-
Notifications
You must be signed in to change notification settings - Fork 716
/
Copy pathnumth.h
159 lines (136 loc) · 5.26 KB
/
numth.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#pragma once
#include "seal/memorymanager.h"
#include "seal/modulus.h"
#include "seal/util/common.h"
#include "seal/util/defines.h"
#include "seal/util/pointer.h"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <stdexcept>
#include <tuple>
#include <vector>
namespace seal
{
namespace util
{
SEAL_NODISCARD inline std::vector<int> naf(int value)
{
std::vector<int> res;
// Record the sign of the original value and compute abs
bool sign = value < 0;
value = std::abs(value);
// Transform to non-adjacent form (NAF)
for (int i = 0; value; i++)
{
int zi = (value & int(0x1)) ? 2 - (value & int(0x3)) : 0;
value = (value - zi) >> 1;
if (zi)
{
res.push_back((sign ? -zi : zi) * (1 << i));
}
}
return res;
}
SEAL_NODISCARD inline std::uint64_t gcd(std::uint64_t x, std::uint64_t y)
{
#ifdef SEAL_DEBUG
if (x == 0)
{
throw std::invalid_argument("x cannot be zero");
}
if (y == 0)
{
throw std::invalid_argument("y cannot be zero");
}
#endif
if (x < y)
{
return gcd(y, x);
}
else if (y == 0)
{
return x;
}
else
{
std::uint64_t f = x % y;
if (f == 0)
{
return y;
}
else
{
return gcd(y, f);
}
}
}
SEAL_NODISCARD inline auto xgcd(std::uint64_t x, std::uint64_t y)
-> std::tuple<std::uint64_t, std::int64_t, std::int64_t>
{
/* Extended GCD:
Returns (gcd, x, y) where gcd is the greatest common divisor of a and b.
The numbers x, y are such that gcd = ax + by.
*/
#ifdef SEAL_DEBUG
if (x == 0)
{
throw std::invalid_argument("x cannot be zero");
}
if (y == 0)
{
throw std::invalid_argument("y cannot be zero");
}
#endif
std::int64_t prev_a = 1;
std::int64_t a = 0;
std::int64_t prev_b = 0;
std::int64_t b = 1;
while (y != 0)
{
std::int64_t q = util::safe_cast<std::int64_t>(x / y);
std::int64_t temp = util::safe_cast<std::int64_t>(x % y);
x = y;
y = util::safe_cast<std::uint64_t>(temp);
temp = a;
a = util::sub_safe(prev_a, util::mul_safe(q, a));
prev_a = temp;
temp = b;
b = util::sub_safe(prev_b, util::mul_safe(q, b));
prev_b = temp;
}
return std::make_tuple(x, prev_a, prev_b);
}
SEAL_NODISCARD inline bool are_coprime(std::uint64_t x, std::uint64_t y) noexcept
{
return !(gcd(x, y) > 1);
}
SEAL_NODISCARD std::vector<std::uint64_t> multiplicative_orders(
std::vector<std::uint64_t> conjugate_classes, std::uint64_t modulus);
SEAL_NODISCARD std::vector<std::uint64_t> conjugate_classes(
std::uint64_t modulus, std::uint64_t subgroup_generator);
void babystep_giantstep(
std::uint64_t modulus, std::vector<std::uint64_t> &baby_steps, std::vector<std::uint64_t> &giant_steps);
SEAL_NODISCARD auto decompose_babystep_giantstep(
std::uint64_t modulus, std::uint64_t input, const std::vector<std::uint64_t> &baby_steps,
const std::vector<std::uint64_t> &giant_steps) -> std::pair<std::size_t, std::size_t>;
SEAL_NODISCARD bool is_prime(const Modulus &modulus, std::size_t num_rounds = 40);
// Generate a vector of primes with "bit_size" bits that are congruent to 1 modulo "factor"
SEAL_NODISCARD std::vector<Modulus> get_primes(std::uint64_t factor, int bit_size, std::size_t count);
// Generate one prime with "bit_size" bits that are congruent to 1 modulo "factor"
SEAL_NODISCARD inline Modulus get_prime(std::uint64_t factor, int bit_size)
{
return get_primes(factor, bit_size, 1)[0];
}
bool try_invert_uint_mod(std::uint64_t value, std::uint64_t modulus, std::uint64_t &result);
bool is_primitive_root(std::uint64_t root, std::uint64_t degree, const Modulus &prime_modulus);
// Try to find a primitive degree-th root of unity modulo small prime
// modulus, where degree must be a power of two.
bool try_primitive_root(std::uint64_t degree, const Modulus &prime_modulus, std::uint64_t &destination);
// Try to find the smallest (as integer) primitive degree-th root of
// unity modulo small prime modulus, where degree must be a power of two.
bool try_minimal_primitive_root(std::uint64_t degree, const Modulus &prime_modulus, std::uint64_t &destination);
} // namespace util
} // namespace seal