-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
307 lines (232 loc) · 14.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os, json, time, argparse
import git
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from adaptive_stereo.models.stereo_net import StereoNet, FeatureExtractorNetwork
from adaptive_stereo.datasets.stereo_dataset import StereoDataset
from adaptive_stereo.utils.loss_functions import khamis_robust_loss_multiscale
from adaptive_stereo.utils.visualization import visualize_disp_tensorboard
from adaptive_stereo.utils.feature_contrast import feature_contrast_mean
def process_batch(feature_net, stereo_net, left, right, opt, output_cost_volume=False):
left_feat, right_feat = feature_net(left), feature_net(right)
outputs = stereo_net(left, left_feat, right_feat, "l", output_cost_volume=output_cost_volume)
return outputs
def log_scalars(writer, metrics, losses, examples_per_sec, epoch, step):
with torch.no_grad():
for name in losses:
writer.add_scalar(name, losses[name], step)
for name in metrics:
writer.add_scalar(name, metrics[name], step)
writer.add_scalar("examples_per_sec", examples_per_sec, step)
print("\n{}|{}========================================================================".format(epoch, step))
print("TIMING // examples/sec={:.3f}".format(examples_per_sec))
if len(metrics) > 0:
print("METRICS // EPE={:.3f} | >2px={:.3f} | >3px={:.3f} | >4px={:.3f} | >5px={:.3f}".format(
metrics["EPE"] if "EPE" in metrics else -1,
metrics["D1_all_2px"] if "D1_all_2px" in metrics else -1,
metrics["D1_all_3px"] if "D1_all_3px" in metrics else -1,
metrics["D1_all_4px"] if "D1_all_4px" in metrics else -1,
metrics["D1_all_5px"] if "D1_all_5px" in metrics else -1))
if len(losses) > 0:
loss_str = "LOSS // "
for name in losses:
loss_str += " | {}={:.3f}".format(name, losses[name])
print(loss_str)
print("===========================================================================\n")
# writer.close()
def contains_prefix(name, prefixes):
for p in prefixes:
if p in name:
return True
return False
def log_images(writer, inputs, outputs, step, skip_prefixes=["cost_volume"]):
with torch.no_grad():
for io in (inputs, outputs):
for name in io:
if contains_prefix(name, skip_prefixes):
continue
if "disp" in name:
viz = visualize_disp_tensorboard(io[name][0].detach().cpu())
else:
viz = io[name][0].detach().cpu()
writer.add_image(name, viz, step)
writer.close()
def evaluate(feature_net, stereo_net, val_loader, opt):
feature_net.eval()
stereo_net.eval()
num_batches_eval = len(val_loader) // 10 if opt.fast_eval else len(val_loader)
if opt.num_steps > 0:
num_batches_eval = min(opt.num_steps // val_loader.batch_size, len(val_loader))
with torch.no_grad():
EPEs = torch.zeros(num_batches_eval)
D1_alls = torch.zeros(num_batches_eval, 4)
FCSs = torch.zeros(num_batches_eval)
for i, inputs in enumerate(val_loader):
if i >= num_batches_eval:
break
for key in inputs:
inputs[key] = inputs[key].cuda()
left = inputs["color_l/{}".format(opt.stereonet_input_scale)]
right = inputs["color_r/{}".format(opt.stereonet_input_scale)]
outputs = process_batch(feature_net, stereo_net, left, right, opt, output_cost_volume=True)
pred_disp = outputs["pred_disp_l/{}".format(opt.stereonet_input_scale)]
gt_disp = inputs["gt_disp_l/{}".format(opt.stereonet_input_scale)]
valid_mask = (gt_disp > 0)
# Compute EPE.
EPEs[i] = torch.abs(pred_disp - gt_disp)[valid_mask].mean()
# Compute D1-all for several outlier thresholds.
for oi, ot in enumerate([2, 3, 4, 5]):
D1_alls[i, oi] = (valid_mask * (torch.abs(pred_disp - gt_disp) > ot)).sum() / float(valid_mask.sum())
