From f32f1412c8745f8460fc60923027a91ce61f4457 Mon Sep 17 00:00:00 2001 From: metamath Date: Wed, 3 May 2017 16:46:51 +0900 Subject: [PATCH] GANs.ipynb, imgs --- GAN/1.png | Bin 0 -> 10212 bytes GAN/2.png | Bin 0 -> 43749 bytes GAN/3.png | Bin 0 -> 31106 bytes GAN/4.png | Bin 0 -> 12948 bytes GAN/5.png | Bin 0 -> 85587 bytes GAN/6.png | Bin 0 -> 118407 bytes GAN/7.png | Bin 0 -> 42477 bytes GAN/GANs.ipynb | 1497 ++++++++++++++++++++++++++++++++++++++++++++++++ 8 files changed, 1497 insertions(+) create mode 100644 GAN/1.png create mode 100644 GAN/2.png create mode 100644 GAN/3.png create mode 100644 GAN/4.png create mode 100644 GAN/5.png create mode 100644 GAN/6.png create mode 100644 GAN/7.png create mode 100644 GAN/GANs.ipynb diff --git a/GAN/1.png b/GAN/1.png new file mode 100644 index 0000000000000000000000000000000000000000..61deeb6c97c24153d739d68df731cb776f592d1c GIT binary patch literal 10212 zcmdUVc{r5&|F;k+TXdo%N@%CZ*y(7IGPLPP2bCqqGHJw!!Bj*-$U1~nTAUOzVNjN2 z8$}Vrj4eZ!F$RON{NDGpo$tAx=enNX^ZVy{x~^*O`?I{4&wG8{pD;`GL9yj)m-F%Q zi5)WCcZ`pZ9|M15mI=X|>$>_D@ZS>bv4g+!8^6X^!Gp*}Q)?_ApNtgpcZqXa6D;9d zYRw#!51xcyaqr9=9C?4f6!i^z$$NXGJH$9Rg)kynp;(_lr`W<$ z)_Cm2$+X2e#&W(OP3>iTd_7`(d@Lb8McO(+-j5)h0G}iX5sKpDtCZtI9*xOMV4U~( zYdYW0SuCq+iISqVBS(DV3mYh_P20~eFnvq0?m@|M#wj}149Voa6#>*4feBhQrJ3@# zq{cSFRKJ7#wSfRev&hx(sW_vab;~vLq%L@)?`niP`5x8X@Ot6m>0wbpqP2*ohN_9s z2OMMadX=MHUVW$SJi9b9`mA_ORkbGR)hwNxTN*gSNvo>uE02Qd{SHdl-F+o%tM5() z(hAv4A`=0YV&l$t?v5Xfc4RBconfyqFmzH*jE!ih*&3cG|M*?DdNq3WnZBU4{mfo% zO@(+FZ~c0+^bb0|U)4&C#_9?Z7Mhlg`JivXCbdpgv%g0YfGI;&3;ZhUsl)42m!&&6 z)l29Xotd0tYHcG}_4i?n<{tLla9-q6-UtUI$vZM^)=^>yv~f9;kVpEj`&UcfT~=vnx@y3C7sR1VnO(!tBwh=C1bEnOt z5^$%y6x%av-R}k7uol@zjIF}p)ch;z34(vEGwY2>5RCDATbnI-j#6{pE~P|N{h}fv zS-9D?ma`Ae_A~a<;tJ-Oaq)chJMmk}`Yu@UzhLyeP&=a=WGrCfl043(0r9Dnj>Ynq zQ9esf%bK+YTeIUo&o-DTensB8cdy72SA754a_wrP3bhxL#5m)RI)#hDRZp{?$s4C< zyqU<6IE!