-
Notifications
You must be signed in to change notification settings - Fork 166
/
Copy pathextract_kapture.py
248 lines (213 loc) · 10.4 KB
/
extract_kapture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import numpy as np
from PIL import Image
import torch
import math
from tqdm import tqdm
from os import path
# Kapture is a pivot file format, based on text and binary files, used to describe SfM (Structure From Motion) and more generally sensor-acquired data
# it can be installed with
# pip install kapture
# for more information check out https://github.com/naver/kapture
import kapture
from kapture.io.records import get_image_fullpath
from kapture.io.csv import kapture_from_dir, get_all_tar_handlers
from kapture.io.csv import get_feature_csv_fullpath, keypoints_to_file, descriptors_to_file
from kapture.io.features import get_keypoints_fullpath, keypoints_check_dir, image_keypoints_to_file
from kapture.io.features import get_descriptors_fullpath, descriptors_check_dir, image_descriptors_to_file
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
# import imageio
# CUDA
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
# Argument parsing
parser = argparse.ArgumentParser(description='Feature extraction script')
parser.add_argument(
'--kapture-root', type=str, required=True,
help='path to kapture root directory'
)
parser.add_argument(
'--preprocessing', type=str, default='caffe',
help='image preprocessing (caffe or torch)'
)
parser.add_argument(
'--model_file', type=str, default='models/d2_tf.pth',
help='path to the full model'
)
parser.add_argument(
'--keypoints-type', type=str, default=None,
help='keypoint type_name, default is filename of model'
)
parser.add_argument(
'--descriptors-type', type=str, default=None,
help='descriptors type_name, default is filename of model'
)
parser.add_argument(
'--max_edge', type=int, default=1600,
help='maximum image size at network input'
)
parser.add_argument(
'--max_sum_edges', type=int, default=2800,
help='maximum sum of image sizes at network input'
)
parser.add_argument(
'--multiscale', dest='multiscale', action='store_true',
help='extract multiscale features'
)
parser.set_defaults(multiscale=False)
parser.add_argument(
'--no-relu', dest='use_relu', action='store_false',
help='remove ReLU after the dense feature extraction module'
)
parser.set_defaults(use_relu=True)
parser.add_argument("--max-keypoints", type=int, default=float("+inf"),
help='max number of keypoints save to disk')
args = parser.parse_args()
print(args)
with get_all_tar_handlers(args.kapture_root,
mode={kapture.Keypoints: 'a',
kapture.Descriptors: 'a',
kapture.GlobalFeatures: 'r',
kapture.Matches: 'r'}) as tar_handlers:
kdata = kapture_from_dir(args.kapture_root,
skip_list=[kapture.GlobalFeatures,
kapture.Matches,
kapture.Points3d,
kapture.Observations],
tar_handlers=tar_handlers)
if kdata.keypoints is None:
kdata.keypoints = {}
if kdata.descriptors is None:
kdata.descriptors = {}
assert kdata.records_camera is not None
image_list = [filename for _, _, filename in kapture.flatten(kdata.records_camera)]
if args.keypoints_type is None:
args.keypoints_type = path.splitext(path.basename(args.model_file))[0]
print(f'keypoints_type set to {args.keypoints_type}')
if args.descriptors_type is None:
args.descriptors_type = path.splitext(path.basename(args.model_file))[0]
print(f'descriptors_type set to {args.descriptors_type}')
if args.keypoints_type in kdata.keypoints and args.descriptors_type in kdata.descriptors:
image_list = [name
for name in image_list
if name not in kdata.keypoints[args.keypoints_type] or
name not in kdata.descriptors[args.descriptors_type]]
if len(image_list) == 0:
print('All features were already extracted')
exit(0)
else:
print(f'Extracting d2net features for {len(image_list)} images')
# Creating CNN model
model = D2Net(
model_file=args.model_file,
use_relu=args.use_relu,
use_cuda=use_cuda
)
if args.keypoints_type not in kdata.keypoints:
keypoints_dtype = None
keypoints_dsize = None
else:
keypoints_dtype = kdata.keypoints[args.keypoints_type].dtype
keypoints_dsize = kdata.keypoints[args.keypoints_type].dsize
if args.descriptors_type not in kdata.descriptors:
descriptors_dtype = None
descriptors_dsize = None
else:
descriptors_dtype = kdata.descriptors[args.descriptors_type].dtype
descriptors_dsize = kdata.descriptors[args.descriptors_type].dsize
# Process the files
for image_name in tqdm(image_list, total=len(image_list)):
img_path = get_image_fullpath(args.kapture_root, image_name)
image = Image.open(img_path).convert('RGB')
width, height = image.size
resized_image = image
resized_width = width
resized_height = height
max_edge = args.max_edge
max_sum_edges = args.max_sum_edges
if max(resized_width, resized_height) > max_edge:
scale_multiplier = max_edge / max(resized_width, resized_height)
resized_width = math.floor(resized_width * scale_multiplier)
resized_height = math.floor(resized_height * scale_multiplier)
resized_image = image.resize((resized_width, resized_height))
if resized_width + resized_height > max_sum_edges:
scale_multiplier = max_sum_edges / (resized_width + resized_height)
resized_width = math.floor(resized_width * scale_multiplier)
resized_height = math.floor(resized_height * scale_multiplier)
resized_image = image.resize((resized_width, resized_height))
fact_i = width / resized_width
fact_j = height / resized_height
resized_image = np.array(resized_image).astype('float')
input_image = preprocess_image(
resized_image,
preprocessing=args.preprocessing
)
with torch.no_grad():
if args.multiscale:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model
)
else:
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model,
scales=[1]
)
# Input image coordinates
keypoints[:, 0] *= fact_i
keypoints[:, 1] *= fact_j
# i, j -> u, v
keypoints = keypoints[:, [1, 0, 2]]
if args.max_keypoints != float("+inf"):
# keep the last (the highest) indexes
idx_keep = scores.argsort()[-min(len(keypoints), args.max_keypoints):]
keypoints = keypoints[idx_keep]
descriptors = descriptors[idx_keep]
if keypoints_dtype is None or descriptors_dtype is None:
keypoints_dtype = keypoints.dtype
descriptors_dtype = descriptors.dtype
keypoints_dsize = keypoints.shape[1]
descriptors_dsize = descriptors.shape[1]
kdata.keypoints[args.keypoints_type] = kapture.Keypoints('d2net', keypoints_dtype, keypoints_dsize)
kdata.descriptors[args.descriptors_type] = kapture.Descriptors('d2net', descriptors_dtype,
descriptors_dsize,
args.keypoints_type, 'L2')
keypoints_config_absolute_path = get_feature_csv_fullpath(kapture.Keypoints,
args.keypoints_type,
args.kapture_root)
descriptors_config_absolute_path = get_feature_csv_fullpath(kapture.Descriptors,
args.descriptors_type,
args.kapture_root)
keypoints_to_file(keypoints_config_absolute_path, kdata.keypoints[args.keypoints_type])
descriptors_to_file(descriptors_config_absolute_path, kdata.descriptors[args.descriptors_type])
else:
assert kdata.keypoints[args.keypoints_type].dtype == keypoints.dtype
assert kdata.descriptors[args.descriptors_type].dtype == descriptors.dtype
assert kdata.keypoints[args.keypoints_type].dsize == keypoints.shape[1]
assert kdata.descriptors[args.descriptors_type].dsize == descriptors.shape[1]
assert kdata.descriptors[args.descriptors_type].keypoints_type == args.keypoints_type
assert kdata.descriptors[args.descriptors_type].metric_type == 'L2'
keypoints_fullpath = get_keypoints_fullpath(args.keypoints_type, args.kapture_root,
image_name, tar_handlers)
print(f"Saving {keypoints.shape[0]} keypoints to {keypoints_fullpath}")
image_keypoints_to_file(keypoints_fullpath, keypoints)
kdata.keypoints[args.keypoints_type].add(image_name)
descriptors_fullpath = get_descriptors_fullpath(args.descriptors_type, args.kapture_root,
image_name, tar_handlers)
print(f"Saving {descriptors.shape[0]} descriptors to {descriptors_fullpath}")
image_descriptors_to_file(descriptors_fullpath, descriptors)
kdata.descriptors[args.descriptors_type].add(image_name)
if not keypoints_check_dir(kdata.keypoints[args.keypoints_type], args.keypoints_type,
args.kapture_root, tar_handlers) or \
not descriptors_check_dir(kdata.descriptors[args.descriptors_type], args.descriptors_type,
args.kapture_root, tar_handlers):
print('local feature extraction ended successfully but not all files were saved')