Skip to content

Latest commit

 

History

History
91 lines (76 loc) · 3.95 KB

README.md

File metadata and controls

91 lines (76 loc) · 3.95 KB

DeepRapper

DeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling, by Lanqing Xue, Kaitao Song, Duocai Wu, Xu Tan, Nevin L. Zhang, Tao Qin, Wei-Qiang Zhang, Tie-Yan Liu, ACL 2021, is a Transformer-based rap generation system that can model both rhymes and rhythms. It generates lyrics in the reverse order with rhyme representation and constraint for rhyme enhancement and inserts a beat symbol into lyrics for rhythm/beat modeling. To our knowledge, DeepRapper is the first system to generate rap with both rhymes and rhythms.


The input and output representation of DeepRapper model

1. Data Preparation

Prepare both lyrics and pinyin for each song. We provide some data samples in DeepRapper/data/.

├── data
│   └── lyrics
│       └── lyrics_samples
│           └── raw
│               └── singer01
│                   └── album01
│                       ├── song01
│                       │   ├── lyric_with_beat_global.txt
│                       │   └── mapped_final_with_beat_global.txt
│                       └── song02
│                           ├── lyric_with_beat_global.txt
│                           └── mapped_final_with_beat_global.txt

Here is a sample of lyric_with_beat_global.txt:

20_[01:12.56][BEAT]那就[BEAT]让我再沉[BEAT]沦这一世
21_[01:14.49][BEAT]不理[BEAT]解早已[BEAT]经不止一次
22_[01:16.59][BEAT]那就[BEAT]让我孤[BEAT]注最后一掷
23_[01:18.61][BEAT]不想昏[BEAT]暗之中[BEAT]度过每日
24_[01:20.60][BEAT]那就[BEAT]让我再[BEAT]沉沦这一世
25_[01:22.48][BEAT]不理[BEAT]解早已[BEAT]经不止一次
26_[01:24.58][BEAT]那就[BEAT]让我孤[BEAT]注最后一掷
27_[01:26.47][BEAT]不想昏[BEAT]暗之[BEAT]中度过每日

Here is a sample of mapped_final_with_beat_global.txt:

20_[01:12.56][BEAT] a ou [BEAT] ang o ai en [BEAT] en e i i
21_[01:14.49][BEAT] u i [BEAT] ie ao i [BEAT] in u i i i
22_[01:16.59][BEAT] a ou [BEAT] ang o u [BEAT] u ei ou i i
23_[01:18.61][BEAT] u ang en [BEAT] an i ong [BEAT] u o ei i
24_[01:20.60][BEAT] a ou [BEAT] ang o ai [BEAT] en en e i i
25_[01:22.48][BEAT] u i [BEAT] ie ao i [BEAT] in u i i i
26_[01:24.58][BEAT] a ou [BEAT] ang o u [BEAT] u ei ou i i
27_[01:26.47][BEAT] u ang en [BEAT] an i [BEAT] ong u o ei i

2. Training & Generation

We provide a example script for train and generation. To train, run:

bash train.sh

When training, you may see the logs:

starting training
epoch 1
time: 2021-xx-xx 11:17:57.067011
51200
now time: 11:17. Step 10 of piece 0 of epoch 1, loss 9.587631130218506
now time: 11:18. Step 20 of piece 0 of epoch 1, loss 9.187388515472412

You can specify the arguments in the bash file, such as number of epoch, bach size, etc. The trained model is saved in [model_dir]/lyrics/[raw_data_dir][_reverse]/[model_sign]/final_model. For example, in the default train.sh, the path is model/lyrics/lyrics_samples_reverse/samples/final_model.

To generate by the trained DeepRapper, run

bash generate.sh

You can specify the arguments in the bash file, such as beam width, number of samples, etc.

For more generated samples, visit https://ai-muzic.github.io/deeprapper/.

3. Pretrained Model

You can download a pretrained DeepRapper here.

To generate by our provided pretrained DeepRapper, first unzip the pretrained DeepRapper. Then, put the unzipped directory deeprapper-model under the folder model/. So, the complete paths are like the follows:

├── model
│   └── deeprapper-model
│       ├── pytorch_model.bin
│       └── config.json

Finally, run the following command to generate:

bash generate_from_pretrain.sh