-
Notifications
You must be signed in to change notification settings - Fork 0
/
logger.py
executable file
·204 lines (176 loc) · 6.86 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from torch.utils.tensorboard import SummaryWriter
from collections import defaultdict
import json
import os
import csv
import shutil
import torch
import numpy as np
from termcolor import colored
COMMON_TRAIN_FORMAT = [
('episode', 'E', 'int'),
('step', 'S', 'int'),
('episode_reward', 'R', 'float'),
('duration', 'D', 'time')
]
COMMON_EVAL_FORMAT = [
('episode', 'E', 'int'),
('step', 'S', 'int'),
('episode_reward', 'R', 'float')
]
AGENT_TRAIN_FORMAT = {
'sac': [
('batch_reward', 'BR', 'float'),
('actor_loss', 'ALOSS', 'float'),
('critic_loss', 'CLOSS', 'float'),
('alpha_loss', 'TLOSS', 'float'),
('alpha_value', 'TVAL', 'float'),
('actor_entropy', 'AENT', 'float')
]
}
class AverageMeter(object):
def __init__(self):
self._sum = 0
self._count = 0
def update(self, value, n=1):
self._sum += value
self._count += n
def value(self):
return self._sum / max(1, self._count)
class MetersGroup(object):
def __init__(self, file_name, formating):
self._csv_file_name = self._prepare_file(file_name, 'csv')
self._formating = formating
self._meters = defaultdict(AverageMeter)
self._csv_file = open(self._csv_file_name, 'w')
self._csv_writer = None
def _prepare_file(self, prefix, suffix):
file_name = f'{prefix}.{suffix}'
if os.path.exists(file_name):
os.remove(file_name)
return file_name
def log(self, key, value, n=1):
self._meters[key].update(value, n)
def _prime_meters(self):
data = dict()
for key, meter in self._meters.items():
if key.startswith('train'):
key = key[len('train') + 1:]
else:
key = key[len('eval') + 1:]
key = key.replace('/', '_')
data[key] = meter.value()
return data
def _dump_to_csv(self, data):
if self._csv_writer is None:
self._csv_writer = csv.DictWriter(self._csv_file,
fieldnames=sorted(data.keys()),
restval=0.0)
self._csv_writer.writeheader()
self._csv_writer.writerow(data)
self._csv_file.flush()
def _format(self, key, value, ty):
if ty == 'int':
value = int(value)
return f'{key}: {value}'
elif ty == 'float':
return f'{key}: {value:.04f}'
elif ty == 'time':
return f'{key}: {value:04.1f} s'
else:
raise f'invalid format type: {ty}'
def _dump_to_console(self, data, prefix):
prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green')
pieces = [f'| {prefix: <14}']
for key, disp_key, ty in self._formating:
value = data.get(key, 0)
pieces.append(self._format(disp_key, value, ty))
print(' | '.join(pieces))
def dump(self, step, prefix, save=True):
if len(self._meters) == 0:
return
if save:
data = self._prime_meters()
data['step'] = step
self._dump_to_csv(data)
self._dump_to_console(data, prefix)
self._meters.clear()
class Logger(object):
def __init__(self,
log_dir,
save_tb=False,
log_frequency=10000,
agent='sac'):
self._log_dir = log_dir
self._log_frequency = log_frequency
if save_tb:
tb_dir = os.path.join(log_dir, 'tb')
if os.path.exists(tb_dir):
try:
shutil.rmtree(tb_dir)
except:
print("logger.py warning: Unable to remove tb directory")
pass
self._sw = SummaryWriter(tb_dir)
else:
self._sw = None
# each agent has specific output format for training
assert agent in AGENT_TRAIN_FORMAT
train_format = COMMON_TRAIN_FORMAT + AGENT_TRAIN_FORMAT[agent]
self._train_mg = MetersGroup(os.path.join(log_dir, 'train'),
formating=train_format)
self._eval_mg = MetersGroup(os.path.join(log_dir, 'eval'),
formating=COMMON_EVAL_FORMAT)
def _should_log(self, step, log_frequency):
log_frequency = log_frequency or self._log_frequency
return step % log_frequency == 0
def _try_sw_log(self, key, value, step):
if self._sw is not None:
self._sw.add_scalar(key, value, step)
def _try_sw_log_video(self, key, frames, step):
if self._sw is not None:
frames = torch.from_numpy(np.array(frames))
frames = frames.unsqueeze(0)
self._sw.add_video(key, frames, step, fps=30)
def _try_sw_log_histogram(self, key, histogram, step):
if self._sw is not None:
self._sw.add_histogram(key, histogram, step)
def log(self, key, value, step, n=1, log_frequency=1):
if not self._should_log(step, log_frequency):
return
assert key.startswith('train') or key.startswith('eval')
if type(value) == torch.Tensor:
value = value.item()
self._try_sw_log(key, value / n, step)
mg = self._train_mg if key.startswith('train') else self._eval_mg
mg.log(key, value, n)
def log_param(self, key, param, step, log_frequency=None):
if not self._should_log(step, log_frequency):
return
self.log_histogram(key + '_w', param.weight.data, step)
if hasattr(param.weight, 'grad') and param.weight.grad is not None:
self.log_histogram(key + '_w_g', param.weight.grad.data, step)
if hasattr(param, 'bias') and hasattr(param.bias, 'data'):
self.log_histogram(key + '_b', param.bias.data, step)
if hasattr(param.bias, 'grad') and param.bias.grad is not None:
self.log_histogram(key + '_b_g', param.bias.grad.data, step)
def log_video(self, key, frames, step, log_frequency=None):
if not self._should_log(step, log_frequency):
return
assert key.startswith('train') or key.startswith('eval')
self._try_sw_log_video(key, frames, step)
def log_histogram(self, key, histogram, step, log_frequency=None):
if not self._should_log(step, log_frequency):
return
assert key.startswith('train') or key.startswith('eval')
self._try_sw_log_histogram(key, histogram, step)
def dump(self, step, save=True, ty=None):
if ty is None:
self._train_mg.dump(step, 'train', save)
self._eval_mg.dump(step, 'eval', save)
elif ty == 'eval':
self._eval_mg.dump(step, 'eval', save)
elif ty == 'train':
self._train_mg.dump(step, 'train', save)
else:
raise f'invalid log type: {ty}'