forked from npow/MemN2N
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
489 lines (389 loc) · 21.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
from __future__ import division
import argparse
import glob
import lasagne
import nltk
import numpy as np
import sys
import theano
import theano.tensor as T
import time
from sklearn import metrics
from sklearn.preprocessing import LabelBinarizer
from theano.printing import Print as pp
import warnings
warnings.filterwarnings('ignore', '.*topo.*')
class InnerProductLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, nonlinearity=None, **kwargs):
super(InnerProductLayer, self).__init__(incomings, **kwargs)
self.nonlinearity = nonlinearity
if len(incomings) != 2:
raise NotImplementedError
def get_output_shape_for(self, input_shapes):
return input_shapes[0][:2]
def get_output_for(self, inputs, **kwargs):
M = inputs[0]
u = inputs[1]
output = T.batched_dot(M, u)
if self.nonlinearity is not None:
output = self.nonlinearity(output)
return output
class BatchedDotLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, **kwargs):
super(BatchedDotLayer, self).__init__(incomings, **kwargs)
if len(incomings) != 2:
raise NotImplementedError
def get_output_shape_for(self, input_shapes):
return (input_shapes[1][0], input_shapes[1][2])
def get_output_for(self, inputs, **kwargs):
return T.batched_dot(inputs[0], inputs[1])
class SumLayer(lasagne.layers.Layer):
def __init__(self, incoming, axis, **kwargs):
super(SumLayer, self).__init__(incoming, **kwargs)
self.axis = axis
def get_output_shape_for(self, input_shape):
return input_shape[:self.axis] + input_shape[self.axis+1:]
def get_output_for(self, input, **kwargs):
return T.sum(input, axis=self.axis)
class TemporalEncodingLayer(lasagne.layers.Layer):
def __init__(self, incoming, T=lasagne.init.Normal(std=0.1), **kwargs):
super(TemporalEncodingLayer, self).__init__(incoming, **kwargs)
self.T = self.add_param(T, self.input_shape[-2:], name="T")
def get_output_shape_for(self, input_shape):
return input_shape
def get_output_for(self, input, **kwargs):
return input + self.T
class TransposedDenseLayer(lasagne.layers.DenseLayer):
def __init__(self, incoming, num_units, W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify,
**kwargs):
super(TransposedDenseLayer, self).__init__(incoming, num_units, W, b, nonlinearity, **kwargs)
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
def get_output_for(self, input, **kwargs):
if input.ndim > 2:
input = input.flatten(2)
activation = T.dot(input, self.W.T)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class MemoryNetworkLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, vocab, embedding_size, A, A_T, C, C_T, nonlinearity=lasagne.nonlinearities.softmax, **kwargs):
super(MemoryNetworkLayer, self).__init__(incomings, **kwargs)
if len(incomings) != 3:
raise NotImplementedError
batch_size, max_seqlen, max_sentlen = self.input_shapes[0]
l_context_in = lasagne.layers.InputLayer(shape=(batch_size, max_seqlen, max_sentlen))
l_B_embedding = lasagne.layers.InputLayer(shape=(batch_size, embedding_size))
l_context_pe_in = lasagne.layers.InputLayer(shape=(batch_size, max_seqlen, max_sentlen, embedding_size))
l_context_in = lasagne.layers.ReshapeLayer(l_context_in, shape=(batch_size * max_seqlen * max_sentlen, ))
l_A_embedding = lasagne.layers.EmbeddingLayer(l_context_in, len(vocab)+1, embedding_size, W=A)
self.A = l_A_embedding.W
l_A_embedding = lasagne.layers.ReshapeLayer(l_A_embedding, shape=(batch_size, max_seqlen, max_sentlen, embedding_size))
l_A_embedding = lasagne.layers.ElemwiseMergeLayer((l_A_embedding, l_context_pe_in), merge_function=T.mul)
l_A_embedding = SumLayer(l_A_embedding, axis=2)