{00a-7jM*}|`JgZoEW%-4_Hsd#~LlkfsJ#{XTzo(&n39JA05`I(ik{&TI z;ZT$@pS2#?vEXf-K&71h<}ef({xU^Z;Yzt6J}C@Xx~MWs2qr9X7=Z^#V<%;JFgf%e zORYshQLinfFyIK1#x3IDB}*Kv_eRJjXs z)zYj3!{!{EVtb`rPsAP0=;lEC(g(pH-2rbzeuL((~$e#3;Kj%g=6y`I@n z_o%1AxMx6Ut(JNpkLggI<^lr|5}rfJ!C}YTQiiuS?H54ZTZNg5$0@bU6r(5R-Lnh@ ze1`PHQ9FH_HSwR~a2jA2yUPC#6VA-hvuM+>n_=ig9S-2AFJhYgOP|Rlzi6ZTjQGQR z*Svaf+G*VN%{0*c0V>1ebg#yl#+fSd3XN7x%K2xM1WzOXt=Dk9yR~Y_4=zX}d`6Il z@5cLxyKhBNU)s1z>kHI+=)!(x>oDzGq&2yo`?mv&|#O^ z>b0YvRA`bIigQ};4q|kksq5dpH$Pi6mWH94=*!q^na#+klVe)1duOnP+B<~{ep3x_ zKr-Ir&NC-1)8xanSRuH~I@T2J<;)#=ZcQErtZ-;XB(3k%@A#LJXVYfn&R2mQeC!>0 z@iZgWXc=di2K|o2;q3X0Jx(#WI+IHthmE5p}mn z?rqi2LgCa!-coI3o~ejU%Lx%0OWjA7u--aWQ5i3aZ-&EYSd~pocLB%ex*<1ynC^zY ziDFreC^vn=EOsG0U+)=Fo(!!?!>=eLzOFZv#7yYXTCz%I_8|=SbwtcwYRsFv_u>iG z$59~^HM<7Wcv3A%29DzbULl0+RpdEbDK{TRN=rCcO(?T~Md_V*+{nG9EGNZ3oyd+d z8}(DTa6BQnYtw!#L4`;nPN@^;*I4Fc*~~;v^+KSU$2Ll*TD3Vj+KPbT z<@H!XpfMrOsh(rxFqD7@D+IzFqNg6j5z+}IuP(j03VtJrfsk<^$~mW3g=P#RDHc5= zRWhi--!MW_Jz@|#Or6y{s)#>l>iV&s_H^JqJ1XU1HzNB`3SM^n%|ujWDoz08!y1O= zNig~QM>~KsMa0}xJ*T?2+K<}mdH09`^@f>E6hr@~+SoFA6puwGD=BA*5Hfw_)Atol z%AQm9?+!maT#Y6Zz$%jB^2-*5^wMZd6>!-~ISB62Zx@Kd^;Fc)8I^5;m?i9~H$S%+ zVU}=%tch#%0=`krzTb&QiTdXdpB|~=F>Zb6I-a!Lzs0?OIt(QVn#qgt=5&~Q$94wk z6noBnlg|23G1q<7^d%Rk9@(4UXH89=_O>9kzP`xLCL$v9?cV0%n`5vvgi3PmM3xEO zMwYp)k@XlI;^`D(tw=DnW!EZ1A;vusn&mr+pP%j1Ms`G$oI=&U3XuJcY%YB?#c z7XrdJNk7a5tWEJeIT-cw{FYzuY-BjiQ_n*!1u4tNFxQ_2Zl`c+hV(PNy7Gi%X6L%R$T~|CMw9 z9`cc|PmW=afoUMThj3~YFB-=CdL3yv1jmh-TryQPHkFfHK0@2I2VyqQXfAj}=@0w2 zO1ifl{u^8U5yA+f7hGmi$*x+p&5wH93WjesxmJJrHGucDY2GgqIG*(N<}p9B@6?2* zOytwdXO;XOPf|Sh^Io=~HT=4D1AX%%FV^k!NYv)}KBQ3>Cx!aI{F5fyR8}cls>LAJYRY-2?I}5O zr8g1T8WM6=AzLqd@Mcp)!l9Ml*Z9Bs#0nEx0f`fI2f4jdf~1xQ%H};Zq&4pqQ;T!z zMtST1STLv4`Eji6zDH3wA_FZubv1=in09=2K>G)gRIIPhfqXpI(ih>wq^8}4sc)Oc ziatd*>|YK$S6JqHx9i<#Te_TCj!;5^$E;pnKzYM3mVZjU(efk>J~0@o~v4t>W{rD%yXc=argO-vh`)Y^jx@IaEQ&IatBd?;b06 z`wSz80DNW6WA`j4?+={;|01u63`K2BdHR@Jynz?)