-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopt_trainer.py
1101 lines (764 loc) · 46.6 KB
/
opt_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
import logging.config
import opt_config
import threading
from utils import printNormalizedX, printNormalizedY
from visualizerlinux import TimeLinePlot
from visualizerlinux import ScatterPlots
from visualizerlinux import TimeLinePlots
from visualizerlinux import CorrelationMatrixSave
from visualizerlinux import VisualizePredictedYScatter
from visualizerlinux import VisualizePredictedYLine, VisualizePredictedYLineWithValues
from visualizerlinux import ipythonPlotMetricsRealAgainstPredictedRegression
from visualizerlinux import ipythonPlotMetricsRealAgainstPredicted
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import LinearRegression
from sklearn.externals import joblib
from sklearn import metrics
np.set_printoptions(precision=3, suppress=True)
pandas_dataframe_styles = {
'font-family': 'monospace',
'white-space': 'pre'
}
_target_variable = None
_input_metrics = None
_worker_count = None
_training_samples_required = None
_outsource_metrics = None
_prev_temporary_scaling_df_row = 0
_constants = None
# ## ------------------------------------------------------------------------------------------------------
# ## Define init method
# ## ------------------------------------------------------------------------------------------------------
def init(target_variable, input_metrics, worker_count, training_samples_required, outsource_metrics, constants):
logger = logging.getLogger('optimizer')
logger.info('')
logger.info('--------------------------- trainer init -------------------------')
logger.info('')
global _target_variable
_target_variable = target_variable[0]
global _input_metrics
_input_metrics = input_metrics
global _worker_count
_worker_count = worker_count[0]
global _training_samples_required
_training_samples_required = training_samples_required
global _outsource_metrics
_outsource_metrics = outsource_metrics
global _constants
_constants = constants
logger.info(' ----------------------------------------------')
logger.info(' ----------- TRAINER INIT DIAGNOSIS -----------')
logger.info(' ----------------------------------------------')
logger.info(f' target_variable = {target_variable}')
logger.info(f' _target_variable = {_target_variable}')
logger.info(f' _worker_count = {_worker_count}')
logger.info(f' worker_count = {worker_count}')
logger.info(f' _input_metrics = {_input_metrics}')
logger.info(f' input_metrics = {input_metrics}')
logger.info(f' _training_samples_required = {_training_samples_required}')
logger.info(f' training_samples_required = {training_samples_required}')
logger.info(f' _outsource_metrics = {_outsource_metrics}')
logger.info(f' outsource_metrics = {outsource_metrics}')
logger.info(f' _constants = {constants}')
logger.info('--------------------------- trainer init end -------------------------')
logger.info('')
# ## ------------------------------------------------------------------------------------------------------
# ## Define run
# ## ------------------------------------------------------------------------------------------------------
def run(nn_file_name, visualize = False):
logger = logging.getLogger('optimizer')
logger.info('--------------------------- opt_trainer.run() ---------------------------')
logger.info('---------------------------------------------------------------------------------')
logger.info(f' nn_file_name = {nn_file_name}')
logger.info('---------------------------------------------------------------------------------')
# Declare variables
inputCSVFile = 'data/grafana_data_export_long_running_test.csv'
neuralCSVFile = nn_file_name
# targetVariable = 'avg latency (quantile 0.5)'
targetVariable = _target_variable
logger.info('---------------------------------------------------------------------------------')
logger.info(f' targetVariable = {targetVariable}')
logger.info(f' _target_variable = {_target_variable}')
logger.info('---------------------------------------------------------------------------------')
inputMetrics = _input_metrics
logger.info('---------------------------------------------------------------------------------')
logger.info(f' inputMetrics = {inputMetrics}')
logger.info(f' _input_metrics = {_input_metrics}')
logger.info('---------------------------------------------------------------------------------')
workerCount = _worker_count