l_A_embedding = TemporalEncodingLayer(l_A_embedding, T=A_T)
self.A_T = l_A_embedding.T
l_C_embedding = lasagne.layers.EmbeddingLayer(l_context_in, len(vocab)+1, embedding_size, W=C)
self.C = l_C_embedding.W
l_C_embedding = lasagne.layers.ReshapeLayer(l_C_embedding, shape=(batch_size, max_seqlen, max_sentlen, embedding_size))
l_C_embedding = lasagne.layers.ElemwiseMergeLayer((l_C_embedding, l_context_pe_in), merge_function=T.mul)
l_C_embedding = SumLayer(l_C_embedding, axis=2)
l_C_embedding = TemporalEncodingLayer(l_C_embedding, T=C_T)
self.C_T = l_C_embedding.T
l_prob = InnerProductLayer((l_A_embedding, l_B_embedding), nonlinearity=nonlinearity)
l_weighted_output = BatchedDotLayer((l_prob, l_C_embedding))
l_sum = lasagne.layers.ElemwiseSumLayer((l_weighted_output, l_B_embedding))
self.l_context_in = l_context_in
self.l_B_embedding = l_B_embedding
self.l_context_pe_in = l_context_pe_in
self.network = l_sum
params = lasagne.layers.helper.get_all_params(self.network, trainable=True)
values = lasagne.layers.helper.get_all_param_values(self.network, trainable=True)
for p, v in zip(params, values):
self.add_param(p, v.shape, name=p.name)
zero_vec_tensor = T.vector()
self.zero_vec = np.zeros(embedding_size, dtype=theano.config.floatX)
self.set_zero = theano.function([zero_vec_tensor], updates=[(x, T.set_subtensor(x[0, :], zero_vec_tensor)) for x in [self.A, self.C]])
def get_output_shape_for(self, input_shapes):
return lasagne.layers.helper.get_output_shape(self.network)
def get_output_for(self, inputs, **kwargs):
return lasagne.layers.helper.get_output(self.network, {self.l_context_in: inputs[0], self.l_B_embedding: inputs[1], self.l_context_pe_in: inputs[2]})
def reset_zero(self):
self.set_zero(self.zero_vec)
class Model:
def __init__(self, train_file, test_file, batch_size=32, embedding_size=20, max_norm=40, lr=0.01, num_hops=3, adj_weight_tying=True, linear_start=True, **kwargs):
train_lines, test_lines = self.get_lines(train_file), self.get_lines(test_file)
lines = np.concatenate([train_lines, test_lines], axis=0)
vocab, word_to_idx, idx_to_word, max_seqlen, max_sentlen = self.get_vocab(lines)
self.data = {'train': {}, 'test': {}}
S_train, self.data['train']['C'], self.data['train']['Q'], self.data['train']['Y'] = self.process_dataset(train_lines, word_to_idx, max_sentlen, offset=0)
S_test, self.data['test']['C'], self.data['test']['Q'], self.data['test']['Y'] = self.process_dataset(test_lines, word_to_idx, max_sentlen, offset=len(S_train))
S = np.concatenate([np.zeros((1, max_sentlen), dtype=np.int32), S_train, S_test], axis=0)
for i in range(10):
for k in ['C', 'Q', 'Y']:
print k, self.data['test'][k][i]
print 'batch_size:', batch_size, 'max_seqlen:', max_seqlen, 'max_sentlen:', max_sentlen
print 'sentences:', S.shape
print 'vocab:', len(vocab), vocab
for d in ['train', 'test']:
print d,
for k in ['C', 'Q', 'Y']:
print k, self.data[d][k].shape,
print ''
lb = LabelBinarizer()
lb.fit(list(vocab))
vocab = lb.classes_.tolist()
self.batch_size = batch_size
self.max_seqlen = max_seqlen
self.max_sentlen = max_sentlen
self.embedding_size = embedding_size
self.num_classes = len(vocab) + 1
self.vocab = vocab
self.adj_weight_tying = adj_weight_tying
self.num_hops = num_hops
self.lb = lb
self.init_lr = lr
self.lr = self.init_lr
self.max_norm = max_norm
self.S = S
self.idx_to_word = idx_to_word
self.nonlinearity = None if linear_start else lasagne.nonlinearities.softmax
self.build_network(self.nonlinearity)
def build_network(self, nonlinearity):
batch_size, max_seqlen, max_sentlen, embedding_size, vocab = self.batch_size, self.max_seqlen, self.max_sentlen, self.embedding_size, self.vocab
c = T.imatrix()
q = T.ivector()
y = T.imatrix()
c_pe = T.tensor4()
q_pe = T.tensor4()