>TA6ypZ>Hb7dEZ>t{WJ=O=Rn4 z{orNrjKNYvc0q~c-Lr@lBO4xPd{tJb?X3E2h#V90<}l;0ZSR41Bm`<~gK&vRkEm9N z@`-3H4PqmqFZ;;E8Bof%__GCm0KXx)Ja1T-7x>+Ccmg6}PbZBRsd<)k5VXKO1zUm( zBH^1?c0yqZYhQy4eXnGpgM$JU(;}V-4h%ElH@twt5-E$pga4x}2II4bENBc4%qvu( zLj1q4A$c_^#2o$~HL1Wi=8U2G`Zsf-kc|G#9HhyAGp7jA?%&Ko1QYysfeVT0SAm-x zPD*`oO;}U&&ccK;6xHb?&_nE}mdl{!_0tIi&F%HcIh8FKEB>R5z6F_QE9|s=_y|HF zO|R5lY0@@j(DtOpa_y%7m@XFV*QvxkjbVS&vjy)# zI~2zml`ql+x%G(*OqvZt5`N$ZY^E)+-!oW{;fk3tK!~t zSPcUe#>w&Z2`={n!+C9*BYpbJc<7~pbbe>?2c&X0-@|iEXzDg&bBE;)Dr4>(9)BQ~ zt|8!JHGbhz{4^aJm!tiC84Az0`m;$o?6YL_=TLemAyk{`LME z34it@Dedm)K5WgL>DSEXTjxrgl;5|f=zqCk6gSsp;j>Cuy#5x8kibWq^;bg>09W+g z(;?ItyRnhd1IA}<>&<9hT)N(M&b;+z-l)|YGe?V&`MKOeX?_`lTOQuF67`|szBBKE zXkzTiK-TzcwfUJUET$Hyk=-r<;G@1HyS*Hs?Cu;Pj(urvH%nECLxcG}K^)n;jU+ z_UcRKV>_vCD(zraZGdptU#XY*()aqyJC9)2Cgf#_PFv;0qS9GLNF22zOIo;Otc1h7 za{0@Hqj2QARmG0-1>IRcr}Izv+KPoXf2YD zQXP`r$I(keOPyOoMeKu5iqx~g1K>;~p1?Wz1lHYGIy zozA)T*KMQBi91F&w-bfix{~b%Si6uDbVFNNR}P!*cM8_=&h6SL{82qnp*mycIr(|- zSu6esO3m@W!FhsRLCHkIfuJ(%xjROgC$zS;$XpTyrdR;`WWLL_8z0!mr>t>4pzFhz zCyYQ62)0`_klT$?Hqz(PeZ&pN>V`M_HMZiT7Hz>U9ntH#8ND$I$zn>VK0)-FBfT*; z4h|X)?GW%|06h5VXlxXi|+}1Sbx$(dR`AOn05ewD*U?T zoWwU-_FAq@AaANtXcCNItSnkfO;UB;>j!Cms=L?tWPHWim@ILV=wb!?DOe00Y5_K zyxMkKgUcfjHN_qV;+J91fg=(g0frQAxLly-({bbDCWA`dkV)ZXu1v)$B&mg>gvI}v zH@-tB-++vN0XF{&tY`N&s1Ib#c=_q=XAuI~K4&X2neBH&l~)e*y}Cq^r?eN-sH0N!*B7*Yi(pY^IO z$RDD_)FaoqIokU4Q=*We#gP{^Yw}J)k#a@SeMo$%P0}zPyMj>%mFIMEwH8!4D(%N^ z8%U!rEr=?+GRha-k5Ez`AeBt}=}E^iS+f>O@FMjyR9sZY)B(rx?gBMATNB0!s8M95 znCFgF%&kHS$JGtQAZZNDoi9e_5^>TOq0Co}!0&nN;sFhP2rhhQvG3UHnctv@Z(KBY zG|UIpQ}6a|(eidFLLtXQ-D zwBcXkui~)Vq1L{;;D_T?c-~*DPjqUM?^074Yi~4F`mRO@EbOTNDYImHM^u@2m0wLEsFif2!zB&;BF%wh2s=HiE>9AhBtq&PXSud#U6jY^oji#=W& zjok@y?c*#y%(w_uX#*jX72!*X*us=IfevQVD-LGu!ilw@mGrzQV^U-q6qr&STwc}w zmB>zUriVmkAn)4sPSS_CDl~u`4@k-7Uv&ku0H%kDPh_^Z@f(d>f-PKdy!K3>*ZnK> z*RHD3_~T!8Y_#r+s6sHIfpMXd6}L!