logger.info('---------------------------------------------------------------------------------')
logger.info(f' workerCount = {workerCount}')
logger.info(f' _worker_count = {_worker_count}')
logger.info('---------------------------------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Don't touch it if you don't know what you do
# ## ------------------------------------------------------------------------------------------------------
scaler_min = -1 # 0
scaler_max = 1 # 1
train_test_ratio = 0.3 # 0.3
activation_function = 'tanh' # tanh, relu, logistic
neuronsWhole = 4 # 10
neuronsTrainTest = 4 # 4
cutFirstCases = 0 # 0
lead = 1 # 1 default
lead = _constants['action_lag'] if 'action_lag' in _constants.keys() else 1
print('\n\n\n\n\n')
logger.info('---------------------------------------------------------------------------------')
logger.info(f' scaler_min = {scaler_min}')
logger.info(f' scaler_max = {scaler_max}')
logger.info(f' train_test_ratio = {train_test_ratio}')
logger.info(f' activation_function = {activation_function}')
logger.info(f' neuronsWhole = {neuronsWhole}')
logger.info(f' neuronsTrainTest = {neuronsTrainTest}')
logger.info(f' lead = {lead}')
logger.info('---------------------------------------------------------------------------------')
print('\n\n\n\n\n')
showPlots = False # True
showPlots = visualize # This value comes as a parameter
explore = False # False
error_msg = 'No error' # None
# In[3]: Declare some functions
def readCSV(filename):
df = pd.read_csv(filename, sep=";", header="infer", skiprows=1, na_values="null")
return df
# Read DataFrame
df = readCSV(inputCSVFile)
def readNeuralCSV(filename):
df = pd.read_csv(filename, sep=",", header="infer", skiprows=0, na_values="null")
return df
# Read nn_train_data
nf = readNeuralCSV(neuralCSVFile)
# ## ------------------------------------------------------------------------------------------------------
# ## Here you can switch between the staitc csv and the live csv
# ## ------------------------------------------------------------------------------------------------------
# Swap df to nf depends on which file will be used
df = nf
# ## ------------------------------------------------------------------------------------------------------
# ## comment out above line if you want ot use static csv file
# ## ------------------------------------------------------------------------------------------------------
# Declare some functions
def removeMissingData(df):
cleanDF = df.dropna(axis=0)
return cleanDF
def dropVariable(df, column):
del df[column]
return df
def preProcessing(df):
df = df.copy()
# Drop Time
if( df.columns.contains('Time') ):
df = dropVariable(df, 'Time')
logger.info('Time column dropped from data frame')
if( df.columns.contains('timestamp') ):
df = dropVariable(df, 'timestamp')
logger.info('timestamp column dropped from data frame')
if( df.columns.contains('avg latency (quantile 0.9)') ):
df = dropVariable(df, 'avg latency (quantile 0.9)')
logger.info('avg latency (quantile 0.9) column dropped from data frame')
# Remove cases with missing values
df = removeMissingData(df)
return df
def dataFrameInfo(df):
logger.info('---------------------------------------------------------------------------------')
logger.info(' -------------- pre-processed DataFrame from csv -------------- ')
logger.info(f' df.shape = {df.shape}')
logger.info(f' df.columns = {df.columns}')
# logger.info(f' df.head() = {df.head()}')
logger.info(' ------------------------------------------------------------------- ')
logger.info('---------------------------------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Pre-processing
# ## ------------------------------------------------------------------------------------------------------
# Preprecess DataFrame
preProcessedDF = preProcessing(df)
# Print DataFrame Info
dataFrameInfo(preProcessedDF)
# Declare some functions
def renameVariable(df, old_var_name, new_var_name):
new_df = df.copy()
if( df.columns.contains(old_var_name) ):
new_df.rename(columns={old_var_name: new_var_name}, inplace=True)
else:
logger.info('--------------------- Wrong Column Name ---------------------')
return new_df
WorkerCountName = _worker_count
logger.info(f'WorkerCountName = {WorkerCountName}')
# Rename Worker count or vm_number to WorkerCount
preProcessedDF = renameVariable(preProcessedDF, WorkerCountName, 'WorkerCount')
# In[10]: Set Metrics Names
def setMetricNames(names):
new_metricNames = names.copy()