self.c_shared = theano.shared(np.zeros((batch_size, max_seqlen), dtype=np.int32), borrow=True)
self.q_shared = theano.shared(np.zeros((batch_size, ), dtype=np.int32), borrow=True)
self.a_shared = theano.shared(np.zeros((batch_size, self.num_classes), dtype=np.int32), borrow=True)
self.c_pe_shared = theano.shared(np.zeros((batch_size, max_seqlen, max_sentlen, embedding_size), dtype=theano.config.floatX), borrow=True)
self.q_pe_shared = theano.shared(np.zeros((batch_size, 1, max_sentlen, embedding_size), dtype=theano.config.floatX), borrow=True)
S_shared = theano.shared(self.S, borrow=True)
cc = S_shared[c.flatten()].reshape((batch_size, max_seqlen, max_sentlen))
qq = S_shared[q.flatten()].reshape((batch_size, max_sentlen))
l_context_in = lasagne.layers.InputLayer(shape=(batch_size, max_seqlen, max_sentlen))
l_question_in = lasagne.layers.InputLayer(shape=(batch_size, max_sentlen))
l_context_pe_in = lasagne.layers.InputLayer(shape=(batch_size, max_seqlen, max_sentlen, embedding_size))
l_question_pe_in = lasagne.layers.InputLayer(shape=(batch_size, 1, max_sentlen, embedding_size))
A, C = lasagne.init.Normal(std=0.1).sample((len(vocab)+1, embedding_size)), lasagne.init.Normal(std=0.1)
A_T, C_T = lasagne.init.Normal(std=0.1), lasagne.init.Normal(std=0.1)
W = A if self.adj_weight_tying else lasagne.init.Normal(std=0.1)
l_question_in = lasagne.layers.ReshapeLayer(l_question_in, shape=(batch_size * max_sentlen, ))
l_B_embedding = lasagne.layers.EmbeddingLayer(l_question_in, len(vocab)+1, embedding_size, W=W)
B = l_B_embedding.W
l_B_embedding = lasagne.layers.ReshapeLayer(l_B_embedding, shape=(batch_size, 1, max_sentlen, embedding_size))
l_B_embedding = lasagne.layers.ElemwiseMergeLayer((l_B_embedding, l_question_pe_in), merge_function=T.mul)
l_B_embedding = lasagne.layers.ReshapeLayer(l_B_embedding, shape=(batch_size, max_sentlen, embedding_size))
l_B_embedding = SumLayer(l_B_embedding, axis=1)
self.mem_layers = [MemoryNetworkLayer((l_context_in, l_B_embedding, l_context_pe_in), vocab, embedding_size, A=A, A_T=A_T, C=C, C_T=C_T, nonlinearity=nonlinearity)]
for _ in range(1, self.num_hops):
if self.adj_weight_tying:
A, C = self.mem_layers[-1].C, lasagne.init.Normal(std=0.1)
A_T, C_T = self.mem_layers[-1].C_T, lasagne.init.Normal(std=0.1)
else: # RNN style
A, C = self.mem_layers[-1].A, self.mem_layers[-1].C
A_T, C_T = self.mem_layers[-1].A_T, self.mem_layers[-1].C_T
self.mem_layers += [MemoryNetworkLayer((l_context_in, self.mem_layers[-1], l_context_pe_in), vocab, embedding_size, A=A, A_T=A_T, C=C, C_T=C_T, nonlinearity=nonlinearity)]
if self.adj_weight_tying:
l_pred = TransposedDenseLayer(self.mem_layers[-1], self.num_classes, W=self.mem_layers[-1].C, b=None, nonlinearity=lasagne.nonlinearities.softmax)
else:
l_pred = lasagne.layers.DenseLayer(self.mem_layers[-1], self.num_classes, W=lasagne.init.Normal(std=0.1), b=None, nonlinearity=lasagne.nonlinearities.softmax)
probas = lasagne.layers.helper.get_output(l_pred, {l_context_in: cc, l_question_in: qq, l_context_pe_in: c_pe, l_question_pe_in: q_pe})
probas = T.clip(probas, 1e-7, 1.0-1e-7)
pred = T.argmax(probas, axis=1)
cost = T.nnet.binary_crossentropy(probas, y).sum()
params = lasagne.layers.helper.get_all_params(l_pred, trainable=True)
print 'params:', params
grads = T.grad(cost, params)
scaled_grads = lasagne.updates.total_norm_constraint(grads, self.max_norm)
updates = lasagne.updates.sgd(scaled_grads, params, learning_rate=self.lr)
givens = {
c: self.c_shared,
q: self.q_shared,
y: self.a_shared,
c_pe: self.c_pe_shared,
q_pe: self.q_pe_shared
}
self.train_model = theano.function([], cost, givens=givens, updates=updates)
self.compute_pred = theano.function([], pred, givens=givens, on_unused_input='ignore')
