-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathdata.py
565 lines (479 loc) · 21.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import os
import random
from os.path import join
import numpy as np
import torch.multiprocessing
from PIL import Image
from scipy.io import loadmat
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision.datasets.cityscapes import Cityscapes
from torchvision.transforms.functional import to_pil_image
from tqdm import tqdm
def bit_get(val, idx):
"""Gets the bit value.
Args:
val: Input value, int or numpy int array.
idx: Which bit of the input val.
Returns:
The "idx"-th bit of input val.
"""
return (val >> idx) & 1
def create_pascal_label_colormap():
"""Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((512, 3), dtype=int)
ind = np.arange(512, dtype=int)
for shift in reversed(list(range(8))):
for channel in range(3):
colormap[:, channel] |= bit_get(ind, channel) << shift
ind >>= 3
return colormap
def create_cityscapes_colormap():
colors = [(128, 64, 128),
(244, 35, 232),
(250, 170, 160),
(230, 150, 140),
(70, 70, 70),
(102, 102, 156),
(190, 153, 153),
(180, 165, 180),
(150, 100, 100),
(150, 120, 90),
(153, 153, 153),
(153, 153, 153),
(250, 170, 30),
(220, 220, 0),
(107, 142, 35),
(152, 251, 152),
(70, 130, 180),
(220, 20, 60),
(255, 0, 0),
(0, 0, 142),
(0, 0, 70),
(0, 60, 100),
(0, 0, 90),
(0, 0, 110),
(0, 80, 100),
(0, 0, 230),
(119, 11, 32),
(0, 0, 0)]
return np.array(colors)
class DirectoryDataset(Dataset):
def __init__(self, root, path, image_set, transform, target_transform):
super(DirectoryDataset, self).__init__()
self.split = image_set
self.dir = join(root, path)
self.img_dir = join(self.dir, "imgs", self.split)
self.label_dir = join(self.dir, "labels", self.split)
self.transform = transform
self.target_transform = target_transform
self.img_files = np.array(sorted(os.listdir(self.img_dir)))
assert len(self.img_files) > 0
if os.path.exists(join(self.dir, "labels")):
self.label_files = np.array(sorted(os.listdir(self.label_dir)))
assert len(self.img_files) == len(self.label_files)
else:
self.label_files = None
def __getitem__(self, index):
image_fn = self.img_files[index]
img = Image.open(join(self.img_dir, image_fn))
if self.label_files is not None:
label_fn = self.label_files[index]
label = Image.open(join(self.label_dir, label_fn))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
if self.label_files is not None:
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label)
else:
label = torch.zeros(img.shape[1], img.shape[2], dtype=torch.int64) - 1
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.img_files)
class Potsdam(Dataset):
def __init__(self, root, image_set, transform, target_transform, coarse_labels):
super(Potsdam, self).__init__()
self.split = image_set
self.root = os.path.join(root, "potsdam")
self.transform = transform
self.target_transform = target_transform
split_files = {
"train": ["labelled_train.txt"],
"unlabelled_train": ["unlabelled_train.txt"],
# "train": ["unlabelled_train.txt"],
"val": ["labelled_test.txt"],
"train+val": ["labelled_train.txt", "labelled_test.txt"],
"all": ["all.txt"]
}
assert self.split in split_files.keys()
self.files = []
for split_file in split_files[self.split]:
with open(join(self.root, split_file), "r") as f:
self.files.extend(fn.rstrip() for fn in f.readlines())
self.coarse_labels = coarse_labels
self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
1: 1, 5: 1, # buildings and clutter
2: 2, 3: 2, # vegetation and trees
255: -1
}
def __getitem__(self, index):
image_id = self.files[index]
img = loadmat(join(self.root, "imgs", image_id + ".mat"))["img"]
img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
try:
label = loadmat(join(self.root, "gt", image_id + ".mat"))["gt"]
label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
except FileNotFoundError:
label = to_pil_image(torch.ones(1, img.height, img.width))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label).squeeze(0)
if self.coarse_labels:
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.files)
class PotsdamRaw(Dataset):
def __init__(self, root, image_set, transform, target_transform, coarse_labels):
super(PotsdamRaw, self).__init__()
self.split = image_set
self.root = os.path.join(root, "potsdamraw", "processed")
self.transform = transform
self.target_transform = target_transform
self.files = []
for im_num in range(38):
for i_h in range(15):
for i_w in range(15):
self.files.append("{}_{}_{}.mat".format(im_num, i_h, i_w))
self.coarse_labels = coarse_labels
self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
1: 1, 5: 1, # buildings and clutter
2: 2, 3: 2, # vegetation and trees
255: -1
}
def __getitem__(self, index):
image_id = self.files[index]
img = loadmat(join(self.root, "imgs", image_id))["img"]
img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
try:
label = loadmat(join(self.root, "gt", image_id))["gt"]
label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
except FileNotFoundError:
label = to_pil_image(torch.ones(1, img.height, img.width))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(img)
random.seed(seed)
torch.manual_seed(seed)
label = self.target_transform(label).squeeze(0)
if self.coarse_labels:
new_label_map = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
new_label_map[label == fine] = coarse
label = new_label_map
mask = (label > 0).to(torch.float32)
return img, label, mask
def __len__(self):
return len(self.files)
class Coco(Dataset):
def __init__(self, root, image_set, transform, target_transform,
coarse_labels, exclude_things, subset=None):
super(Coco, self).__init__()
self.split = image_set
self.root = join(root, "cocostuff")
self.coarse_labels = coarse_labels
self.transform = transform
self.label_transform = target_transform
self.subset = subset
self.exclude_things = exclude_things
if self.subset is None:
self.image_list = "Coco164kFull_Stuff_Coarse.txt"
elif self.subset == 6: # IIC Coarse
self.image_list = "Coco164kFew_Stuff_6.txt"
elif self.subset == 7: # IIC Fine
self.image_list = "Coco164kFull_Stuff_Coarse_7.txt"
assert self.split in ["train", "val", "train+val"]
split_dirs = {
"train": ["train2017"],
"val": ["val2017"],
"train+val": ["train2017", "val2017"]
}
self.image_files = []
self.label_files = []
for split_dir in split_dirs[self.split]:
with open(join(self.root, "curated", split_dir, self.image_list), "r") as f:
img_ids = [fn.rstrip() for fn in f.readlines()]
for img_id in img_ids:
self.image_files.append(join(self.root, "images", split_dir, img_id + ".jpg"))
self.label_files.append(join(self.root, "annotations", split_dir, img_id + ".png"))
self.fine_to_coarse = {0: 9, 1: 11, 2: 11, 3: 11, 4: 11, 5: 11, 6: 11, 7: 11, 8: 11, 9: 8, 10: 8, 11: 8, 12: 8,
13: 8, 14: 8, 15: 7, 16: 7, 17: 7, 18: 7, 19: 7, 20: 7, 21: 7, 22: 7, 23: 7, 24: 7,
25: 6, 26: 6, 27: 6, 28: 6, 29: 6, 30: 6, 31: 6, 32: 6, 33: 10, 34: 10, 35: 10, 36: 10,
37: 10, 38: 10, 39: 10, 40: 10, 41: 10, 42: 10, 43: 5, 44: 5, 45: 5, 46: 5, 47: 5, 48: 5,
49: 5, 50: 5, 51: 2, 52: 2, 53: 2, 54: 2, 55: 2, 56: 2, 57: 2, 58: 2, 59: 2, 60: 2,
61: 3, 62: 3, 63: 3, 64: 3, 65: 3, 66: 3, 67: 3, 68: 3, 69: 3, 70: 3, 71: 0, 72: 0,
73: 0, 74: 0, 75: 0, 76: 0, 77: 1, 78: 1, 79: 1, 80: 1, 81: 1, 82: 1, 83: 4, 84: 4,
85: 4, 86: 4, 87: 4, 88: 4, 89: 4, 90: 4, 91: 17, 92: 17, 93: 22, 94: 20, 95: 20, 96: 22,
97: 15, 98: 25, 99: 16, 100: 13, 101: 12, 102: 12, 103: 17, 104: 17, 105: 23, 106: 15,
107: 15, 108: 17, 109: 15, 110: 21, 111: 15, 112: 25, 113: 13, 114: 13, 115: 13, 116: 13,
117: 13, 118: 22, 119: 26, 120: 14, 121: 14, 122: 15, 123: 22, 124: 21, 125: 21, 126: 24,
127: 20, 128: 22, 129: 15, 130: 17, 131: 16, 132: 15, 133: 22, 134: 24, 135: 21, 136: 17,
137: 25, 138: 16, 139: 21, 140: 17, 141: 22, 142: 16, 143: 21, 144: 21, 145: 25, 146: 21,
147: 26, 148: 21, 149: 24, 150: 20, 151: 17, 152: 14, 153: 21, 154: 26, 155: 15, 156: 23,
157: 20, 158: 21, 159: 24, 160: 15, 161: 24, 162: 22, 163: 25, 164: 15, 165: 20, 166: 17,