return new_metricNames
# metricNames = setMetricNames(['CPU', 'Inter', 'CTXSW', 'KBIn', 'PktIn', 'KBOut', 'PktOut'])
# ## ------------------------------------------------------------------------------------------------------
# ## redefine metricNames
# ##
# ## Here can occure a potential problem cased by the difference between the input_metrics list
# ## and metricNames list.
# ## Because we don't know which are outsource or external metrics and which are so called inside
# ## metrics
# ##
# ## I solved this problem in a following way:
# ## I remove every element from metricNames list which occur in _outsorce_metrics list
# ##
# ## In my sample application these are the 'AVR_RR' and 'SUM_RR'
# ##
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('------------------- set metricNames ----------------------')
logger.info('----------------------------------------------------------')
metricNames = _input_metrics.copy()
for i in _outsource_metrics:
logger.info(f'removed elements of the metricNames list = {i}')
metricNames.remove(i)
logger.info(f'metricNames = {metricNames}')
logger.info(f'_input_metrics = {_input_metrics}')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Drop first n row if needed
# ## ------------------------------------------------------------------------------------------------------
# In[14]: Drop First Cases
# def dropFirstCases(df, n):
# new_df = df.copy()
# filteredDF = new_df[new_df.index > n]
# return filteredDF
# If in the begining of the samples have a lot of outliers
# filteredDF = dropFirstCases(preProcessedDF, cutFirstCases)
# In[16]:
# ## ------------------------------------------------------------------------------------------------------
# ## preProcessedDF let filteredDF
# ## ------------------------------------------------------------------------------------------------------
# preProcessedDF = filteredDF
logger.info('------------------- preProcessedDF -----------------------')
logger.info('----------------------------------------------------------')
logger.info(f'preProcessedDF.shape = {preProcessedDF.shape}')
logger.info(f'preProcessedDF.columns = {preProcessedDF.columns}')
# logger.info(f'preProcessedDF.head(2) = {preProcessedDF.head(2)}')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Report
# ## ------------------------------------------------------------------------------------------------------
rows = preProcessedDF.shape[0]
visualised_metrics = _input_metrics + ['WorkerCount']
# CorrelationMatrixSave(preProcessedDF)
# if rows % 3 == 0: ScatterPlots(preProcessedDF, preProcessedDF[targetVariable], visualised_metrics, targetVariable)
# if rows % 3 == 1: TimeLinePlot(preProcessedDF, targetVariable)
# if rows % 3 == 2: TimeLinePlots(preProcessedDF, visualised_metrics)
if rows %12 == 0:
t1 = threading.Thread(target=ScatterPlots, args=(preProcessedDF, preProcessedDF[targetVariable], visualised_metrics, targetVariable))
t1.start()
if rows %12 == 1:
t2 = threading.Thread(target=TimeLinePlot, args=(preProcessedDF, targetVariable))
t2.start()
if rows %12 == 2:
t3 = threading.Thread(target=TimeLinePlots, args=(preProcessedDF, visualised_metrics))
t3.start()
# In[26]:
# ## ------------------------------------------------------------------------------------------------------
# ## Create a whole new DataFrame for Before After Data
# ## ------------------------------------------------------------------------------------------------------
# ## This is only for further development - consider the lags as inputs for neural network
logger.info('---------------------------------------------------------------------------------')
logger.info('--------------- createBeforeafterDF(df, lag, inputMetrics) -----------------')
logger.info(f'preProcessedDF.columns = {preProcessedDF.columns}')
logger.info(f'len(inputMetrics) = {len(inputMetrics)}')
logger.info(f'inputMetrics = {inputMetrics}')
def createBeforeafterDF(df, lag, inputMetrics):
beforeafterDF = df.copy()
length = len(inputMetrics)
inputVariables = np.flip(beforeafterDF.columns[0:length].ravel(), axis=-1)
# print('Input Variablels : ', inputVariables)
index = length
for i in inputVariables:
new_column = beforeafterDF[i].shift(lag)
new_column_name = (i + str(1)) # Todo: rename str(lag)
beforeafterDF.insert(loc=index, column=new_column_name, value=new_column)
beforeafterDF = beforeafterDF[lag:]
logger.info('---------------------------------------------------------------------------------')
