-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopt_advisor.py
1074 lines (792 loc) · 51.3 KB
/
opt_advisor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
import logging.config
import re
import os
import time
import numpy as np
import pandas as pd
from flask import jsonify
from utils import loadMinMaxScalerXFull, loadMinMaxScalerYFull
from utils import loadNeuralNetworkModel
from utils import setMetricNames, setExtendedMetricNames
from opt_utils import readCSV
from opt_utils import preProcessing
from opt_utils import renameVariable
from opt_utils import dropFirstCases
from linearregression import calculateLinearRegressionTerms
from visualizerlinux import VisualizePredictedYLine
from visualizerlinux import VisualizePredictedYWithWorkers
from visualizerlinux import VisualizePredictedXY2Line
from visualizerlinux import VisualizePredictedXY3Line
from visualizerlinux import VisualizePredictedXY4Line
from visualizerlinux import VisualizeDemo1
# from visualizerlinux import VisualizePredictedXYLine
# from visualizerlinux import VisualizePredictedXYLine
from sklearn.externals import joblib
pandas_dataframe_styles = {
'font-family': 'monospace',
'white-space': 'pre'
}
# ## ------------------------------------------------------------------------------------------------------
# ## Define some variables
# ## ------------------------------------------------------------------------------------------------------
target_metric_min = None
target_metric_max = None
target_variable = None
input_variables = None
worker_count_name = None
outsource_metrics = None
config = None
constants = None
first_advice = None
prev_adviced_time = 0
prev_advice_vm_total_number = 0
maximumNumberIncreasableNode = 6 # must be positive
minimumNumberReducibleNode = -6 # must be negative
default_maximumNumberIncreasableNode = 6 # must be positive
default_minimumNumberReducibleNode = -6 # must be negative
advice_freeze_interval = 0 # minimum time in secundum between two advice
default_advice_freeze_interval = 0 # must be positive
start_training_vm_number = 1 # vm number when train phase stars
default_autotrain = True
autotrain = None # handle the optimizer -> adviser the scaling during the training phase
# ## ------------------------------------------------------------------------------------------------------
# ## Define init method
# ## ------------------------------------------------------------------------------------------------------
def init(_target_metric, input_metrics, worker_count, _outsource_metrics, _config, _constants):
logger = logging.getLogger('optimizer')
logger.info('')
logger.info('--------------------------- advisor init --------------------------')
logger.info('')
global input_variables
input_variables = input_metrics
global worker_count_name
worker_count_name = worker_count[0]
global target_metric_min
target_metric_min = _target_metric[0].get('min_threshold')
global target_metric_max
target_metric_max = _target_metric[0].get('max_threshold')
global target_variable
target_variable = _target_metric[0].get('name')
global outsource_metrics
outsource_metrics = _outsource_metrics
global config
config = _config
global constants
constants = _constants
global advice_freeze_interval
advice_freeze_interval = abs(constants.get('advice_freeze_interval')) if constants.get('advice_freeze_interval') else default_advice_freeze_interval
global maximumNumberIncreasableNode
maximumNumberIncreasableNode = constants.get('max_upscale_delta') if constants.get('max_upscale_delta') else default_maximumNumberIncreasableNode
global minimumNumberReducibleNode
minimumNumberReducibleNode = abs(constants.get('max_downscale_delta')) * -1 if constants.get('max_downscale_delta') else default_minimumNumberReducibleNode
global first_advice
first_advice = True
global prev_adviced_time
prev_adviced_time = float('-inf')
global prev_advice_vm_total_number
prev_advice_vm_total_number = 0
global start_training_vm_number
start_training_vm_number = 1
global autotrain
# autotrain = True
autotrain = constants.get('auto_trainer') if constants.get('auto_trainer') else default_autotrain
logger.info(' ----------------------------------------------')
logger.info(' ---------- ADVISOR INIT DIAGNOSIS ------------')
logger.info(' ----------------------------------------------')
logger.info(f' maximumNumberIncreasableNode = {maximumNumberIncreasableNode}')
logger.info(f' minimumNumberReducibleNode = {minimumNumberReducibleNode}')
logger.info(f' advice_freeze_interval = {advice_freeze_interval}')
logger.info(f' target_metric_min = {target_metric_min}')
logger.info(f' target_metric_max = {target_metric_max}')
logger.info(f' target_variable = {target_variable}')
logger.info(' ----------------------------------------')
logger.info(f' _target_metric = {_target_metric}')
logger.info(' ----------------------------------------')
logger.info(f' input_metrics = {input_metrics}')
logger.info(f' worker_count_name = {worker_count_name}')
logger.info(f' _outsource_metrics = {_outsource_metrics}')
logger.info(f' outsource_metrics = {outsource_metrics}')
logger.info(' ----------------------------------------')
logger.info(f' autotrain = {autotrain}')
logger.info('----------------------- advisor init end ----------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Define init advice_msg