*y{f>C;8eYPRa-$l;3i42JrNX-_n!9T9qWvM zAus`g$3LsXYi7<%N$8siZbRo8N-2=G2|9D%7HKZCOrG$u_m!S3M0NLqq%E zm~GOD64Q*a`EP5k#D<)aD!Vj{G;Q4_xqsuL%S}PC14FmjxsO4bqEd?|wxN@j;~JGb z<|b6|Q!A|jjctydPwi|Td0M{RZ?VvHFRU?jiS-cO0!`Ln%|gIq?K%&Mxph41x+RB9 zY_&=*^N75d_q6kjbdQ|d{*$w0Z60UuX|kutMH7pE-bb3$`}v2;wuwJNP#^p|9ovdn`w4NMU&s#TfcG__@Z^w;Hg0)=QG9{j=v}%3XWWPCe?tmR&=FRVC6i&^( zpXuTZev|5fn9j0S<@rr=_?5;jXp_95JwPoQTA}FKF+UMmQwyFwZcO8zB<_Oh9!#&c z+iE7F6zTQ*+3Uv*NeLQ(SvU;8Uo*Jlo0Ab{Sj8+%^ z^^U#hg*hW+a7>5(c6u3@8yL|!H?m7tu!vE&_YlA{uBziR;v$bOSJHQYm!F`ywQ<|~ z32M=!WgUtDr@U+q7EV9OXg&BRNmB{|Lo)}><4cl!- zUR!9T;~AP>9tgI4gW^8G?HFBqIttMb5f{GR9W!G<-$$I^OdIGa6e~0fXzsegv;Rt) zJNDdn!tX!(8k0YCvx^4W4{~@W*(TU*+L-TH!SH6ZBV!-1SEO;D=JLBQ^M=DnXfl0A zaTFCBpkybr6>@FFX9o5U{j6OcD-f{4ONVyz)CCb8$ki*^{vJgWhP>8!h-D>O7#F?< zGDB7sc1CvEkaqU)kTjxCX-sM)X`ULYk5fUsKrF4=x9eIxadqovL_!r>OeksoAPLLh z4W?AQU$JWRv@Op7sKJ=4tWSdqQ7_f}w&YD8wWjYl(2?id4TpA|yHwuAIr{GE-5;PbO1YBi!cBLV=yZCeW zmyV~F@`qt~?$Wcj1es$my_IYc2Ywk*XsFS(Ix-U+SUe?bIB9|Nn$u$I(}$7dt&SyP zFZVAM_1LfxqHQjF)$H&>wn^YM9_7@|^g0cGk1qgkx@J8T4vsQNjDW9Gv((7lrpR|4PWVN&JDp{Uaa zYORD*@!tLXOA+=yHOwZ@5^t@<~#OsMMweA0s^L(bNdl| zegw&qf#Hxo@;97{y1XFv?mO`Fq1C)tTvj(HG8Mk%fgI8pN$2Je|L6JCU(3cl?*%(wNDW1@PW0;o_^Fu3@G+B@yIvg1 zB6RmFAOEI8fadRSLVtavwrH9+-R>)KixfAH6tv)_fZE(CKQvz$J#u*UrLY@R8~a!I zA`%gd6)E8`LdX7M#m|_r6o!+!`+J{*hbqAmfOTRbND4zIXp3=W!+z*j?jr)fD8VNt z#)C@qVsFFUU3F0{oXGxkWZorM=uYW6P&w_b^XvtMIc z5>A@uR2aM^KiW|INKtO{Ox{&S2w=Obeo>!YhpFOJn%mg+o;UxXf<$|SEvQ{~?xZbD zhAjH4A91y9y}YoUiZy>zP-fc=9`RjTuNN%u&HeE+OP4lxJnHj_np)s$F5XShQ2SlG zzaeWgz-)+)L8DX>n{<-1*r!Yng%`=?&VQrafM|2(vrs#17pfhRlJBd zV3TSCvpBgMkk)9A+s(5JAFL$wEPOxCepH{?EP~zXjPB9^KjP^F|h|m_%IZ}27bupg@Uo*=ngU zfHH z0EpR8(}U8_nhTX3n6pg&&8hz2uR9={OW)2W{g!@BBHpiAh-+ekQ_C~-v^+1s>yR@fY1QH21 z1zar0cN9$Zdnr@b_A_!=l_wP~;A{o+G0L}K~*sS>Of<77l z;+&P1i86UHsLlnBcsD+9HG*>{$DRy1)^^;_sLXBj`s@7?nZ(pq0gaw>wuYM92wMFP zpX|u`V}}C+SRF*K?t390MhGbC0-pI+Il%1>+#=FZHCeq&t#Fs)(Smo}x%2BqHxINb zRl5mgOX!a#=3@E7xd^?VoQ;$PFU=C#~aNyUlG|O z#)}RdEn*mg+j^s0bQ0II_v`3f)XB9utIvChL2KC*!E9f z7r^rF)gLlh#i#f{I8dDb{}tr%zjgoYzXxjmZ?