logger.info(f'Before After DF columns = {beforeafterDF.columns}')
return beforeafterDF
# In[27]:
# ## ------------------------------------------------------------------------------------------------------
# ## Create new dataframe with lags
# ## ------------------------------------------------------------------------------------------------------
beforeafterDF = createBeforeafterDF(preProcessedDF, 1, inputMetrics)
logger.info('---------------------------------------------------------------------------------')
logger.info(' CreateBeforeAfter method done ')
logger.info('---------------------------------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Set Features for Neural Network - these are the input variables
# ## ------------------------------------------------------------------------------------------------------
# In[28]: Declare some functions
def setFeatures(df, columnNames):
# X = df.iloc[:,0:9]
X = df[columnNames]
return X
# In[29]:
# ## ------------------------------------------------------------------------------------------------------
# ## Set Features in other words this set will be the Input Variables
# ## ------------------------------------------------------------------------------------------------------
# X = setFeaturesAndTheirLags(beforeafterDF, inputMetrics)
X = setFeatures(beforeafterDF, inputMetrics)
logger.info('--------- Set Features method done ------------')
logger.info('-------------------------- X -----------------------------')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f' type(X) = {type(X)}')
logger.info(f' X.shape = {X.shape}')
logger.info(f' X.columns = {X.columns}')
logger.info(X.head(3))
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Set Target Variable for Neural Network - this is the target variable
# ## ------------------------------------------------------------------------------------------------------
# In[30]: Declare some functions
def setTarget(df, targetVariable):
y = df[targetVariable]
return y
# In[31]: Set target variable
y = setTarget(beforeafterDF, targetVariable)
logger.info(' Y target variable as a pandas.series -> numpy.array ')
logger.info('----------------------------------------------------------')
logger.info(y.head())
logger.info(f'(y describe = {y.describe()}')
logger.info('----------------------------------------------------------')
# In[33]:
if( explore ):
logger.info(f'(y values from 0 to 10 = {y.values[0:10]}')
logger.info(f'(y head = {y.head()}')
logger.info(f'(y describe = {y.describe()}')
# ## ------------------------------------------------------------------------------------------------------
# ## Normalization
# ## ------------------------------------------------------------------------------------------------------
# ### Normalize the whole X
# In[35]: Declare some functions
def normalizeX(df):
"""Return a normalized value of df.
Save MinMaxScaler normalizer for X variable"""
scaler = MinMaxScaler(feature_range=(scaler_min, scaler_max))
# scaler.fit(df)
scaler.fit(df.astype(np.float64))
# normalized = scaler.transform(df)
normalized = scaler.transform(df.astype(np.float64))
# store MinMaxScaler for X
joblib.dump(scaler, 'models/scaler_normalizeX.save')
return normalized, scaler
# In[36]: Normalize Features and Save Normalized values, Normalize input variables set
X_normalized, X_normalized_MinMaxScaler = normalizeX(X)
logger.info('')
logger.info('--------- X_normalized done ------------')
logger.info('-------------------------- X -----------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Load MinMaxScalerXFull
# ## ------------------------------------------------------------------------------------------------------
# In[37]: Declare some functions
def loadMinMaxScalerXFull():
X_normalized_MinMaxScaler = joblib.load('models/scaler_normalizeX.save')
return X_normalized_MinMaxScaler
# In[38]: Load Saved Normalized Data (Normalizer)
X_normalized_MinMaxScaler = loadMinMaxScalerXFull()
logger.info('')
logger.info('--------- X_normalized_MinMaxScaler load done ------------')
logger.info('-------------------------- X -----------------------------')
# In[40]:
if( explore ):
printNormalizedX(X_normalized)
X_normalized[1]
# In[42]: De-normalize Features set
X_denormalized = X_normalized_MinMaxScaler.inverse_transform(X_normalized)
# In[43]:
if( explore ):
X_denormalized[1]
X_denormalized[-1]
# ### Normalize the whole y
# In[45]: Declare some functions
def normalizeY(df):
"""Return a normalized value of df.