# ## ------------------------------------------------------------------------------------------------------
def advice_msg(valid = False, phase = 'training', vm_number = 0, reliability = 0, error_msg = None):
logger = logging.getLogger('optimizer')
if valid:
error_msg = 'no error'
logger.info('----------------------------------------------------------')
logger.info(' ADVICE FOR THE POLICY KEEPER')
logger.info('----------------------------------------------------------')
logger.info(f' valid = {valid}')
logger.info(f' phase = {phase}')
logger.info(f' vm_number = {vm_number}')
logger.info(f' reliability = {reliability}')
logger.info(f' error_msg = {error_msg}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
if valid:
return jsonify(dict(valid = valid, phase = phase, vm_number = vm_number, reliability = reliability, error_msg = error_msg)), 200
else:
return jsonify(dict(valid = valid, phase = phase, vm_number = vm_number, reliability = reliability, error_msg = error_msg)), 400
# ## ------------------------------------------------------------------------------------------------------
# ## Define run
# ## ------------------------------------------------------------------------------------------------------
def run(csfFileName, vm_number_from_sample, target_variable_from_sample, last = False, training_result = None):
# Set logger
logger = logging.getLogger('optimizer')
logger.info('--------------------------- opt_advisor.run() ---------------------------')
# Time
current_time = int(time.time())
logger.info(f' int(time.time() = {current_time}')
# Set the default message False
return_msg = advice_msg(valid = False, phase = 'training', vm_number = vm_number_from_sample, error_msg = 'no error')
# Set showPlots True
showPlots = True
# Set showPlot False if we intrested in only the last value, in this case there is no reasaon to create plot
if( last ):
showPlots = False
logger.info(' ----------------------------------------------')
logger.info(' ------------ ADVICE PAHSE STARTED ------------')
logger.info(' ----------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Load models which were saved until the training pahse
# ## ------------------------------------------------------------------------------------------------------
X_normalized_MinMaxScaler = loadMinMaxScalerXFull()
y_normalized_MinMaxScaler = loadMinMaxScalerYFull()
modelNeuralNet = loadNeuralNetworkModel()
logger.info('--------------------- MODELS LOADED ----------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Do not touch this if you don't know what you do
# ## ------------------------------------------------------------------------------------------------------
# targetVariable = 'avg latency (quantile 0.5)'
targetVariable = target_variable
# testFileName = 'data/grafana_data_export_long_running_test.csv' # original data
# testFileName = 'data/test_data.csv' # test data
testFileName = csfFileName # from parameter
# maximumNumberIncreasableNode = 6 # must be positive 6
# minimumNumberReducibleNode = -6 # must be negativ -4
upperLimit = target_metric_max # 4000000
lowerLimit = target_metric_min # 1000000
logger.info('----------------------------------------------------------')
logger.info(f'targetVariable = {targetVariable}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f'target_variable_from_sample = {target_variable_from_sample}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f'vm_number_from_sample = {vm_number_from_sample}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f'testFileName = {testFileName}')
logger.info(f'csfFileName = {csfFileName}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f'maximumNumberIncreasableNode = {maximumNumberIncreasableNode}')
logger.info(f'minimumNumberReducibleNode = {minimumNumberReducibleNode}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f'lowerLimit parameter variable set = {lowerLimit}')
logger.info(f'upperLimit parameter variable set = {upperLimit}')
logger.info('----------------------------------------------------------')
# In[159]:
df = readCSV(testFileName)
logger.info('----------------------------------------------------------')
logger.info('----------------------- DF LOADED ------------------------')
logger.info(f'df.shape = {df.shape}')
logger.info('------------------------ ADVISOR -------------------------')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## If there is not enough data in dataframe then return error message
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('----------- Checking advisor data properties -------------')
if df.shape[0] <= 0:
error_msg = 'There is no training sample yet.'
logger.warning(error_msg)
return advice_msg(valid = False, vm_number = 1, phase = 'training', error_msg = error_msg)
# ## ------------------------------------------------------------------------------------------------------
# ## If there is not enough data in dataframe then return error message this part wont run at all
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('----------- Checking advisor data properties -------------')
if df.shape[0] < 1:
logger.info('----------------------------------------------------------')
logger.info('------- There is no training sample at all. -------')
logger.info(f'---------------- We have only {df.shape[0]} sample ----------------')
error_msg = 'There is no training sample at all.'