|@zF`Bk2(>Re`y&Ep&@g3Ta-uLWx H`>X#2Q__M} literal 0 HcmV?d00001 diff --git a/GAN/2.png b/GAN/2.png new file mode 100644 index 0000000000000000000000000000000000000000..235df193df4956540225feba09b6b8f4ea93db6c GIT binary patch literal 43749 zcmZ6ybzIZY_dot3MZzM6NSSmAC^bTzC@KxoAxMaHcPIuR2uP3a21mCD3ZUq$o3&24DMf| zSVwF+@Vw;hgWaqf8b?_a_xm5%pV*QEp`e#kq>v>+nx(heu1Z_lKm1`5t4ynDDgTK^lQ~! ztnQHoXYjS3mJ<|Nmx6OjS43p^Zj(UrN8}^{dWYc;=gjZ?OwH^cs||TX5%QE{?4IK|5N4GzBe8Av){qfY)L#1wNKg1&H3L7JB=Zu+|9e|E7F z$SGUgY4fCj0%pO+>i0yJQ26#N-}Y>|hnb2I9e|+-5WJ+!=%*oleN|;y4UsFf_;F)=ku#sykhRjx!f4%rCBZhU3>!h31A?IqctPBHAZjkwH*dDkoI- ze3N+?$o%9JA`uJr$7QKTGrVV!m>d~=rk+-SqGEDGC0Wx$(7H+x)Y1$Nxr1I^U}C@S zeNMXQ8Fu}0PM7!l<*(zYoclw>0HuvIsMJN ziI^%<2ntbx$W2$W)~>^0zuwiXF?gdZj_gq zxmP@4I=dsm3PJa8Q9)$dTaMMLA0E5Cy0XJb858zrJ3Uk(H@vnW8!Y36RvMz*3`!*WKT7tWX2ZTa+d^j_(U(>{Hei7&R5 zP_)-C)h}Fk*VwqMDP1$NKQj6nZaWdK*YwEm=fnGBM^xzKiitmqPmdP1vADtK60zvw z`r^HW@IP0jQn6R>5F!;nkkqB3C`e3ns-DXbZc}8ZGd-hHIjXIAH&~tQ)F+|C3vvzN`p>LlH zZpFdTo3jT{-;9qS74-e0o5ul73)q;rwIM!6AkLr3sCf5Ak#4BLiYbWJ1P zo&?iZN<-RWLVe>UjgpYt-Ge8=6C2vI+od$ihH4f@o9SQ#r%lxJPy3rn_G023x@16q0$KuPZnAYs0raIHT;ix7p$hf+9E7%%b#5*wi&~ zX-n4@nfv>eYkK2GO#PO=!-Tc&#VItGOo`!GebMeglA&nyx|$j;?f{=A4h=HWdyB@#Wk1$y#;N!WerwM~m}OXE5irPX+Mc;~lvIm?uyxsk^+ zYB}%o9yuFNZ@Iy?@hlOJ^laZNrh|7UKF;m#EawMSB(2>SeLhQY2zr6m5X0ZBI%|87 zaZh@zg0sn1fLDO#7;}S2fk&oZQKXpLy3iyIS*{FFkfaSEK6in~toSkL=e=hNW!&9ytgsj|J0zIi>6dAH&G=&dqMXz7 z@;stC@gl|w)}<}9e6BC_P=E?L+QPXB8<*{Fz~?DyyQ$mjb}p4CpUdJF#(KTw!CiAV zN*gXKnPHwo|FClwOuUQp3A<(Rxw49KA*)T@d%}xQ)n0|Dr8^M$|3Pdsu2*kjF4OqLQHV0Jo$zNowW5&q)O}3iuQ; zd|~-ypU|rQ^^L*W(DtJhH*ua_X=6{(z`wk_+0>+1NmyB_7VJ`qNJ_B~Z}6N?fsVO{ zghR@6U5ZG`@RO3B607{=UnNd{Rm3@aQ#Z{9hePLQsi>!FOD~?colTwLNkq7^g}fEY zZ`C-ok6xD&>Nm@YUfk+tidpE#_t5xF?