Save MinMaxScaler normalizer for Y variable"""
new_df = df.copy()
new_df_reshaped = new_df.values.reshape(-1,1)
scaler = MinMaxScaler(feature_range=(scaler_min, scaler_max))
scaler.fit(new_df_reshaped.astype(np.float64))
normalizedY = scaler.transform(new_df_reshaped.astype(np.float64))
normalizedY = normalizedY.flatten()
# store MinMaxScaler for Y
joblib.dump(scaler, 'models/scaler_normalizeY.save')
return normalizedY, scaler
# In[46]: Normalize Target and Save Normalized values, Normalize target variable set
y_normalized, y_normalized_MinMaxScaler = normalizeY(y)
logger.info('')
logger.info('--------- y_normalized done ------------')
logger.info('-------------------------- y -----------------------------')
# In[48]:
if( explore ):
printNormalizedY(y_normalized)
y_normalized[0:3]
# ## ------------------------------------------------------------------------------------------------------
# ## Load MinMaxScalerYFull
# ## ------------------------------------------------------------------------------------------------------
# In[50]: Declare some functions
def loadMinMaxScalerYFull():
y_normalized_MinMaxScaler = joblib.load('models/scaler_normalizeY.save')
return y_normalized_MinMaxScaler
# In[51]: Load Saved Normalized Data (Normalizer)
y_normalized_MinMaxScaler = loadMinMaxScalerYFull()
logger.info('')
logger.info('--------- y_normalized_MinMaxScaler load done ------------')
logger.info('-------------------------- y -----------------------------')
# In[52]: De-normalize Features set
y_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_normalized.reshape(y_normalized.shape[0],1))
# In[53]:
if( explore ):
y_denormalized[0:3]
y_denormalized[-3:]
logger.info('')
logger.info('')
logger.info('--------- Normalization done ------------')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Train Neural Network with Optimizer Class, trainMultiLayerRegressor method
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('----------------------- MLP start ------------------------')
logger.info('----------------------------------------------------------')
# In[55]: Declare some functions
def trainMultiLayerRegressor(X_normalized, y_normalized, activation, neuronsWhole):
# Train Neural Network
mlp = MLPRegressor(hidden_layer_sizes=neuronsWhole,
max_iter=250,
activation=activation,
solver="lbfgs",
learning_rate="constant",
learning_rate_init=0.01,
alpha=0.01,
verbose=False,
momentum=0.9,
early_stopping=False,
tol=0.00000001,
shuffle=False,
# n_iter_no_change=20, \
random_state=1234)
mlp.fit(X_normalized, y_normalized)
# Save model on file system
joblib.dump(mlp, 'models/saved_mlp_model.pkl')
return mlp
# In[56]: Train Neural Network
mlp = trainMultiLayerRegressor(X_normalized, y_normalized, activation_function, neuronsWhole)
# In[57]: Declare some funcitons
def predictMultiLayerRegressor(mlp, X_normalized):
y_predicted = mlp.predict(X_normalized)
return y_predicted
# In[58]: Create prediction
y_predicted = predictMultiLayerRegressor(mlp, X_normalized)
# In[59]: Evaluete the model
from utils import evaluateGoodnessOfPrediction
goodness_of_fitt = evaluateGoodnessOfPrediction(y_normalized, y_predicted)
logger.info('------------- Neural Network Goodness of Fitt ------------')
logger.info('----------------------------------------------------------')
logger.info(' evaluateGoodnessOfPrediction(y_normalized, y_predicted)')
logger.info(' This dictionary is also the part of the return of Train')
logger.info(f'( goodness_of_fitt = \n {goodness_of_fitt}')
logger.info('----------------------------------------------------------')
# TODO
# visszatérni az értékekkel és eltárolni őket valamilyen változóban
# ## ------------------------------------------------------------------------------------------------------
# ## Report
# ## ------------------------------------------------------------------------------------------------------
VisualizePredictedYScatter(y_normalized, y_predicted, targetVariable)
VisualizePredictedYLineWithValues(y_normalized, y_predicted, targetVariable, 'Normalized')