zero_vec_tensor = T.vector()
self.zero_vec = np.zeros(embedding_size, dtype=theano.config.floatX)
self.set_zero = theano.function([zero_vec_tensor], updates=[(x, T.set_subtensor(x[0, :], zero_vec_tensor)) for x in [B]])
self.nonlinearity = nonlinearity
self.network = l_pred
def reset_zero(self):
self.set_zero(self.zero_vec)
for l in self.mem_layers:
l.reset_zero()
def predict(self, dataset, index):
self.set_shared_variables(dataset, index)
return self.compute_pred()
def compute_f1(self, dataset):
n_batches = len(dataset['Y']) // self.batch_size
y_pred = np.concatenate([self.predict(dataset, i) for i in xrange(n_batches)]).astype(np.int32) - 1
y_true = [self.vocab.index(y) for y in dataset['Y'][:len(y_pred)]]
print metrics.confusion_matrix(y_true, y_pred)
print metrics.classification_report(y_true, y_pred)
errors = []
for i, (t, p) in enumerate(zip(y_true, y_pred)):
if t != p:
errors.append((i, self.lb.classes_[p]))
return metrics.f1_score(y_true, y_pred, average='weighted', pos_label=None), errors
def train(self, n_epochs=100, shuffle_batch=False):
epoch = 0
n_train_batches = len(self.data['train']['Y']) // self.batch_size
self.lr = self.init_lr
prev_train_f1 = None
while (epoch < n_epochs):
epoch += 1
if epoch % 25 == 0:
self.lr /= 2.0
indices = range(n_train_batches)
if shuffle_batch:
self.shuffle_sync(self.data['train'])
total_cost = 0
start_time = time.time()
for minibatch_index in indices:
self.set_shared_variables(self.data['train'], minibatch_index)
total_cost += self.train_model()
self.reset_zero()
end_time = time.time()
print '\n' * 3, '*' * 80
print 'epoch:', epoch, 'cost:', (total_cost / len(indices)), ' took: %d(s)' % (end_time - start_time)
print 'TRAIN', '=' * 40
train_f1, train_errors = self.compute_f1(self.data['train'])
print 'TRAIN_ERROR:', (1-train_f1)*100
if False:
for i, pred in train_errors[:10]:
print 'context: ', self.to_words(self.data['train']['C'][i])
print 'question: ', self.to_words([self.data['train']['Q'][i]])
print 'correct answer: ', self.data['train']['Y'][i]
print 'predicted answer: ', pred
print '---' * 20
if prev_train_f1 is not None and train_f1 < prev_train_f1 and self.nonlinearity is None:
prev_weights = lasagne.layers.helper.get_all_param_values(self.network)
self.build_network(nonlinearity=lasagne.nonlinearities.softmax)
lasagne.layers.helper.set_all_param_values(self.network, prev_weights)
else:
print 'TEST', '=' * 40
test_f1, test_errors = self.compute_f1(self.data['test'])
print '*** TEST_ERROR:', (1-test_f1)*100
prev_train_f1 = train_f1
def to_words(self, indices):
sents = []
for idx in indices:
words = ' '.join([self.idx_to_word[idx] for idx in self.S[idx] if idx > 0])
sents.append(words)
return ' '.join(sents)
def shuffle_sync(self, dataset):
p = np.random.permutation(len(dataset['Y']))
for k in ['C', 'Q', 'Y']:
dataset[k] = dataset[k][p]
def set_shared_variables(self, dataset, index):
c = np.zeros((self.batch_size, self.max_seqlen), dtype=np.int32)
q = np.zeros((self.batch_size, ), dtype=np.int32)
y = np.zeros((self.batch_size, self.num_classes), dtype=np.int32)
c_pe = np.zeros((self.batch_size, self.max_seqlen, self.max_sentlen, self.embedding_size), dtype=theano.config.floatX)
q_pe = np.zeros((self.batch_size, 1, self.max_sentlen, self.embedding_size), dtype=theano.config.floatX)
indices = range(index*self.batch_size, (index+1)*self.batch_size)
for i, row in enumerate(dataset['C'][indices]):
row = row[:self.max_seqlen]
c[i, :len(row)] = row
q[:len(indices)] = dataset['Q'][indices]
for key, mask in [('C', c_pe), ('Q', q_pe)]:
for i, row in enumerate(dataset[key][indices]):
sentences = self.S[row].reshape((-1, self.max_sentlen))
for ii, word_idxs in enumerate(sentences):