return advice_msg(valid = False, vm_number = 1, phase = 'training', error_msg = error_msg)
# ## ------------------------------------------------------------------------------------------------------
# ## If there is not enough data in dataframe then return error message
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('----------- Checking advisor data properties -------------')
# Todo:
# Azért ezt itt be lehet szívni, ha mondjuk csak 30 körönként tanítunk
# és a tanulás limitje 300, akkor lehet, hogy csak a 310 körben lesz
# meg az első tanulás
# ez a szerencsétlen viszont már 300 után keresni fogja a modelt
# amit persze nem talál majd
# +++++++ szóval ezt az értéket meg kell még növelni a körök számával +1 ++++++++++++
# ## ------------------------------------------------------------------------------------------------------
# ## Start designed autoscaling
# ## ------------------------------------------------------------------------------------------------------
global start_training_vm_number
global autotrain
# Original
if( autotrain == False ):
if(df.shape[0] < constants.get('training_samples_required')):
error_msg = 'There are not enough training samples yet. [' + df.shape[0] + ']'
logger.warn(error_msg)
return advice_msg(valid = False, phase = 'training', error_msg = error_msg)
# Added
if( autotrain == True ):
logger.warn(f'start_training_vm_number = {start_training_vm_number}')
if(df.shape[0] < constants.get('training_samples_required')):
error_msg = 'Designed autoscaling during the training phase. There are not enough training samples yet.'
logger.warn(error_msg)
if( df.shape[0] % 20 == 0 ):
global direction
if( start_training_vm_number == constants.get('max_vm_number') ):
direction = "down"
if( start_training_vm_number == constants.get('min_vm_number') ):
direction = "up"
if( direction == "up" and start_training_vm_number < constants.get('max_vm_number') ):
start_training_vm_number = start_training_vm_number + 1
if( direction == "down" and start_training_vm_number > constants.get('min_vm_number') ):
start_training_vm_number = start_training_vm_number - 1
logger.warn(f'----------- Scaling has happened ------------')
logger.warn(f'direction = {direction}')
logger.warn(f'start_training_vm_number = {start_training_vm_number}')
logger.warn(f'--------------------------------------')
logger.warn(f'Current number of resources during the training')
logger.warn(f'start_training_vm_number = {start_training_vm_number}')
return advice_msg(valid = True, phase = 'training', vm_number = start_training_vm_number, error_msg = error_msg)
# ## ------------------------------------------------------------------------------------------------------
# ## If there is not enough data in dataframe then return with error message and this part won't run at all
# ## ------------------------------------------------------------------------------------------------------
if( last == True ):
logger.info('----------------------------------------------------------')
logger.info('--------- There are enough training samples yet ----------')
logger.info('--------------- Last row will be processed ---------------')
pf = df[-1:]
logger.info('----------------------------------------------------------')
logger.info(f'pf shape = {pf.shape}')
for m in pf.columns:
logger.info(f'Column names are = {m}, {pf[m].values}')
# Assigne pf to df -> keep the code more coherent
df = pf.copy()
# ## ------------------------------------------------------------------------------------------------------
# ## preProcessing() comes from opt_utis modul
# ## ------------------------------------------------------------------------------------------------------
preProcessedDF = preProcessing(df)
logger.info('----------------------------------------------------------')
logger.info('------------------ preProcessing done --------------------')
WorkerCountName = None
if( preProcessedDF.columns.contains('Worker count') ):
WorkerCountName = 'Worker count'
elif( preProcessedDF.columns.contains('vm_number') ):
WorkerCountName = 'vm_number'
else:
WorkerCountName = 'Worker count'
# ## ------------------------------------------------------------------------------------------------------
# ## Better if WorkerCountName comes from init()
# ## ------------------------------------------------------------------------------------------------------
WorkerCountName = worker_count_name
logger.info('----------------------------------------------------------')
logger.info(f'WorkerCountName = {WorkerCountName}')
