-
Notifications
You must be signed in to change notification settings - Fork 716
/
Copy path6_Rotation.cs
207 lines (177 loc) · 8.82 KB
/
6_Rotation.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
using System;
using Microsoft.Research.SEAL;
using System.Collections.Generic;
namespace SEALNetExamples
{
partial class Examples
{
/*
Both the BFV and BGV schemes (with BatchEncoder) as well as the CKKS scheme support
native vectorized computations on encrypted numbers. In addition to computing slot-wise,
it is possible to rotate the encrypted vectors cyclically.
Simply changing `SchemeType.BFV` to `SchemeType.BGV` will make this example work for
the BGV scheme.
*/
private static void ExampleRotationBFV()
{
Utilities.PrintExampleBanner("Example: Rotation / Rotation in BFV");
using EncryptionParameters parms = new EncryptionParameters(SchemeType.BFV);
ulong polyModulusDegree = 8192;
parms.PolyModulusDegree = polyModulusDegree;
parms.CoeffModulus = CoeffModulus.BFVDefault(polyModulusDegree);
parms.PlainModulus = PlainModulus.Batching(polyModulusDegree, 20);
using SEALContext context = new SEALContext(parms);
Utilities.PrintParameters(context);
Console.WriteLine();
using KeyGenerator keygen = new KeyGenerator(context);
using SecretKey secretKey = keygen.SecretKey;
keygen.CreatePublicKey(out PublicKey publicKey);
keygen.CreateRelinKeys(out RelinKeys relinKeys);
using Encryptor encryptor = new Encryptor(context, publicKey);
using Evaluator evaluator = new Evaluator(context);
using Decryptor decryptor = new Decryptor(context, secretKey);
using BatchEncoder batchEncoder = new BatchEncoder(context);
ulong slotCount = batchEncoder.SlotCount;
ulong rowSize = slotCount / 2;
Console.WriteLine($"Plaintext matrix row size: {rowSize}");
ulong[] podMatrix = new ulong[slotCount];
podMatrix[0] = 0;
podMatrix[1] = 1;
podMatrix[2] = 2;
podMatrix[3] = 3;
podMatrix[rowSize] = 4;
podMatrix[rowSize + 1] = 5;
podMatrix[rowSize + 2] = 6;
podMatrix[rowSize + 3] = 7;
Console.WriteLine("Input plaintext matrix:");
Utilities.PrintMatrix(podMatrix, (int)rowSize);
Console.WriteLine();
/*
First we use BatchEncoder to encode the matrix into a plaintext. We encrypt
the plaintext as usual.
*/
Utilities.PrintLine();
using Plaintext plainMatrix = new Plaintext();
Console.WriteLine("Encode and encrypt.");
batchEncoder.Encode(podMatrix, plainMatrix);
using Ciphertext encryptedMatrix = new Ciphertext();
encryptor.Encrypt(plainMatrix, encryptedMatrix);
Console.WriteLine(" + Noise budget in fresh encryption: {0} bits",
decryptor.InvariantNoiseBudget(encryptedMatrix));
Console.WriteLine();
/*
Rotations require yet another type of special key called `Galois keys'. These
are easily obtained from the KeyGenerator.
*/
keygen.CreateGaloisKeys(out GaloisKeys galoisKeys);
/*
Now rotate both matrix rows 3 steps to the left, decrypt, decode, and print.
*/
Utilities.PrintLine();
Console.WriteLine("Rotate rows 3 steps left.");
evaluator.RotateRowsInplace(encryptedMatrix, 3, galoisKeys);
using Plaintext plainResult = new Plaintext();
Console.WriteLine(" + Noise budget after rotation: {0} bits",
decryptor.InvariantNoiseBudget(encryptedMatrix));
Console.WriteLine(" + Decrypt and decode ...... Correct.");
decryptor.Decrypt(encryptedMatrix, plainResult);
List<ulong> podResult = new List<ulong>();
batchEncoder.Decode(plainResult, podResult);
Utilities.PrintMatrix(podResult, (int)rowSize);
/*
We can also rotate the columns, i.e., swap the rows.