J = np.count_nonzero(word_idxs)
for j in np.arange(J):
mask[i, ii, j, :] = (1 - (j+1)/J) - ((np.arange(self.embedding_size)+1)/self.embedding_size)*(1 - 2*(j+1)/J)
y[:len(indices), 1:self.num_classes] = self.lb.transform(dataset['Y'][indices])
self.c_shared.set_value(c)
self.q_shared.set_value(q)
self.a_shared.set_value(y)
self.c_pe_shared.set_value(c_pe)
self.q_pe_shared.set_value(q_pe)
def get_vocab(self, lines):
vocab = set()
max_sentlen = 0
for i, line in enumerate(lines):
words = nltk.word_tokenize(line['text'])
max_sentlen = max(max_sentlen, len(words))
for w in words:
vocab.add(w)
if line['type'] == 'q':
vocab.add(line['answer'])
word_to_idx = {}
for w in vocab:
word_to_idx[w] = len(word_to_idx) + 1
idx_to_word = {}
for w, idx in word_to_idx.iteritems():
idx_to_word[idx] = w
max_seqlen = 0
for i, line in enumerate(lines):
if line['type'] == 'q':
id = line['id']-1
indices = [idx for idx in range(i-id, i) if lines[idx]['type'] == 's'][::-1][:50]
max_seqlen = max(len(indices), max_seqlen)
return vocab, word_to_idx, idx_to_word, max_seqlen, max_sentlen
def process_dataset(self, lines, word_to_idx, max_sentlen, offset):
S, C, Q, Y = [], [], [], []
for i, line in enumerate(lines):
word_indices = [word_to_idx[w] for w in nltk.word_tokenize(line['text'])]
word_indices += [0] * (max_sentlen - len(word_indices))
S.append(word_indices)
if line['type'] == 'q':
id = line['id']-1
indices = [offset+idx+1 for idx in range(i-id, i) if lines[idx]['type'] == 's'][::-1][:50]
line['refs'] = [indices.index(offset+i+1-id+ref) for ref in line['refs']]
C.append(indices)
Q.append(offset+i+1)
Y.append(line['answer'])
return np.array(S, dtype=np.int32), np.array(C), np.array(Q, dtype=np.int32), np.array(Y)
def get_lines(self, fname):
lines = []
for i, line in enumerate(open(fname)):
id = int(line[0:line.find(' ')])
line = line.strip()
line = line[line.find(' ')+1:]
if line.find('?') == -1:
lines.append({'type': 's', 'text': line})
else:
idx = line.find('?')
tmp = line[idx+1:].split('\t')
lines.append({'id': id, 'type': 'q', 'text': line[:idx], 'answer': tmp[1].strip(), 'refs': [int(x)-1 for x in tmp[2:][0].split(' ')]})
if False and i > 1000:
break
return np.array(lines)
def str2bool(v):
return v.lower() in ('yes', 'true', 't', '1')
def main():
parser = argparse.ArgumentParser()
parser.register('type', 'bool', str2bool)
parser.add_argument('--task', type=int, default=1, help='Task#')
parser.add_argument('--train_file', type=str, default='', help='Train file')
parser.add_argument('--test_file', type=str, default='', help='Test file')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--embedding_size', type=int, default=20, help='Embedding size')
parser.add_argument('--max_norm', type=float, default=40.0, help='Max norm')
parser.add_argument('--lr', type=float, default=0.01, help='Learning rate')
parser.add_argument('--num_hops', type=int, default=3, help='Num hops')
parser.add_argument('--adj_weight_tying', type='bool', default=True, help='Whether to use adjacent weight tying')
parser.add_argument('--linear_start', type='bool', default=False, help='Whether to start with linear activations')
parser.add_argument('--shuffle_batch', type='bool', default=True, help='Whether to shuffle minibatches')
parser.add_argument('--n_epochs', type=int, default=100, help='Num epochs')
args = parser.parse_args()
print '*' * 80
print 'args:', args
print '*' * 80
if args.train_file == '' or args.test_file == '':
args.train_file = glob.glob('data/en/qa%d_*train.txt' % args.task)[0]
args.test_file = glob.glob('data/en/qa%d_*test.txt' % args.task)[0]
model = Model(**args.__dict__)
model.train(n_epochs=args.n_epochs, shuffle_batch=args.shuffle_batch)
if __name__ == '__main__':
main()