logger.info('----------------------------------------------------------')
# Rename Worker count or vm_number to WorkerCount
renamedDF = renameVariable(preProcessedDF, WorkerCountName, 'WorkerCount')
filteredDF = renamedDF
# ## ------------------------------------------------------------------------------------------------------
# ## Better if WorkerCountName comes from init()
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info('------------------- set metricNames ----------------------')
logger.info('----------------------------------------------------------')
# metricNames = setMetricNames(['CPU', 'Inter', 'CTXSW', 'KBIn', 'PktIn', 'KBOut', 'PktOut'])
# metricNames = setMetricNames(input_variables[2:])
# Változtatás
# metricNames = setMetricNames(input_variables)
# extendedMetricNames = setExtendedMetricNames(['CPU', 'Inter', 'CTXSW', 'KBIn', 'PktIn', 'KBOut', 'PktOut', 'WorkerCount'])
# na itt lesz majd az alapvető probléma az inputMetric és a metricNames között
# ugyanis igazából nem tudjuk, hogy az első kettő az amit le kell vágnunk a listából
# ezért dirty ha szóval itt kell leválogatnom, hogy
# a metrics names-ben
# dobjuk el azt a két fránya AVR_RR SUM_RR oszlopot
# Ezeeket az értékeket az init-ben adom át neki, annyi a különbség, hogy az első két változóra nincs szükségünk
# metricNames = _input_metrics[2:]
metricNames = input_variables.copy()
for i in outsource_metrics:
logger.info(f'removed elements of the metricNames list = {i}')
metricNames.remove(i)
logger.info(f'metricNames = {metricNames}')
logger.info(f'input_variables = {input_variables}')
logger.info('----------------------------------------------------------')
logger.info('----------------------------------------------------------')
logger.info(f'metricNames = {metricNames}')
# logger.info(f'extendedMetricNames = {extendedMetricNames}')
logger.info(f'input_variables = {input_variables}')
logger.info('----------------------------------------------------------')
# >#### Add new workers (increse the nuber of added Worker)
# In[162]:
def calculatePredictedLatencyWithVariousWorkers(modelNeuralNet, to):
logger.info('------------ calculatePredictedLatencyWithVariousWorkers STARTED -------------')
newDFForRegression = filteredDF.copy()
nDD = filteredDF.copy()
step = 0
if( to == 0 ):
print("")
assert to != 0,"This value can not be 0."
elif( to > 0 ):
step = 1
print('............. up maximum vm = ' + str(to) + ' ...........')
elif( to < 0 ):
step = -1
print('............. down maximum vm = ' + str(to) + ' ...........')
logger.info(f' to = {to}')
logger.info(f' step = {step}')
for j in range(0, to, step):
logger.info(f' j = {j}')
addedWorkerCount = j
logger.info(f' addedWorkerCount = {addedWorkerCount}')
newDFForRegression['addedWorkerCount'] = addedWorkerCount
# logger.info(f'newDFForRegression.columns = {newDFForRegression.columns}')
for i in metricNames:
# logger.info('------------- inner loop started -----------------')
# logger.info(f' metricsNames = {metricNames}')
# logger.info(f' i = {i}')
newDFForRegressionWithTerms = calculateLinearRegressionTerms(i, newDFForRegression)
# logger.info('-------------- calculateLinearRegressionTerms STARTED -------------')
# keep last three column - given metric, term1, term2
X = newDFForRegressionWithTerms.iloc[:, [-3, -2, -1]]
# logger.info('-------------- X Features Generated STARTED -------------')
# load the proper current metric model
modelForMetric = joblib.load('models/saved_linearregression_model_' + i + '.pkl')
# print("------------ ", modelForMetric.get_params(), " ------------")
if( np.isinf(X).any()[1] ):
X['term1'] = np.where(np.isinf(X['term1'].values), X['metric'], X['term1'])
X['term2'] = np.where(np.isinf(X['term2'].values), 0, X['term2'])
# create prediction and store in a new numpy.array object
predictedMetric = modelForMetric.predict(X)
# leave original metric value (just for fun and investigation) and store in a new column
newDFForRegression['original' + i] = newDFForRegression[i]
# store predicted value pretend as would be the original. for example predictedCPU will be CPU
newDFForRegression[i] = predictedMetric
nDD[i] = predictedMetric
# print out the new data frame
# newDFForRegression.head()
newDFForNerualNetworkPrediction = newDFForRegression.copy()
# X must contain exactly the same columns as the model does
X = newDFForNerualNetworkPrediction.iloc[:, :len(input_variables)]
logger.debug('11111ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo')
logger.debug(f'newDFForNerualNetworkPrediction.shape = {newDFForNerualNetworkPrediction.shape}')
logger.debug('')
