-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMI_plots.py
221 lines (184 loc) · 7.16 KB
/
MI_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import matplotlib.pyplot as plt
import sys
import json
from configuration import *
from plotting_class import PlotFactory
state = "Michigan"
n = 100000
args = sys.argv[1:]
plan_type = args[0]
vra_str = args[1]
county_weight = float(args[2])
county_sub_weight = float(args[3])
theta = float(args[4])
bvap_thresh = float(args[5])
biden_thresh = float(args[6])
with open("{}/{}.json".format(STATE_SPECS_DIR, state)) as fin:
state_specification = json.load(fin)
print(plan_type, vra_str, county_weight, county_sub_weight, theta, bvap_thresh, biden_thresh)
if county_weight and not county_sub_weight:
region_aware_str = f"county_aware_w{county_weight}"
elif county_sub_weight and not county_weight:
region_aware_str = f"county_sub_aware_w{county_sub_weight}"
elif county_sub_weight and county_weight:
region_aware_str = f"county_and_sub_aware_w{county_weight}_{county_sub_weight}"
else:
region_aware_str= "region_neutral"
# {state.lower()}_{plan_type}_{eps}_bal_{steps}_steps_{region_aware_str}_vra_{vra_string}_theta_{theta}_bvap_{bvap_thresh}_biden_{biden_thresh}.jsonl.gz"
try:
factory = PlotFactory(state, plan_type, bvap_thresh, biden_thresh, steps = n, method=f"{region_aware_str}_{vra_str}_theta_{theta}_bvap_{bvap_thresh}_biden_{biden_thresh}",
ensemble_dir = f"{state}/ensemble_stats",
proposed_plans_file = f"{state}/plan_stats/{plan_type}_proposed_plans.jsonl",
output_dir="plots"
)
except:
factory = PlotFactory(state, plan_type, bvap_thresh, biden_thresh, steps = n, method=f"{region_aware_str}_{vra_str}_theta_{theta}_bvap_{bvap_thresh}_biden_{biden_thresh}",
ensemble_dir = f"{state}/ensemble_stats",
proposed_plans_file = f"{state}/plan_stats/{plan_type}_proposed_plans.jsonl",
output_dir="plots"
)
print("loaded stats")
FIG_DIR = f"Figures/full_for_paper"
# FIG_DIR="Figures/testing"
file_suffix = f"Michigan_{plan_type}_{vra_str}_CW_{county_weight}_CSW_{county_sub_weight}_theta_{theta}_bvap_{bvap_thresh}_biden_{biden_thresh}.pdf"
# # county
# title = f"CW {county_weight} MW {county_sub_weight}"
# fig, axes = plt.subplots()
# axes= factory.plot("num_split_counties", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# if plan_type == "state_senate":
# data_max = 60
# data_min = 8
# elif plan_type == "state_house":
# data_max = 72
# data_min = 24
# else:
# data_max = 50
# data_min = 0
# data_step = 2
# axes.set_xlim(data_min, data_max)
# axes.set_xticks([x+.5 for x in range(data_min,data_max,data_step)], [str(x) for x in range(data_min,data_max,data_step)])
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Split_Counties_{file_suffix}")
# plt.close()
# # cousub
# title = f"CW {county_weight} MW {county_sub_weight}"
# fig, axes = plt.subplots()
# axes = factory.plot("num_split_municipalities", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# if plan_type == "state_senate":
# data_max = 152
# data_min = 4
# elif plan_type == "state_house":
# data_max = 240
# data_min = 36
# else:
# data_max = 112
# data_min = 0
# data_step = int((data_max-data_min)/25)
# axes.set_xlim(data_min, data_max)
# axes.set_xticks([x+.5 for x in range(data_min,data_max,data_step)], [str(x) for x in range(data_min,data_max,data_step)])
# axes.tick_params(axis='x', labelrotation=90)
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Split_Municipalities_{file_suffix}")
# plt.close()
# # vra effective
# title = f"VRA Effective Score ({bvap_thresh},{biden_thresh}), Theta {theta}" if theta!=2 else f"VRA Effective Score ({bvap_thresh},{biden_thresh})"
# fig, axes = plt.subplots()
# axes= factory.plot("num_vra_effective", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# # data_max = state_specification["districts"][plan_type]
# if plan_type == "state_senate":
# data_max = 5
# data_min = 0
# elif plan_type == "state_house":
# data_max = 15
# data_min = 4
# else:
# data_max = 3
# data_min = 0
# data_step = 2
# axes.set_xlim(data_min, data_max)
# axes.set_xticks([x+.5 for x in range(data_min,data_max,data_step)], [str(x) for x in range(data_min,data_max,data_step)])
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/VRA_Effective_{file_suffix}")
# plt.close()
# # efficiency gap
# fig, axes = plt.subplots()
# axes= factory.plot("efficiency_gap", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Efficiency_Gap_{file_suffix}")
# plt.close()
# # seats
# fig, axes = plt.subplots()
# axes= factory.plot("seats", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Seats_{file_suffix}")
# plt.close()
# # mean median
# fig, axes = plt.subplots()
# axes= factory.plot("mean_median", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Mean_median_{file_suffix}")
# plt.close()
# # partisan bias
# fig, axes = plt.subplots()
# axes= factory.plot("partisan_bias", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Partisan_bias_{file_suffix}")
# plt.close()
# competitive contests
# fig, axes = plt.subplots()
# axes= factory.plot("num_competitive_districts", kinds=["ensemble" ,"proposed"])
# axes.set_title(title,fontsize=24)
# if plan_type == "state_senate":
# data_max = 200
# elif plan_type == "state_house":
# data_max = 1000
# else:
# data_max = 200
# data_min = 0
# data_step = int((data_max-data_min)/25)
# axes.set_xlim(0, data_max)
# axes.set_xticks([x+.5 for x in range(data_min,data_max,data_step)], [str(x) for x in range(data_min,data_max,data_step)])
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Num_Competitive_{file_suffix}")
# plt.close()
# bvap
fig, axes = plt.subplots()
title = f"Theta {theta}" if theta!=2 else f"Neutral"
axes= factory.plot("BVAP", kinds=["ensemble" ,"proposed"])
axes.set_title(title,fontsize=24)
plt.tight_layout()
plt.savefig(f"{FIG_DIR}/BVAP_{file_suffix}")
plt.close()
# sea level
fig, axes = plt.subplots()
axes= factory.plot_sea_level()
axes.set_xticks(axes.get_xticks(), axes.get_xticklabels(), rotation=90)
axes.set_title(f"Sea Level Plot for {plan_type.capitalize()}", fontsize=24)
plt.tight_layout()
plt.savefig(f"{FIG_DIR}/Sea_level_michigan_{plan_type}.pdf")
plt.close()
# # scatterplots
# # average efficiency gap
# fig, axes = plt.subplots()
# axes.set_title(title,fontsize=24)
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Scatter_EG_VRA_{file_suffix}")
# plt.close()
# competitve
# fig, axes = plt.subplots()
# axes= factory.plot("num_competitive_districts", kinds=["ensemble", "proposed"], score_2="num_vra_effective")
# axes.set_title(title,fontsize=24)
# plt.legend()
# plt.tight_layout()
# plt.savefig(f"{FIG_DIR}/Scatter_Competitive_VRA_{file_suffix}")
# plt.close()
# bvap table for jon
# factory.bvap_table_to_csv(file_name=f"Tables/{state}/bvap_table_{state}_{plan_type}_{vra_str}_CW_{county_weight}_CSW_{county_sub_weight}_theta_{theta}_bvap_{bvap_thresh}_biden_{biden_thresh}.csv")
print("done")