-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartisan_scores.py
37 lines (27 loc) · 1.58 KB
/
partisan_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
def s_efficiency_gap(partition, election, pos_party = "Democratic"):
# S,V shares, should be Dem to match other EG
total_seats = float(len(partition))
seat_share = partition[election].seats(pos_party) / total_seats
vote_share = partition[election].percent(pos_party)
# S-2V+1/2
s_eg = seat_share - 2*vote_share + 1/2
return(s_eg)
def mean_disprop(partition, elections, pos_party = "Democratic"):
# sum over elections of seat share - vote share
return sum(partition[e].seats(pos_party) / float(len(partition)) - partition[e].percent(pos_party) for e in elections)
def lopsided_updater(partition, election_name, party1_name, pos_party):
# pos party is the party for which a positive value of the score indicates favoring
party_1_percents = np.array(partition[election_name].percents(party1_name))
pos_party_percents = np.array(partition[election_name].percents(pos_party))
total = party_1_percents + pos_party_percents
# If any of the totals are not 1, then there are some missing votes
# due to third party candidates or missing data, so we want to
# scale each part in the partition to deal with just the two major parties
if any(total != 1):
party_1_percents = party_1_percents / total
pos_party_percents = pos_party_percents / total
return (
party_1_percents[party_1_percents > 0.5].mean() if party_1_percents[party_1_percents > 0.5].size > 0 else 0
- pos_party_percents[pos_party_percents > 0.5].mean() if pos_party_percents[pos_party_percents > 0.5].size > 0 else 0
)