logger.debug('newDFForNerualNetworkPrediction.columns')
logger.debug(f'\n {newDFForNerualNetworkPrediction.columns}')
logger.debug('')
logger.debug('newDFForNerualNetworkPrediction.head()')
logger.debug(f'\n {newDFForNerualNetworkPrediction.head()}')
logger.debug('22222ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo')
logger.debug(f'X.shape = {X.shape}')
logger.debug('')
logger.debug('X.columns')
logger.debug(f'\n {X.columns}')
logger.debug('')
logger.debug('X.head()')
logger.debug(f'\n {X.head()}')
logger.debug('33333ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo')
logger.debug(f'input_variables = {input_variables}')
logger.debug(f'len(input_variables) = {len(input_variables)}')
logger.debug('44444ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo')
# X must be normalized based on a previously created MinMaxScaler
X_normalized_MinMaxScaler # the name of the MinMaxScaler
X_normalized = X_normalized_MinMaxScaler.transform(X)
# !!! insted of declare the location of the model I use loadNeuralNetworkModel() methond inside the run() method
# modelNeuralNet = joblib.load('models/saved_mlp_model.pkl')
modelNeuralNet = modelNeuralNet
# create and store predicted values in a numpy.array object
y_predicted_with_new_metrics = modelNeuralNet.predict(X_normalized)
# denormalized predicted values
y_predicted_with_new_metrics_denormalized = y_normalized_MinMaxScaler.inverse_transform(y_predicted_with_new_metrics.reshape(y_predicted_with_new_metrics.shape[0],1))
newDFForNerualNetworkPrediction['predictedResponseTimeAdded' + str(j) + 'Worker'] = y_predicted_with_new_metrics
newDFForNerualNetworkPrediction['denormalizedPredictedResponseTimeAdded' + str(j) + 'Worker'] = y_predicted_with_new_metrics_denormalized
if(j == 0):
investigationDF = newDFForNerualNetworkPrediction[[targetVariable, 'WorkerCount']]
investigationDFDeNormalized = newDFForNerualNetworkPrediction[[targetVariable, 'WorkerCount']]
#investigationDF = newDFForNerualNetworkPrediction[['predictedResponseTimeAdded0Worker']]
#investigationDFDeNormalized = newDFForNerualNetworkPrediction[['denormalizedPredictedResponseTimeAdded0Worker']]
## itt kéne egy ellenőrzést csinálni, hogy ezt a módszert miért kifogásolja a panda
## van egy új df-em aminek az egyik oszlopát egyelővé akarom tenni egy másik df másik oszlopával
## le kéne ellenőrizni, hogy milyen változ
investigationDF['predictedResponseTimeAdded' + str(j) + 'Worker'] = newDFForNerualNetworkPrediction[['predictedResponseTimeAdded' + str(j) + 'Worker']]
investigationDFDeNormalized['denormalizedPredictedResponseTimeAdded' + str(j) + 'Worker'] = newDFForNerualNetworkPrediction[['denormalizedPredictedResponseTimeAdded' + str(j) + 'Worker']]
return investigationDF, investigationDFDeNormalized
# In[163]:
investigationDFUp, investigationDFDeNormalizedUp = calculatePredictedLatencyWithVariousWorkers(modelNeuralNet, maximumNumberIncreasableNode)
# In[164]:
investigationDFDown, investigationDFDeNormalizedDown = calculatePredictedLatencyWithVariousWorkers(modelNeuralNet, minimumNumberReducibleNode)
# ### Merge Up and Down Adviser
# In[165]:
print('Error--------------------------------------------------------------------------------------------')
print('Mi a fenéért dobja el a változókat amikor az "investigationDFDeNormalizedDown" és a "investigationDFDeNormalizedUp"-ban')
print('is más változók vannak')
print('Ha konstans értékek vannak minden változóban akkor a drop_duplicates().T miatt dobja őket')
investigationDeNormalizedDF = pd.concat([investigationDFDeNormalizedDown,
investigationDFDeNormalizedUp], axis = 1).T.drop_duplicates().T
# ## ------------------------------------------------------------------------------------------------------
# ## Get Advice
# ## ------------------------------------------------------------------------------------------------------
# In[180]:
logger.info('')
logger.info('----------------------------------------------------------')
logger.info('---------- Get Advice ------------')
logger.info('----------------------------------------------------------')
logger.info('------ Get Actual Number of WorkerCount based on investigationDeNormalizedDF ------')
# itt eldönthetem, hogy a dataframeből olvasom ki ezt az adatot, vagy paraméterként veszem át
# Ez a vm_number_from_sample érték a run metodus paramétere, az opt_rest elvileg a valós vm számot adja itt át
actual_worker_number = vm_number_from_sample
# actual_worker_number = investigationDeNormalizedDF[['WorkerCount']].get_value(investigationDeNormalizedDF.index[0], 'WorkerCount')