# ### De-normlaize
# ## ------------------------------------------------------------------------------------------------------
# ## I want to see the result in original scale. I don't care about the X but the y_normalized and y_predcited.
# ## ------------------------------------------------------------------------------------------------------
# In[65]: De-normalize target variable and predicted target variable
y_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_normalized.reshape(y_normalized.shape[0],1))
y_predicted_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_predicted.reshape(y_predicted.shape[0],1))
# In[68]: Declare De-normalizer functions
def denormalizeX(X_normalized, X_normalized_MinMaxScaler):
X_denormalized = X_normalized_MinMaxScaler.inverse_transform(X_normalized)
return X_denormalized
# In[69]: De-normalize Features
X_denormalized = denormalizeX(X_normalized, X_normalized_MinMaxScaler)
# In[74]: Declare De-normalizer functions
def denormalizeY(y_normalized, y_normalized_MinMaxScaler):
y_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_normalized.reshape(y_normalized.shape[0],1))
return y_denormalized
# In[75]: De-normalize Target
y_denormalized = denormalizeY(y_normalized, y_normalized_MinMaxScaler)
y_predicted_denormalized = denormalizeY(y_predicted, y_normalized_MinMaxScaler)
# ## ------------------------------------------------------------------------------------------------------
# ## Report
# ## ------------------------------------------------------------------------------------------------------
VisualizePredictedYLineWithValues(y_denormalized, y_predicted_denormalized, targetVariable, 'Denormalized')
# ## ------------------------------------------------------------------------------------------------------
# ## Linear Regression Learn
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('-------------- Linear Regression start -------------------')
logger.info('----------------------------------------------------------')
# In[125]: Declare some functions
# TODO:
# Átvezetni valahogy, hogy a bemeneti változók fényében kezelje hogy hány változó van a dataframeben
# Ugy látom, hogy az advice-ban sehol nem szerepel a trainer aminek az az oka
# hogy az Advice-nak semmi szüksége nincs a lag-ok-ra se a lead-ek-re
# Ugyanis miután meg van tanulva egy model, az már csak a model beolvasásával törödik
# és abban egyáltalán nem szerepelnek a lagok meg a lagek,
# When pandas.DataFrame (preProcessedDF) was constructed, the order of the variables
# was determined by the program. The target variable is the latest.
# As far as we do not care about the previous or following target variable,
# the program hasn't got to count till the last column.
# As soon as we get the pandas.DataFrame, the program will know the number of
# the columns.
# So 'index' is a temporal variable what contains the number of the columns -1
# In other words, the lag will be computed for every column, except the last one.
logger.info('----------------------------------------------------------')
logger.info('-------------- Create Before After Diagnosis -------------')
logger.info('----------------------------------------------------------')
logger.info(' preProcessedDF the input of createBeforeafterDFLags()')
logger.info('')
logger.info(f' preProcessedDF.shape = {preProcessedDF.shape}')
logger.info(f' preProcessedDF.columns = {preProcessedDF.columns}')
# ## ------------------------------------------------------------------------------------------------------
# ## Linear Regression Calculate N'th previous values
# ## ------------------------------------------------------------------------------------------------------
def createBeforeafterDFLags(df, lag):
beforeafterDFLags = df.copy()
dfColumnsNumber = beforeafterDFLags.shape[1]
logger.info(f' createBeforeafterDFLags(df, lag) df col number = {dfColumnsNumber}')
# index = 10
index = dfColumnsNumber - 1
logger.info(f' createBeforeafterDFLags(df, lag) df col number -1 = {index} \n')
inputVariables = np.flip(beforeafterDFLags.columns[0:index].ravel(), axis=-1)
logger.info(f' Input Variables in createBeforeafterDFLags = {inputVariables} \n')
for i in inputVariables:
new_column = beforeafterDFLags[i].shift(lag)
new_column_name = (str('prev') + str(1) + i)
beforeafterDFLags.insert(loc=index, column=new_column_name, value=new_column)
beforeafterDFLags = beforeafterDFLags[lag:] # remove first row as we haven't got data in lag var
return beforeafterDFLags, index # return not just the df but an int as well
# In[126]: Create lag variables (see above -> 'prev1CPU', 'prev1Inter', etc)
beforeafterDFLags, index1 = createBeforeafterDFLags(preProcessedDF, 1)
logger.info('----------------------------------------------------------')
logger.info('-------------- Create Before After Diagnosis -------------')
logger.info('----------------------------------------------------------')
logger.info(' after createBeforeafterDFLags(preProcessedDF, 1)')
logger.info(' beforeafterDFLags, index1 = createBeforeafterDFLags(preProcessedDF, 1)')
logger.info(f' beforeafterDFLags.shape = {beforeafterDFLags.shape} \n')
logger.info(f' beforeafterDFLags.columns = {beforeafterDFLags.columns}')
logger.info('---------------------------------------------------------- \n')
logger.debug(f"\n {beforeafterDFLags[['prev1CPU', 'CPU']].head(10)}")
logger.debug('----------------------------------------------------------')
logger.debug(f"\n {beforeafterDFLags[['WorkerCount', 'prev1WorkerCount']].head(10)}")
logger.debug('----------------------------------------------------------')
logger.debug(f"\n {beforeafterDFLags[['WorkerCount', 'prev1WorkerCount']].tail(10)}")
# ## ------------------------------------------------------------------------------------------------------
# ## Linear Regression Calculate N'th next values
# ## ------------------------------------------------------------------------------------------------------
# Na itt viszont már para van itt viszont már tudnia kell, hogy mi is tulajdonképen
# változók hossza
def createBeforeafterDFLeads(df, index, lead = 1):
beforeafterDFLeads = df.copy()
inputVariables = np.flip(beforeafterDFLeads.columns[0:index].ravel(), axis=-1)
logger.info(f'Input Variables in createBeforeafterDFLeads: {inputVariables} \n')