167: 17, 168: 22, 169: 14, 170: 18, 171: 18, 172: 18, 173: 18, 174: 18, 175: 18, 176: 18,
177: 26, 178: 26, 179: 19, 180: 19, 181: 24}
self._label_names = [
"ground-stuff",
"plant-stuff",
"sky-stuff",
]
self.cocostuff3_coarse_classes = [23, 22, 21]
self.first_stuff_index = 12
def __getitem__(self, index):
image_path = self.image_files[index]
label_path = self.label_files[index]
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
img = self.transform(Image.open(image_path).convert("RGB"))
random.seed(seed)
torch.manual_seed(seed)
label = self.label_transform(Image.open(label_path)).squeeze(0)
label[label == 255] = -1 # to be consistent with 10k
coarse_label = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
coarse_label[label == fine] = coarse
coarse_label[label == -1] = -1
if self.coarse_labels:
coarser_labels = -torch.ones_like(label)
for i, c in enumerate(self.cocostuff3_coarse_classes):
coarser_labels[coarse_label == c] = i
return img, coarser_labels, coarser_labels >= 0
else:
if self.exclude_things:
return img, coarse_label - self.first_stuff_index, (coarse_label >= self.first_stuff_index)
else:
return img, coarse_label, coarse_label >= 0
def __len__(self):
return len(self.image_files)
class CityscapesSeg(Dataset):
def __init__(self, root, image_set, transform, target_transform):
super(CityscapesSeg, self).__init__()
self.split = image_set
self.root = join(root, "cityscapes")
if image_set == "train":
# our_image_set = "train_extra"
# mode = "coarse"
our_image_set = "train"
mode = "fine"
else:
our_image_set = image_set
mode = "fine"
self.inner_loader = Cityscapes(self.root, our_image_set,
mode=mode,
target_type="semantic",
transform=None,
target_transform=None)
self.transform = transform
self.target_transform = target_transform
self.first_nonvoid = 7
def __getitem__(self, index):
if self.transform is not None:
image, target = self.inner_loader[index]
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
image = self.transform(image)
random.seed(seed)
torch.manual_seed(seed)
target = self.target_transform(target)
target = target - self.first_nonvoid
target[target < 0] = -1
mask = target == -1
return image, target.squeeze(0), mask
else:
return self.inner_loader[index]
def __len__(self):
return len(self.inner_loader)
class CroppedDataset(Dataset):
def __init__(self, root, dataset_name, crop_type, crop_ratio, image_set, transform, target_transform):
super(CroppedDataset, self).__init__()
self.dataset_name = dataset_name
self.split = image_set
self.root = join(root, "cropped", "{}_{}_crop_{}".format(dataset_name, crop_type, crop_ratio))
self.transform = transform
self.target_transform = target_transform
self.img_dir = join(self.root, "img", self.split)
self.label_dir = join(self.root, "label", self.split)
self.num_images = len(os.listdir(self.img_dir))
assert self.num_images == len(os.listdir(self.label_dir))
def __getitem__(self, index):
image = Image.open(join(self.img_dir, "{}.jpg".format(index))).convert('RGB')
target = Image.open(join(self.label_dir, "{}.png".format(index)))
seed = np.random.randint(2147483647)
random.seed(seed)
torch.manual_seed(seed)
image = self.transform(image)
random.seed(seed)
torch.manual_seed(seed)
target = self.target_transform(target)
target = target - 1
mask = target == -1
return image, target.squeeze(0), mask
def __len__(self):
return self.num_images
class MaterializedDataset(Dataset):
def __init__(self, ds):
self.ds = ds
self.materialized = []
loader = DataLoader(ds, num_workers=12, collate_fn=lambda l: l[0])
for batch in tqdm(loader):
self.materialized.append(batch)
def __len__(self):
return len(self.ds)
def __getitem__(self, ind):
return self.materialized[ind]
class ContrastiveSegDataset(Dataset):
def __init__(self,
pytorch_data_dir,
dataset_name,
crop_type,
image_set,
transform,
target_transform,
cfg,
aug_geometric_transform=None,
aug_photometric_transform=None,
num_neighbors=5,
compute_knns=False,
mask=False,
pos_labels=False,
pos_images=False,
extra_transform=None,
model_type_override=None
):
super(ContrastiveSegDataset).__init__()