# másfelől lehet, hogy ezt az értéket az épen aktuális mintából kéne kivennem?!
# nem ezt már kiolvastam a sample df-ből (persze lehet, hogy az épen aktuális már nem ez)
logger.info('-----------------------------------------------------------------------------------')
logger.info('\n\n\n\n\n\n\n\n')
logger.info(f' actual_worker_number = {actual_worker_number}')
logger.info('\n\n\n\n\n\n\n\n')
logger.info('-----------------------------------------------------------------------------------')
advice = 0
advicedVM = 0
advicedVM = actual_worker_number # alapvetően beállithatóm, hogy a sample df-ben tárol vm legyen az aktuális
countInRange = 0
countViolatedUp = 0
countViolatedDown = 0
logger.info(f' actual_worker_number = {actual_worker_number}')
logger.info(f' investigationDeNormalizedDF.index = {investigationDeNormalizedDF.index}')
logger.info(f' type(investigationDeNormalizedDF.index) = {type(investigationDeNormalizedDF.index)}')
logger.info(f' investigationDeNormalizedDF.index[0] = {investigationDeNormalizedDF.index[0]}')
logger.info(f' investigationDeNormalizedDF.shape = {investigationDeNormalizedDF.shape}')
logger.info('')
logger.info(f' investigationDeNormalizedDF.columns = {investigationDeNormalizedDF.columns}')
logger.info('-----------------------------------------------------------------------------------')
logger.info('-----------------------------------------------------------------------------------')
logger.info(' init the advice storage data frame ')
logger.info('-----------------------------------------------------------------------------------')
advicedDF = investigationDeNormalizedDF.copy()
advicedDF['advice'] = advice # az advice alapértelmezetben 0 tehát ez a rész a df-ben csupa 0 lesz
advicedDF['postScaledTargetVariable'] = np.nan
advicedDF['advicedVM'] = advicedVM
logger.info('')
logger.info('-----------------------------------------------------------------------------------')
logger.info(f' advicedDF.shape = {advicedDF.shape}')
logger.info(f' advicedDF.columns = {advicedDF.columns}')
logger.info('-----------------------------------------------------------------------------------')
logger.info('')
logger.info('-----------------------------------------------------------------------------------')
logger.info(' iterate thorough and try to find best candidate ')
logger.info('-----------------------------------------------------------------------------------')
for i in investigationDeNormalizedDF.index:
logger.info('')
logger.info(' This is the current case number of index in df what we operate on ')
logger.info(f' investigationDeNormalizedDF.index = i = {i}')
logger.info(f' investigationDeNormalizedDF.index = {investigationDeNormalizedDF.index}')
logger.info('')
logger.info('-----------------------------------------------------------------------------------')
logger.info(' iterate thorough possible solutions ')
logger.info('-----------------------------------------------------------------------------------')
calculatedDistance = 99999999999
real = investigationDeNormalizedDF[[targetVariable]].get_value(i, targetVariable)
# Tehát a problémám az, hogy ha nem jön be minta, vagy hiányos a minta ezért nem tudjuk
# elfogadni, akkor a csv-ben és a csv-ből kiolvasott utolsó sor valami akár egészen
# régi értéket is tud mutatni, akár a target változóra, amit fölébb 'real' néven
# nevezek, akár a 'vm_count' a vm számára vonatkozóan.
#
# Ezért a részemről felmerült annak az igénye, hogy ezt a két értéket, ha úgy is
# megkapjuk a mintával akkor onnan vett értéket olvasssuk ki.
#
# Nézzük meg, hogy egyáltalán lehetséges-e ez
# Elvileg az 'opt_rest' 'sample' api kapja meg az adatokat
# az advisor csak az eltárolt 'csv'-ből olvas ki bármit is
logger.info('------------------------------------------------------')
# logger.info(f' real target variable from dataframe = {real}')
logger.info('------------------------------------------------------')
logger.info('------------------------------------------------------')
# logger.info(f' target_variable_from_sample = {target_variable_from_sample}')
# logger.info(f' type = {type(target_variable_from_sample)}')
# logger.info(f' target_variable_from_sample[0] = {target_variable_from_sample[0]}')
logger.info('------------------------------------------------------')
# real = target_variable_from_sample[0]
real = investigationDeNormalizedDF[[targetVariable]].get_value(i, targetVariable)
if( upperLimit > real and lowerLimit < real ):
advice = 0
# Ez a vm_number_from_sample érték a run metodus paramétere, az opt_rest elvileg a valós vm számot adja itt át
# actual_worker_number = vm_number_from_sample
# actual_worker_number = investigationDeNormalizedDF[['WorkerCount']].get_value(i, 'WorkerCount')
# advicedVM = investigationDeNormalizedDF[['WorkerCount']].get_value(i, 'WorkerCount')
advicedVM = actual_worker_number
# Ne a javaslatot, hanem a konkrét gép számot adja vissza
advicedDF.ix[i,'advice'] = 0
# advicedDF.ix[i,'advice'] = investigationDeNormalizedDF[['WorkerCount']]
countInRange += 1
logger.info('ok - target variable is in range ')