# In the case of WorkerCount column we take account the next value.
# Every other case we take account the parameter what was given by the user.
for i in inputVariables:
if( i == 'WorkerCount'):
lead_value = 1
else:
lead_value = lead
new_column = beforeafterDFLeads[i].shift(-lead_value)
new_column_name = (str('next') + str(1) + i)
beforeafterDFLeads.insert(loc=index, column=new_column_name, value=new_column)
beforeafterDFLeads = beforeafterDFLeads[:-lead] # remove last row as we haven't got data in lead (next) variables
beforeafterDFLeads = beforeafterDFLeads.iloc[:,:-1] # remove last column - Latency
return beforeafterDFLeads
# In[129]: Create lead variables (see above -> 'next1CPU', 'next1Inter', etc)
beforeafterDF = createBeforeafterDFLeads(beforeafterDFLags, index1, lead = lead)
logger.info('----------------------------------------------------------')
logger.info('-------------- Create Before After Diagnosis -------------')
logger.info('----------------------------------------------------------')
logger.info(' after createBeforeafterDFLeads(beforeafterDFLags, index1, lead = lead)')
logger.info(' beforeafterDF = createBeforeafterDFLeads(beforeafterDFLags, index1, lead = lead)')
logger.info(f' beforeafterDF.shape = {beforeafterDF.shape} \n')
logger.info(f' beforeafterDF.columns = {beforeafterDF.columns}')
logger.info('---------------------------------------------------------- \n')
logger.debug(f"\n {beforeafterDF[['prev1CPU', 'CPU', 'next1CPU']].head(10)}")
logger.debug('----------------------------------------------------------')
logger.debug(f"\n {beforeafterDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount']].head(10)}")
logger.debug('----------------------------------------------------------')
logger.debug(f"\n {beforeafterDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount']].tail(10)}")
# In[131]: Assert
logger.debug('----------------------------------------------------------')
logger.debug('---------- Assert --------------')
logger.debug('----------------------------------------------------------')
logger.debug(f'---------------- original _input_metrics length = {len(_input_metrics)}')
logger.debug(f'---------------- beforeafterDF.shape[1] = {beforeafterDF.shape[1]}')
logger.debug(f'---------------- {len(_input_metrics)} + 1 * 3')
logger.debug('---------------------------------------------------------- \n')
# ## ------------------------------------------------------------------------------------------------------
# ## Linear Regression Calculate before-after differencies of WorkerCount (vm_number)
# ## ------------------------------------------------------------------------------------------------------
def calculateWorkerCountDifferences(beforeafterDF):
new_beforeafterDF = beforeafterDF.copy()
new_beforeafterDF['addedWorkerCount'] = new_beforeafterDF['next1WorkerCount'].values - new_beforeafterDF['WorkerCount']
return new_beforeafterDF
# In[133]: Explore data
theBeforeAfterDF = calculateWorkerCountDifferences(beforeafterDF)
logger.info('----------------------------------------------------------')
logger.info('-------------- Create Before After Diagnosis -------------')
logger.info('----------------------------------------------------------')
logger.info(' after calculateWorkerCountDifferences(beforeafterDF)')
logger.info(f' theBeforeAfterDF.shape = {theBeforeAfterDF.shape} \n')
# logger.info('')
logger.info(f' theBeforeAfterDF.columns = {theBeforeAfterDF.columns}')
logger.debug(f"\n {theBeforeAfterDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount']].head(10)}")
logger.debug(f"\n {theBeforeAfterDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount']].tail(10)}")
logger.info('---------------------------------------------------------- \n')
logger.info('----------------------------------------------------------')