self.num_neighbors = num_neighbors
self.image_set = image_set
self.dataset_name = dataset_name
self.mask = mask
self.pos_labels = pos_labels
self.pos_images = pos_images
self.extra_transform = extra_transform
if dataset_name == "potsdam":
self.n_classes = 3
dataset_class = Potsdam
extra_args = dict(coarse_labels=True)
elif dataset_name == "potsdamraw":
self.n_classes = 3
dataset_class = PotsdamRaw
extra_args = dict(coarse_labels=True)
elif dataset_name == "directory":
self.n_classes = cfg.dir_dataset_n_classes
dataset_class = DirectoryDataset
extra_args = dict(path=cfg.dir_dataset_name)
elif dataset_name == "cityscapes" and crop_type is None:
self.n_classes = 27
dataset_class = CityscapesSeg
extra_args = dict()
elif dataset_name == "cityscapes" and crop_type is not None:
self.n_classes = 27
dataset_class = CroppedDataset
extra_args = dict(dataset_name="cityscapes", crop_type=crop_type, crop_ratio=cfg.crop_ratio)
elif dataset_name == "cocostuff3":
self.n_classes = 3
dataset_class = Coco
extra_args = dict(coarse_labels=True, subset=6, exclude_things=True)
elif dataset_name == "cocostuff15":
self.n_classes = 15
dataset_class = Coco
extra_args = dict(coarse_labels=False, subset=7, exclude_things=True)
elif dataset_name == "cocostuff27" and crop_type is not None:
self.n_classes = 27
dataset_class = CroppedDataset
extra_args = dict(dataset_name="cocostuff27", crop_type=cfg.crop_type, crop_ratio=cfg.crop_ratio)
elif dataset_name == "cocostuff27" and crop_type is None:
self.n_classes = 27
dataset_class = Coco
extra_args = dict(coarse_labels=False, subset=None, exclude_things=False)
if image_set == "val":
extra_args["subset"] = 7
else:
raise ValueError("Unknown dataset: {}".format(dataset_name))
self.aug_geometric_transform = aug_geometric_transform
self.aug_photometric_transform = aug_photometric_transform
self.dataset = dataset_class(
root=pytorch_data_dir,
image_set=self.image_set,
transform=transform,
target_transform=target_transform, **extra_args)
if model_type_override is not None:
model_type = model_type_override
else:
model_type = cfg.model_type
nice_dataset_name = cfg.dir_dataset_name if dataset_name == "directory" else dataset_name
feature_cache_file = join(pytorch_data_dir, "nns", "nns_{}_{}_{}_{}_{}.npz".format(
model_type, nice_dataset_name, image_set, crop_type, cfg.res))
if pos_labels or pos_images:
if not os.path.exists(feature_cache_file) or compute_knns:
raise ValueError("could not find nn file {} please run precompute_knns".format(feature_cache_file))
else:
loaded = np.load(feature_cache_file)
self.nns = loaded["nns"]
assert len(self.dataset) == self.nns.shape[0]
def __len__(self):
return len(self.dataset)
def _set_seed(self, seed):
random.seed(seed) # apply this seed to img tranfsorms
torch.manual_seed(seed) # needed for torchvision 0.7
def __getitem__(self, ind):
pack = self.dataset[ind]
if self.pos_images or self.pos_labels:
ind_pos = self.nns[ind][torch.randint(low=1, high=self.num_neighbors + 1, size=[]).item()]
pack_pos = self.dataset[ind_pos]
seed = np.random.randint(2147483647) # make a seed with numpy generator
self._set_seed(seed)
coord_entries = torch.meshgrid([torch.linspace(-1, 1, pack[0].shape[1]),
torch.linspace(-1, 1, pack[0].shape[2])])
coord = torch.cat([t.unsqueeze(0) for t in coord_entries], 0)
if self.extra_transform is not None:
extra_trans = self.extra_transform
else:
extra_trans = lambda i, x: x
ret = {
"ind": ind,
"img": extra_trans(ind, pack[0]),
"label": extra_trans(ind, pack[1]),
}
if self.pos_images:
ret["img_pos"] = extra_trans(ind, pack_pos[0])
ret["ind_pos"] = ind_pos
if self.mask:
ret["mask"] = pack[2]
if self.pos_labels:
ret["label_pos"] = extra_trans(ind, pack_pos[1])
ret["mask_pos"] = pack_pos[2]
if self.aug_photometric_transform is not None:
img_aug = self.aug_photometric_transform(self.aug_geometric_transform(pack[0]))
self._set_seed(seed)
coord_aug = self.aug_geometric_transform(coord)
ret["img_aug"] = img_aug
ret["coord_aug"] = coord_aug.permute(1, 2, 0)
return ret