else:
logger.info(f'threshold violation at index {str(i)}')
if( upperLimit < real ):
countViolatedUp += 1
logger.info('threshold up violation')
postScaledTargetVariable = np.nan # 0
distance = float('inf')
# for j in range(1, maximumNumberIncreasableNode):
for j in range(0, maximumNumberIncreasableNode):
print('j = ', j)
# két feltételnek kell megfelelnie sorrendben legyen a legkisebb távolsága a felső limittől
# kettő legyen a felső limit alatt (utóbbi nem biztos, hogy teljesül)
varName = 'denormalizedPredictedResponseTimeAdded' + str(j) + 'Worker'
print('varName = ', varName)
relatedTargetVariable = investigationDeNormalizedDF.get_value(i, varName)
print('relatedTargetVariable = ', relatedTargetVariable)
calculatedDistance = abs(investigationDeNormalizedDF.get_value(i, varName) - upperLimit)
print('calculatedDistance = ', calculatedDistance)
print('distance = ', distance)
if( calculatedDistance < distance ):
distance = calculatedDistance
advice = j
postScaledTargetVariable = relatedTargetVariable
if( relatedTargetVariable < upperLimit ):
distance = calculatedDistance
print('distance = ', distance)
advice = j
postScaledTargetVariable = relatedTargetVariable
break
advicedVM = actual_worker_number + advice
print('')
print('advicedVM = ', advicedVM)
print('lowest distance = ', distance)
print('chosen advice = ', advice)
print('postScaledTargetVariable = ', postScaledTargetVariable)
print('')
advicedDF.ix[i,'advice'] = advice
advicedDF.ix[i, 'postScaledTargetVariable'] = postScaledTargetVariable
elif( lowerLimit > real ):
countViolatedDown += 1
logger.info('threshold down violation')
postScaledTargetVariable = np.nan # 0
distance = float('-inf')
# for j in range(-1, -3, -1):
for j in range(-1, minimumNumberReducibleNode, -1):
print('j = ', j)
# két feltételnek kell megfelelnie sorrendben legyen a legkisebb távolsága az alsó limittől
# kettő legyen az alsó limit fölött (utóbbi nem biztos, hogy teljesül)
varName = 'denormalizedPredictedResponseTimeAdded' + str(j) + 'Worker'
print('varName = ', varName)
relatedTargetVariable = investigationDeNormalizedDF.get_value(i, varName)
print('relatedTargetVariable = ', relatedTargetVariable)
calculatedDistance = abs(investigationDeNormalizedDF.get_value(i, varName) - lowerLimit)
print('calculatedDistance = ', calculatedDistance)
print('distance = ', distance)
if( calculatedDistance > distance ):
distance = calculatedDistance
advice = j
postScaledTargetVariable = relatedTargetVariable
if( relatedTargetVariable > lowerLimit ):
distance = calculatedDistance
print('distance = ', distance)
advice = j
postScaledTargetVariable = relatedTargetVariable
break
advicedVM = actual_worker_number + advice
print('')
print('advicedVM = ', advicedVM)
print('lowest distance = ', distance)
print('chosen advice = ', advice)
print('postScaledTargetVariable = ', postScaledTargetVariable)
print('')
advicedDF.ix[i, 'advice'] = advice
advicedDF.ix[i, 'postScaledTargetVariable'] = postScaledTargetVariable
# In[183]:
logger.info(f'countInRange = {countInRange}')
logger.info(f'countViolatedDown = {countViolatedDown}')
logger.info(f'countVilolatedUp = {countViolatedUp}')
# In[188]:
if( last == False ):
advicedDF.to_csv('outputs/adviseDF.csv', sep=';', encoding='utf-8')
logger.info('outputs/adviseDF.csv saved')
# ## ------------------------------------------------------------------------------------------------------
# ## Set return_msg
# ## ------------------------------------------------------------------------------------------------------
phase = 'production'
reliability = 0
logger.info('----------------------------------------------')
logger.info('--------- Pass back Goodness of Fit ----------')
if( training_result[1] is not None ):
# TODO:
# Avoid potential error with try except
try:
reliability = training_result[1].get('correlation') * 100
if( reliability < 0 ):
reliability = 0
except:
reliability = 0
else:
reliability = 0
logger.info('----------------------------------------------')
# Ez volt az egyéni javaslat, hogy mennyit adjon hozzá
# vm_number_total = advice
# Ez a konkrét javaslat, hogy hány gépnek kell szerepelnie
vm_number_total = advicedVM
output_filename = config.output_filename
output_filename = config.get_property('output_filename')
logger.info('----------------------------------------------')
logger.info(f'advice = {advice}')
logger.info(f'actual_worker_number = {actual_worker_number}')
logger.info(f'vm_number_total = {vm_number_total}')
logger.info(f'output_filename = {output_filename}')
logger.info(f'reliability = {reliability}')
logger.info('----------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Set return_msg the rest of the code is for report and persist data
# ## ------------------------------------------------------------------------------------------------------
current_time = int(time.time())
global first_advice
global prev_adviced_time
global prev_advice_vm_total_number
logger.info('---------------------------------------------------------------------------')
logger.info(f' first_advice = {first_advice}')