# Compute feature contrast score (FCS).
FCSs[i] = feature_contrast_mean(outputs["cost_volume_l/{}".format(opt.stereonet_input_scale + opt.stereonet_k)]).mean()
EPEs = EPEs.mean()
D1_alls = D1_alls.mean(dim=0)
FCSs = FCSs.mean()
metrics = {"EPE": EPEs.item(),
"FCS": FCSs.item(),
"D1_all_2px": D1_alls[0].item(),
"D1_all_3px": D1_alls[1].item(),
"D1_all_4px": D1_alls[2].item(),
"D1_all_5px": D1_alls[3].item()}
feature_net.train()
stereo_net.train()
return metrics
def save_models(feature_net, stereo_net, optimizer, log_path, epoch):
save_folder = os.path.join(log_path, "models", "weights_{}".format(epoch))
os.makedirs(save_folder, exist_ok=True)
torch.save(feature_net.state_dict(), os.path.join(save_folder, "feature_net.pth"))
torch.save(stereo_net.state_dict(), os.path.join(save_folder, "stereo_net.pth"))
if optimizer is not None:
torch.save(optimizer.state_dict(), os.path.join(save_folder, "adam.pth"))
def train(opt):
torch.manual_seed(123)
# https://github.com/pytorch/pytorch/issues/15054
torch.backends.cudnn.benchmark = True
log_path = os.path.join(opt.log_dir, opt.model_name)
os.makedirs(log_path, exist_ok=True)
# https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script
repo = git.Repo(search_parent_directories=True)
sha = repo.head.object.hexsha
opt.commit_hash = sha
with open(os.path.join(log_path, "opt.json"), "w") as f:
opt_readable = json.dumps(opt.__dict__, sort_keys=True, indent=2)
print("--------------------------------------------------------------------")
print("TRAINING OPTIONS:")
print(opt_readable)
f.write(opt_readable + "\n")
print("--------------------------------------------------------------------")
feature_net = FeatureExtractorNetwork(opt.stereonet_k).cuda()
stereo_net = StereoNet(opt.stereonet_k, 1, opt.stereonet_input_scale).cuda()
parameters_to_train = [{"params": stereo_net.parameters()}, {"params": feature_net.parameters()}]
optimizer = optim.Adam(parameters_to_train, lr=opt.learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimizer, opt.scheduler_step_size, 0.5)
# If a folder for pretrained weights is given, load from there.
if opt.load_weights_folder is not None:
print("Loading models from: ", opt.load_weights_folder)
feature_net.load_state_dict(torch.load(os.path.join(opt.load_weights_folder, "feature_net.pth")), strict=True)
stereo_net.load_state_dict(torch.load(os.path.join(opt.load_weights_folder, "stereo_net.pth")), strict=True)
loss_scales = [opt.stereonet_input_scale, opt.stereonet_input_scale + opt.stereonet_k]
train_dataset = StereoDataset(opt.dataset_path, opt.dataset_name, opt.split, opt.height, opt.width, "train",
scales=loss_scales, do_hflip=opt.do_hflip, random_crop=True, load_disp_left=True,
load_disp_right=True)
val_dataset = StereoDataset(opt.dataset_path, opt.dataset_name, opt.split, opt.height, opt.width, "val",
scales=loss_scales, do_hflip=False, random_crop=False, load_disp_left=True,
load_disp_right=False)
train_loader = DataLoader(train_dataset, opt.batch_size, not opt.no_shuffle,
num_workers=opt.num_workers, pin_memory=True, drop_last=False, collate_fn=None)
val_loader = DataLoader(val_dataset, opt.batch_size, False,
num_workers=opt.num_workers, pin_memory=True, drop_last=False, collate_fn=None)
print("----------------------------------------------------------------------")
print("DATASET SIZES:\n TRAIN={} VAL={}".format(len(train_dataset), len(val_dataset)))
print("----------------------------------------------------------------------")
# Create tensorboard writers for visualizing in the browser.
writer = SummaryWriter(os.path.join(log_path, "val"))
#================================== TRAINING LOOP ======================================
epoch, step = 0, 0
for epoch in range(opt.num_epochs):
feature_net.train()
stereo_net.train()
for bi, inputs in enumerate(train_loader):
t0 = time.time()
for key in inputs:
inputs[key] = inputs[key].cuda()
outputs = process_batch(
feature_net, stereo_net,
inputs["color_l/{}".format(opt.stereonet_input_scale)],
inputs["color_r/{}".format(opt.stereonet_input_scale)], opt)
losses = khamis_robust_loss_multiscale(inputs, outputs, scales=loss_scales, gt_disp_scale=opt.stereonet_input_scale)
optimizer.zero_grad()
losses["total_loss"].backward()
if opt.clip_grad_norm:
nn.utils.clip_grad_norm_(stereo_net.parameters(), 1.0)
optimizer.step()
elapsed_this_batch = time.time() - t0
early_phase = (step % opt.log_frequency) == 0 and step < 2000
late_phase = (step % 2000) == 0 or (bi == 0) # Log at start of each epoch.
