-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai.go
132 lines (117 loc) · 3.33 KB
/
openai.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
package main
import (
"context"
"encoding/json"
"fmt"
"os"
openai "github.com/sashabaranov/go-openai"
)
const instructions = `You are a helpful assistant who can estimate calories and macronutrients in food based on description or photos. You use metric measurements.
Answer in JSON with a following JSON schema:
----
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"foods": {
"type": "array",
"items": {
"type": "object",
"properties": {
"description": { "type": "string" },
"portion": { "type": "string" },
"calories": { "type": "number" },
"protein": { "type": "number" },
"fat": { "type": "number" },
"carbs": { "type": "number" }
},
"required": ["description", "portion", "calories", "protein", "fat", "carbs"]
}
},
"total": {
"type": "object",
"properties": {
"description": { "type": "string" },
"portion": { "type": "string" },
"calories": { "type": "number" },
"protein": { "type": "number" },
"fat": { "type": "number" },
"carbs": { "type": "number" }
},
"required": ["description", "portion", "calories", "protein", "fat", "carbs"]
}
},
"required": ["foods", "total"]
}
----
Answer only with JSON. Do not include any other information in your response.
`
type OpenAIResponse struct {
Foods []struct {
Description string `json:"description"`
Portion string `json:"portion"`
Calories float64 `json:"calories"`
Protein float64 `json:"protein"`
Fat float64 `json:"fat"`
Carbs float64 `json:"carbs"`
} `json:"foods"`
Total struct {
Description string `json:"description"`
Portion string `json:"portion"`
Calories float64 `json:"calories"`
Protein float64 `json:"protein"`
Fat float64 `json:"fat"`
Carbs float64 `json:"carbs"`
} `json:"total"`
}
func AskOpenAI(text string, pictures []string) (*OpenAIResponse, error) {
token := os.Getenv("OPENAI_API_KEY")
images := make([]openai.ChatMessagePart, 0)
for _, picture := range pictures {
images = append(images, openai.ChatMessagePart{
Type: openai.ChatMessagePartTypeImageURL,
ImageURL: &openai.ChatMessageImageURL{
URL: picture,
},
})
}
client := openai.NewClient(token)
resp, err := client.CreateChatCompletion(
context.Background(),
openai.ChatCompletionRequest{
Model: openai.GPT4oMini,
Messages: []openai.ChatCompletionMessage{
{
Role: openai.ChatMessageRoleSystem,
Content: instructions,
},
{
Role: openai.ChatMessageRoleUser,
Content: text,
},
{
Role: openai.ChatMessageRoleUser,
MultiContent: images,
},
},
},
)
if err != nil {
return nil, fmt.Errorf("ChatCompletion error: %w", err)
}
response := resp.Choices[0].Message.Content
// remove ```json from the beginning if it exists
if response[:7] == "```json" {
response = response[7:]
}
// remove ``` from the end if it exists
if response[len(response)-3:] == "```" {
response = response[:len(response)-3]
}
// parse json
var openAIResponse OpenAIResponse
if err := json.Unmarshal([]byte(response), &openAIResponse); err != nil {
return nil, fmt.Errorf("unmarshal JSON error: %w", err)
}
return &openAIResponse, nil
}