logger.info('------------ Create Before After Columns Done ------------')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Linear Regression Create Before After Columns Done
# ## ------------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------------
# ## Filter rows where actual WorkerCount != next1WorkerCount
# ## ------------------------------------------------------------------------------------------------------
# In[134]: Declare some functions
def createScalingDF(theBeforeAfterDF):
new_beforeafterDF = theBeforeAfterDF.copy()
scalingDF = new_beforeafterDF[new_beforeafterDF.WorkerCount != new_beforeafterDF.next1WorkerCount]
return scalingDF
# In[135]: Collect rows where 'WorkerCount != next1WorkerCount' -> If this condition is True that means scalling has happened
scalingDF = createScalingDF(theBeforeAfterDF)
logger.info('----------------------------------------------------------')
logger.info('---------- Select where worker != next1Worker ------------')
logger.info('----------------------------------------------------------')
logger.info(' after createScalingDF(theBeforeAfterDF)')
logger.info(f' scalingDF.shape = {scalingDF.shape} \n')
# logger.info('')
logger.info(f' scalingDF.columns = \n {scalingDF.columns} \n')
logger.info(f"\n {scalingDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount', 'addedWorkerCount']].head(2)}")
logger.info(f"\n {scalingDF[['WorkerCount', 'prev1WorkerCount', 'next1WorkerCount', 'addedWorkerCount']].tail(2)}")
logger.info('----------------------------------------------------------\n')
logger.info('----------------------------------------------------------')
logger.info('----- End of before-after scaling data preparation -------')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## This is the end of before-after scaling data preparation
# ## ------------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------------
# ## Linear regression calculation part
# ## ------------------------------------------------------------------------------------------------------
def calculateLinearRegressionTerms(metric, dataFrame):
termDF = dataFrame.copy()
termDF['metric'] = termDF[metric]
termDF['term1'] = termDF[metric] * termDF['WorkerCount'] / (termDF['WorkerCount'] + termDF['addedWorkerCount'])
termDF['term2'] = termDF[metric] * termDF['addedWorkerCount'] / (termDF['WorkerCount'] + termDF['addedWorkerCount'])
return termDF
def createInputAndTargetToLinearRegression(currentMetric, dataFrameB):
newDataFrameB = dataFrameB.copy()
yb = newDataFrameB['next1' + str(currentMetric)]
featuresDF = newDataFrameB[[str(currentMetric), 'WorkerCount', 'next1WorkerCount', 'addedWorkerCount']]
tmpDF = calculateLinearRegressionTerms(currentMetric, featuresDF)
Xb = tmpDF.iloc[:, [-3, -2, -1]] # keep last three column - given metric, term1, term2
# These are only for check everything is in order
# logger.debug(y.head(1))
# logger.debug(featuresDF.head(1))
# logger.debug(X.head(2))
# scalingDF[['CPU', 'next1CPU', 'WorkerCount', 'next1WorkerCount', 'addedWorkerCount']][0:3]
return Xb, yb
def calculateLinearRegressionModel(currentMetric, dataFrameA):
newDataFrameA = dataFrameA.copy()
Xa, ya = createInputAndTargetToLinearRegression(currentMetric, newDataFrameA)
lr = LinearRegression(fit_intercept=True, normalize=False)
lr.fit(Xa, ya)
return lr
def calculateLinearRegressionPrediction(metric, dataFrame, model):
X, y = createInputAndTargetToLinearRegression(metric, dataFrame)
model.fit(X, y)
y_predicted = model.predict(X)
logger.info(metric)
evaluateGoodnessOfPrediction(y, y_predicted)
logger.info('-----------------------------------')
return y_predicted
# In[144]: Store scalingDF in a new DF ->
temporaryScalingDF = scalingDF.copy()
# A potential problem can occure if you miss or leave it out the 'AVG_RR'
# and 'SUM_RR' columns from pandas.DataFrame
#