: `56d4cbbb4d29f4355bab4b9a39ccb717a14ad5ad`)
@@ -19,6 +25,14 @@ The dataset is an ensemble of the datasets: AIME, MATH500, gpqa, MMLU-Pro, livec
1925

2026
### Preprocessed
2127

28+
**Using MLCFlow Automation**
29+
30+
```
31+
mlcr get,dataset,whisper,_preprocessed,_mlc,_rclone --outdirname=<path to download> -j
32+
```
33+
34+
**Using Native method**
35+
2236
You can use Rclone to download the preprocessed dataset from a Cloudflare R2 bucket.
2337

2438
To run Rclone on Windows, you can download the executable [here](https://rclone.org/install/#windows).
@@ -38,6 +52,14 @@ rclone copy mlc-inference:mlcommons-inference-wg-public/deepseek_r1/datasets/mlp
3852

3953
### Calibration
4054

55+
**Using MLCFlow Automation**
56+
57+
```
58+
mlcr get,preprocessed,dataset,deepseek-r1,_calibration,_mlc,_rclone --outdirname=<path to download> -j
59+
```
60+
61+
**Using Native method**
62+
4163
Download and install Rclone as described in the previous section.
4264

4365
Then navigate in the terminal to your desired download directory and run the following command to download the dataset:
@@ -179,6 +201,14 @@ The following table shows which backends support different evaluation and MLPerf
179201
180202
## Accuracy Evaluation
181203

204+
**Using MLCFlow Automation**
205+
206+
```
207+
TBD
208+
```
209+
210+
**Using Native method**
211+
182212
Accuracy evaluation is handled uniformly across all backends:
183213

184214
```bash

language/llama3.1-8b/README.md

Lines changed: 40 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99

1010
## Automated command to run the benchmark via MLFlow
1111

12-
Please see the [new docs site](https://docs.mlcommons.org/inference/benchmarks/language/llama3_1-8b/) (TBD) for an automated way to run this benchmark across different available implementations and do an end-to-end submission with or without docker.
12+
Please see the [new docs site](https://docs.mlcommons.org/inference/benchmarks/language/llama3_1-8b/) for an automated way to run this benchmark across different available implementations and do an end-to-end submission with or without docker.
1313

1414
You can also do pip install mlc-scripts and then use `mlcr` commands for downloading the model and datasets using the commands given in the later sections.
1515

@@ -99,7 +99,10 @@ pip install -e ../../loadgen
9999
## Get Model
100100
### MLCommons Members Download (Recommended for official submission)
101101

102-
You need to request for access to [MLCommons](http://llama3-1.mlcommons.org/) and you'll receive an email with the download instructions. You can download the model automatically via the below command
102+
You need to request for access to [MLCommons](http://llama3-1.mlcommons.org/) and you'll receive an email with the download instructions.
103+
104+
**Official Model download using MLCFlow Automation**
105+
You can download the model automatically via the below command
103106
```
104107
TBD
105108
```
@@ -115,6 +118,12 @@ git clone https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct ${CHECKPOINT_P
115118
cd ${CHECKPOINT_PATH} && git checkout be673f326cab4cd22ccfef76109faf68e41aa5f1
116119
```
117120

121+
**External Model download using MLCFlow Automation**
122+
You can download the model automatically via the below command
123+
```
124+
mlcr get,ml-model,llama3,_hf,_meta-llama/Llama-3.1-8B-Instruct --hf_token=<huggingface access token> -j
125+
```
126+
118127
### Download huggingface model through MLC
119128

120129
```
@@ -142,24 +151,39 @@ rclone config create mlc-inference s3 provider=Cloudflare access_key_id=f65ba5ee
142151
You can then navigate in the terminal to your desired download directory and run the following command to download the dataset:
143152

144153
#### Full dataset (datacenter)
154+
155+
**Using MLCFlow Automation**
156+
```
157+
mlcr get,dataset,cnndm,_validation,_datacenter,_llama3,_mlc,_rclone --outdirname=<path to download> -j
158+
```
159+
160+
**Native method**
145161
```
146162
rclone copy mlc-inference:mlcommons-inference-wg-public/llama3.1_8b/datasets/cnn_eval.json ./ -P
147163
```
148164

149165
#### 5000 samples (edge)
166+
167+
**Using MLCFlow Automation**
168+
```
169+
mlcr get,dataset,cnndm,_validation,_edge,_llama3,_mlc,_rclone --outdirname=<path to download> -j
170+
```
171+
172+
**Native method**
150173
```
151174
rclone copy mlc-inference:mlcommons-inference-wg-public/llama3.1_8b/datasets/sample_cnn_eval_5000.json ./ -P
152175
```
153176

154177
#### Calibration
178+
179+
**Using MLCFlow Automation**
155180
```
156-
rclone copy mlc-inference:mlcommons-inference-wg-public/llama3.1_8b/datasets/cnn_dailymail_calibration.json ./ -P
181+
mlcr get,dataset,cnndm,_calibration,_llama3,_mlc,_rclone --outdirname=<path to download> -j
157182
```
158183

159-
**MLC Command**
160-
184+
**Native method**
161185
```
162-
TBD
186+
rclone copy mlc-inference:mlcommons-inference-wg-public/llama3.1_8b/datasets/cnn_dailymail_calibration.json ./ -P
163187
```
164188

165189
You can also download the calibration dataset from the Cloudflare R2 bucket by running the following command:
@@ -168,11 +192,6 @@ You can also download the calibration dataset from the Cloudflare R2 bucket by r
168192
rclone copy mlc-inference:mlcommons-inference-wg-public/llama3.1_8b/cnn_eval.json ./ -P
169193
```
170194

171-
**MLC Command**
172-
```
173-
TBD
174-
```
175-
176195

177196
## Run Performance Benchmarks
178197

@@ -265,8 +284,17 @@ The ServerSUT was not tested for GPU runs.
265284

266285
### Evaluate the accuracy using MLCFlow
267286
You can also evaulate the accuracy from the generated accuracy log by using the following MLC command
287+
288+
**Full dataset (datacenter)**
289+
268290
```
269-
TBD
291+
mlcr run,accuracy,mlperf,_cnndm_llama_3,_edge --result_dir=<Path to directory where files are generated after the benchmark run>
292+
```
293+
294+
**5000 samples (edge)**
295+
296+
```
297+
mlcr run,accuracy,mlperf,_cnndm_llama_3,_datacenter --result_dir=<Path to directory where files are generated after the benchmark run>
270298
```
271299

272300
## Accuracy Target

0 commit comments

Comments
 (0)