if early_phase or late_phase:
metrics = evaluate(feature_net, stereo_net, val_loader, opt)
log_scalars(writer, metrics, losses, opt.batch_size / elapsed_this_batch, epoch, step)
log_images(writer, inputs, outputs, step)
step += 1
if epoch >= 1 and (epoch % opt.save_freq) == 0:
save_models(feature_net, stereo_net, optimizer, log_path, epoch)
scheduler.step()
# Do a final stereo_net save after training.
save_models(feature_net, stereo_net, optimizer, log_path, epoch)
class TrainOptions(object):
def __init__(self):
self.parser = argparse.ArgumentParser(description="Options for training StereoNet")
self.parser.add_argument("--height", type=int, default=320, help="Image height (must be divisble by 2**(opt.stereonet_k + opt.stereonet_input_scale)")
self.parser.add_argument("--width", type=int, default=960, help="Image width (must be divisble by 2**(opt.stereonet_k + opt.stereonet_input_scale)")
self.parser.add_argument("--model_name", type=str, help="The name for this training experiment")
self.parser.add_argument("--stereonet_input_scale", default=0, type=int, help="Scale for input images to StereoNet")
self.parser.add_argument("--stereonet_k", type=int, default=3, choices=[3, 4], help="The cost volume downsampling factor")
# Dataset options.
self.parser.add_argument("--dataset_path", type=str, help="Top level folder for the dataset being used")
self.parser.add_argument("--dataset_name", type=str, default="SceneFlowDriving", help="Which dataset to train on")
self.parser.add_argument("--split", type=str, help="The dataset split to train on")
self.parser.add_argument("--batch_size", type=int, default=2, help="Batch size for training")
self.parser.add_argument("--do_hflip", action="store_true", default=False, help="Do horizontal flip augmentation during training")
self.parser.add_argument("--no_shuffle", action="store_true", default=False, help="Turn off dataset shuffling (i.e for sequential adaptation)")
self.parser.add_argument("--use_grayscale", action="store_true", help="Convert training images to grayscale")
# Output and saving options.
self.parser.add_argument("--log_dir", type=str, default="/home/milo/training_logs", help="Directory for saving tensorboard events and models")
self.parser.add_argument("--load_weights_folder", default=None, type=str, help="Path to load pretrained weights from")
self.parser.add_argument("--load_adam", action="store_true", default=False, help="Load the Adam optimizer state to resume training")
self.parser.add_argument("--scheduler_step_size", default=5, type=int, help="Reduce LR by 1/2 after this many epochs")
self.parser.add_argument("--num_workers", type=int, default=4, help="Number of DataLoader workers")
self.parser.add_argument("--num_epochs", type=int, default=100, help="Number of training epochs")
self.parser.add_argument("--log_frequency", type=int, default=250, help="Number of batches between tensorboard logging")
self.parser.add_argument("--save_freq", type=int, default=1, help="Save model weights after every x epochs")
self.parser.add_argument("--fast_eval", action="store_true", default=False, help="Speeds up evaluation by only doing the first few batches")
# Optimizer options.
self.parser.add_argument("--learning_rate", default=1e-5, type=float, help="Learning rate for Adam optimizer")
self.parser.add_argument("--clip_grad_norm", action="store_true", default=False, help="Clip gradient norms to 1.0")
# Adaptation options.
self.parser.add_argument("--leftright_consistency", action="store_true", default=False, help="Predict disparity for the left and right images")
self.parser.add_argument("--smoothness_weight", type=float, default=1e-3, help="Smoothness loss coefficient, as in MonoDepth2")
self.parser.add_argument("--consistency_weight", type=float, default=1e-3, help="Left-right consistency loss coefficient, as in MonoDepth1")
self.parser.add_argument("--num_steps", type=int, default=-1, help="Limit to this many adaptation gradient descent updates")
self.parser.add_argument("--ovs_buffer_size", type=int, default=10, help="Size of the online validation set (OVS)")
self.parser.add_argument("--skip_initial_eval", action="store_true", help="Skip evaluation the pre-adaptation model")
self.parser.add_argument("--ovs_validate_hz", type=int, default=100, help="How often to test the validation buffer")
self.parser.add_argument("--adapt_mode", choices=["NONSTOP", "VS", "ER", "VS+ER", "NONE"], help="Adaptation method")
self.parser.add_argument("--val_improve_retries", type=int, default=1, help="Stop adaptation if loss hasn't improved after this many re-validations")
self.parser.add_argument("--eval_hz", type=int, default=1000, help="Evaluate after this many steps. 0 means at the end of each epoch.")
self.parser.add_argument("--er_loss_weight", type=float, default=0.05, help="Weight for the experience replay loss during adaptation.")
self.parser.add_argument("--train_dataset_path", type=str, help="Path to the training dataset folder. Used to evaluate the effect of adaptation on training domain performance.")
self.parser.add_argument("--train_dataset_name", type=str, help="Name of the training set class (e.g KittiRaw)")
self.parser.add_argument("--train_split", type=str, help="Training split used for validation")
self.parser.add_argument("--ood_threshold", type=float, default=15.0, help="Reconstruction loss cutoff threshold for 'OOD'")
self.parser.add_argument("--fcs_ema_weight", type=float, default=0.999, help="Weight parameter for exponential moving average")
def parse(self):
self.options = self.parser.parse_args()
return self.options
if __name__ == "__main__":
options = TrainOptions()
train(options.parse())
print("Done with training!")