-
Notifications
You must be signed in to change notification settings - Fork 122
/
Copy pathtrain.py
211 lines (167 loc) · 6.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import logging
import os
import pprint
import time
import torch
import torch.nn.parallel
import torch.optim
from torch.utils.collect_env import get_pretty_env_info
from tensorboardX import SummaryWriter
import _init_paths
from config import config
from config import update_config
from config import save_config
from core.loss import build_criterion
from core.function import train_one_epoch, test
from dataset import build_dataloader
from models import build_model
from optim import build_optimizer
from scheduler import build_lr_scheduler
from utils.comm import comm
from utils.utils import create_logger
from utils.utils import init_distributed
from utils.utils import setup_cudnn
from utils.utils import summary_model_on_master
from utils.utils import resume_checkpoint
from utils.utils import save_checkpoint_on_master
from utils.utils import save_model_on_master
def parse_args():
parser = argparse.ArgumentParser(
description='Train classification network')
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
# distributed training
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--port", type=int, default=9000)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
return args
def main():
args = parse_args()
init_distributed(args)
setup_cudnn(config)
update_config(config, args)
final_output_dir = create_logger(config, args.cfg, 'train')
tb_log_dir = final_output_dir
if comm.is_main_process():
logging.info("=> collecting env info (might take some time)")
logging.info("\n" + get_pretty_env_info())
logging.info(pprint.pformat(args))
logging.info(config)
logging.info("=> using {} GPUs".format(args.num_gpus))
output_config_path = os.path.join(final_output_dir, 'config.yaml')
logging.info("=> saving config into: {}".format(output_config_path))
save_config(config, output_config_path)
model = build_model(config)
model.to(torch.device('cuda'))
# copy model file
summary_model_on_master(model, config, final_output_dir, True)
if config.AMP.ENABLED and config.AMP.MEMORY_FORMAT == 'nhwc':
logging.info('=> convert memory format to nhwc')
model.to(memory_format=torch.channels_last)
writer_dict = {
'writer': SummaryWriter(logdir=tb_log_dir),
'train_global_steps': 0,
'valid_global_steps': 0,
}
best_perf = 0.0
best_model = True
begin_epoch = config.TRAIN.BEGIN_EPOCH
optimizer = build_optimizer(config, model)
best_perf, begin_epoch = resume_checkpoint(
model, optimizer, config, final_output_dir, True
)
train_loader = build_dataloader(config, True, args.distributed)
valid_loader = build_dataloader(config, False, args.distributed)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True
)
criterion = build_criterion(config)
criterion.cuda()
criterion_eval = build_criterion(config, train=False)
criterion_eval.cuda()
lr_scheduler = build_lr_scheduler(config, optimizer, begin_epoch)
scaler = torch.cuda.amp.GradScaler(enabled=config.AMP.ENABLED)
logging.info('=> start training')
for epoch in range(begin_epoch, config.TRAIN.END_EPOCH):
head = 'Epoch[{}]:'.format(epoch)
logging.info('=> {} epoch start'.format(head))
start = time.time()
if args.distributed:
train_loader.sampler.set_epoch(epoch)
# train for one epoch
logging.info('=> {} train start'.format(head))
with torch.autograd.set_detect_anomaly(config.TRAIN.DETECT_ANOMALY):
train_one_epoch(config, train_loader, model, criterion, optimizer,
epoch, final_output_dir, tb_log_dir, writer_dict,
scaler=scaler)
logging.info(
'=> {} train end, duration: {:.2f}s'
.format(head, time.time()-start)
)
# evaluate on validation set
logging.info('=> {} validate start'.format(head))
val_start = time.time()
if epoch >= config.TRAIN.EVAL_BEGIN_EPOCH:
perf = test(
config, valid_loader, model, criterion_eval,
final_output_dir, tb_log_dir, writer_dict,
args.distributed
)
best_model = (perf > best_perf)
best_perf = perf if best_model else best_perf
logging.info(
'=> {} validate end, duration: {:.2f}s'
.format(head, time.time()-val_start)
)
lr_scheduler.step(epoch=epoch+1)
if config.TRAIN.LR_SCHEDULER.METHOD == 'timm':
lr = lr_scheduler.get_epoch_values(epoch+1)[0]
else:
lr = lr_scheduler.get_last_lr()[0]
logging.info(f'=> lr: {lr}')
save_checkpoint_on_master(
model=model,
distributed=args.distributed,
model_name=config.MODEL.NAME,
optimizer=optimizer,
output_dir=final_output_dir,
in_epoch=True,
epoch_or_step=epoch,
best_perf=best_perf,
)
if best_model and comm.is_main_process():
save_model_on_master(
model, args.distributed, final_output_dir, 'model_best.pth'
)
if config.TRAIN.SAVE_ALL_MODELS and comm.is_main_process():
save_model_on_master(
model, args.distributed, final_output_dir, f'model_{epoch}.pth'
)
logging.info(
'=> {} epoch end, duration : {:.2f}s'
.format(head, time.time()-start)
)
save_model_on_master(
model, args.distributed, final_output_dir, 'final_state.pth'
)
if config.SWA.ENABLED and comm.is_main_process():
save_model_on_master(
args.distributed, final_output_dir, 'swa_state.pth'
)
writer_dict['writer'].close()
logging.info('=> finish training')
if __name__ == '__main__':
main()