*/
Utilities.PrintLine();
Console.WriteLine("Rotate columns.");
evaluator.RotateColumnsInplace(encryptedMatrix, galoisKeys);
Console.WriteLine(" + Noise budget after rotation: {0} bits",
decryptor.InvariantNoiseBudget(encryptedMatrix));
Console.WriteLine(" + Decrypt and decode ...... Correct.");
decryptor.Decrypt(encryptedMatrix, plainResult);
batchEncoder.Decode(plainResult, podResult);
Utilities.PrintMatrix(podResult, (int)rowSize);
/*
Finally, we rotate the rows 4 steps to the right, decrypt, decode, and print.
*/
Utilities.PrintLine();
Console.WriteLine("Rotate rows 4 steps right.");
evaluator.RotateRowsInplace(encryptedMatrix, -4, galoisKeys);
Console.WriteLine(" + Noise budget after rotation: {0} bits",
decryptor.InvariantNoiseBudget(encryptedMatrix));
Console.WriteLine(" + Decrypt and decode ...... Correct.");
decryptor.Decrypt(encryptedMatrix, plainResult);
batchEncoder.Decode(plainResult, podResult);
Utilities.PrintMatrix(podResult, (int)rowSize);
/*
Note that rotations do not consume any noise budget. However, this is only
the case when the special prime is at least as large as the other primes. The
same holds for relinearization. Microsoft SEAL does not require that the
special prime is of any particular size, so ensuring this is the case is left
for the user to do.
*/
}
private static void ExampleRotationCKKS()
{
Utilities.PrintExampleBanner("Example: Rotation / Rotation in CKKS");
using EncryptionParameters parms = new EncryptionParameters(SchemeType.CKKS);
ulong polyModulusDegree = 8192;
parms.PolyModulusDegree = polyModulusDegree;
parms.CoeffModulus = CoeffModulus.Create(
polyModulusDegree, new int[] { 40, 40, 40, 40, 40 });
using SEALContext context = new SEALContext(parms);
Utilities.PrintParameters(context);
Console.WriteLine();
using KeyGenerator keygen = new KeyGenerator(context);
using SecretKey secretKey = keygen.SecretKey;
keygen.CreatePublicKey(out PublicKey publicKey);
keygen.CreateRelinKeys(out RelinKeys relinKeys);
keygen.CreateGaloisKeys(out GaloisKeys galoisKeys);
using Encryptor encryptor = new Encryptor(context, publicKey);
using Evaluator evaluator = new Evaluator(context);
using Decryptor decryptor = new Decryptor(context, secretKey);
using CKKSEncoder ckksEncoder = new CKKSEncoder(context);
ulong slotCount = ckksEncoder.SlotCount;
Console.WriteLine($"Number of slots: {slotCount}");
List<double> input = new List<double>((int)slotCount);
double currPoint = 0, stepSize = 1.0 / (slotCount - 1);
for (ulong i = 0; i < slotCount; i++, currPoint += stepSize)
{
input.Add(currPoint);
}
Console.WriteLine("Input vector:");
Utilities.PrintVector(input, 3, 7);
double scale = Math.Pow(2.0, 50);
Utilities.PrintLine();
Console.WriteLine("Encode and encrypt.");
using Plaintext plain = new Plaintext();
ckksEncoder.Encode(input, scale, plain);
using Ciphertext encrypted = new Ciphertext();
encryptor.Encrypt(plain, encrypted);
using Ciphertext rotated = new Ciphertext();
Utilities.PrintLine();
Console.WriteLine("Rotate 2 steps left.");
evaluator.RotateVector(encrypted, 2, galoisKeys, rotated);
Console.WriteLine(" + Decrypt and decode ...... Correct.");
decryptor.Decrypt(encrypted, plain);
List<double> result = new List<double>();
ckksEncoder.Decode(plain, result);
Utilities.PrintVector(result, 3, 7);
/*
With the CKKS scheme it is also possible to evaluate a complex conjugation on
a vector of encrypted complex numbers, using Evaluator.ComplexConjugate. This
is in fact a kind of rotation, and requires also Galois keys.
*/
}
private static void ExampleRotation()
{
Utilities.PrintExampleBanner("Example: Rotation");
/*
Run all rotation examples.
*/
ExampleRotationBFV();
ExampleRotationCKKS();
}
}
}