logger.info(f' prev_adviced_time = {prev_adviced_time}')
logger.info(f' current_time = {current_time}')
logger.info(f' ellapsed time = {current_time - prev_adviced_time}')
logger.info(f' advice_freeze_interval = {advice_freeze_interval}')
logger.info(f' prev_advice_vm_total_number = {prev_advice_vm_total_number}')
logger.info(f' vm_number_total = {vm_number_total}')
logger.info('---------------------------------------------------------------------------')
if( current_time - prev_adviced_time > advice_freeze_interval ):
prev_adviced_time = current_time
prev_advice_vm_total_number = vm_number_total
first_advice = False
logger.info('------------------------- opt_advisor.run() run -------------------------')
logger.info(f' first_advice = {first_advice}')
logger.info(f' prev_adviced_time = {prev_adviced_time}')
logger.info(f' prev_advice_vm_total_number = {prev_advice_vm_total_number}')
logger.info(f' vm_number_total = {vm_number_total}')
logger.info('---------------------------------------------------------------------------')
else:
vm_number_total = prev_advice_vm_total_number
logger.info('---------------------------------------------------------------------------')
logger.info(f' vm_number_total = {vm_number_total}')
logger.info('---------------------------------------------------------------------------')
# ## 2019.11.07
# ## ------------------------------------------------------------------------------------------------------
# ## Bekorlátozás
# ## ------------------------------------------------------------------------------------------------------
vm_number_total = max(constants.get('min_vm_number'), vm_number_total)
vm_number_total = min(constants.get('max_vm_number'), vm_number_total)
# ## ------------------------------------------------------------------------------------------------------
# ## Send JSON back to Pollicy Keeper
# ## ------------------------------------------------------------------------------------------------------
return_msg = advice_msg(valid = True, phase = phase, vm_number = vm_number_total, reliability = reliability)
# ## ------------------------------------------------------------------------------------------------------
# ## Store and save metrics, advice and predictions in a csv file
# ## ------------------------------------------------------------------------------------------------------
logger.info('----------------------------------------------------------')
logger.info(f'pf shape = {pf.shape}')
# for m in pf.columns:
# logger.info(f'Column names are = {m}, {pf[m].values}')
logger.info('----------------------------------------------------------')
logger.info(' store adviced data csv ')
logger.info('----------------------------------------------------------')
# ## ------------------------------------------------------------------------------------------------------
# ## Prepare dataframes to store metrics, advice and predictions
# ## ------------------------------------------------------------------------------------------------------
tf = pf.copy() # original csv stored input datas
# Merge data frames
tmp_columns = investigationDFDeNormalizedUp.columns[2:]
tf = pd.merge(tf, investigationDFDeNormalizedUp[tmp_columns], right_index=True, left_index=True)
# Merge data frames
tmp_columns = investigationDFDeNormalizedDown.columns[2:]
tf = pd.merge(tf, investigationDFDeNormalizedDown[tmp_columns], right_index=True, left_index=True)
# ## ------------------------------------------------------------------------------------------------------
# ## Store data frame in a csv file
# ## ------------------------------------------------------------------------------------------------------
# if advisedDF.csv file exists
if(os.path.isfile(output_filename) == True):
logger.info('----------------------------------------------------------')
# read
af = readCSV(output_filename)
logger.info(' --------- read existing csv --------- ')
logger.info(f' csv file name = {output_filename}')
logger.info(f' csv datafraeme shape = {af.shape}')
# add advised vm_number
tf['advised_vm_number'] = vm_number_total
tf['post_scaled_target_variable'] = advicedDF['postScaledTargetVariable'].get_value(i, 'postScaledTargetVariable')
logger.info(' --------- inner state ---------')
logger.info(f' inner state df shape = {tf.shape}')
# append
bf = af.copy()
bf = bf.append(tf.copy(), ignore_index=True)
logger.info(' --------- append new data ---------')
logger.info(f' appended df shape = {bf.shape}')
logger.info('---------------- end of appending advice -----------------')
logger.info('----------------------------------------------------------')
logger.info('--------------------- save to csv ------------------------')
# save
bf.to_csv(output_filename, sep=',', encoding='utf-8', index=False)
logger.info('------------- advice saved into csv file -----------------')
# target_variable_from_sample
logger.info('------------- advice saved into csv file -----------------')
logger.info('------------- target_variable_from_sample ----------------')
logger.info(target_variable_from_sample)