%bzoCQ~(IXCx0WVv;Fg{Gxmb*BSvk773{T zqoy{U*|yd&zY?ycsK#TkeEe3IGh*hXbO1k>MXgjiBa)T6ev-=-ZuvY!33gQ$@6dBM z|FTkCKenU2E|d)C8KZTr1`idAp@Fowptqa1^YWgPtpQ4h{YU*Wpumo?EK%Xff2ut&0-wOE+k7^BO)x(S|a`OpbniBqd*p z_78&k3Q5rtGOu2eEDdz{YL|T;!f(Z>M|=+hILD=5`<{}j8z++zy4dP8b!RL3my`%c zdS`{iI;yn)x`c|WV2021?t!+Z-b=WJTTaH$hUK7sZ`p3KIo!UUX5FVI8W_ckFDWtF zFVk0(E?|>_Adw2ob*BaMhM2eVwHuPV{QE*85EUl!?rotlKDg68#t!{k} zeDS?*+HsjF;`kiCV7}NJmE^iyIU-I8yUDMIgmV>*?F3qy9=HOA?Vd#XYf|I7< ztUUwo>90WqbwHTxb8!Bv2_zaOu|4PuZdauVp2G|h=Tm**=VxAQh}N0-goHjxSN$3y zs3b>l3*pn#q(&(ZBHZ3nqxb4^O+nDdhs9BhdtgMJEf5s>N-LKsA3XTvt~XjXyUnfb#++^ zHrqqoPf)O`{Fql*-}?6u^VOFwz?W9R%dxu?+uNXod488+_wn#YJsnu{>?A~aj&fc3q@MRsHU zl6zOJjVy9h=n>h!@KdP=8)fX(fsPehhZ^4q$oy|}K2Lko^c7dOCB5cX>aEhbc<&YS zv1(iahxWv)1h084%)QOeP>)52q;6mUy9c%Z*tOK~skV5~7Y-;5mauGQOo$t=-!;^f z`ujqHn5yGW1umA)EJVjwYQ zgUYO7@|UYJazHd@J0Vu0X~NsyX9rS_#{;C*xAJFSi_ohbh9A}P>@y=3FP(UrdR%6Y z8(q<6!W!vv>?V7>N8!V0e%)u!*r_?|Uu_T1$o+L~WGO*BneWm=>Go$=JXS&%FLrtc zrpk3EDoLWn;1)+kR@E(I)Xn-pgrb+*PUdRX(UlVJy9wjEN@@l+h8jFR?*0$qsU*~W zb>(k4A(uLbNa-g_5m6E6Rq=bZu71a^Gj~6RNbdCS^KkSd7QDHq`S177iRR`Jb)3#r z_Ipn740k6rU_4A7WQ=+B;X8j@v(m*}Cp8`h zqFrlIVX5l4cd4FcNQl{v@q z1f_IXS>7i+NK%DDXqfSuBxcd&Ry()!>Mi_C0_Phte)1po++tAqNfC1pcCY7m!kmQt zV};jh1e}-PLFWtO5TzN^+USh!h%Lam(NZ z2|+JZDLpNb0VOpQN9vLc)S(%vtJJ(YS~VlnyDz2Bvo$^qDVZpuQjh;qpV4?R7 z-TUX_mkb$)W|(iif1yJ>fQ=4WPG%-web|MUjq{k03RMz9OkD{`BxC~_zN)IZ#QxN2 zz?9-pG1?o!JL#dntzbo1>a_uU#?MGxnie8EuV!5@{lm|yjGw(J8NG@hr&7`NU2OfU zp$vAm2?^>o42-oB(Qmz|mc2do=|pKWXu;dlA0A}&;^ z9#O2%G&IN%lcD%o3HC)D=UIuH!ffyAd%U%U%~eM=*XM6~&$#atGgk3!7X7Gd2R=S8 zji_ld)P!@G6vFs^c07ndHyLB%^ka&fAlC67*$oAsIgO$L=vR z)>szR116N+M53%M4=*C30nWO?0)nScnN{lso9^z2>}TyeDToN^@Q6d!;1DG>g{6|| zo&EZIfrV9WSC~#t*hU`HPs^A=z){AU&#bK1Xbu*^B1kIM8WfE6DiRH^$K z?ly8~p3sXKvAcf-*)0lL{tyCwuy(f1HgL90vuKpdo~@`vaM*CYb&Wrw89`%c%<6e~ z1(EIFxO1cJkFDnYRQhDx7#Xgd4v}3TrJ>2Ys|Uj0pA|MMOyF`uf$B?yBdZq)BSJ>Q zLOd*VTjlK~rTJNTUv%@BhlqNq?`0K3LzGI-xXmUl92$**@ItWxBO#+Mwe+fy@%~yYGyqq1`lX2}S{x*N+>~H#&0+`5Fj;a2t zm(J;=Xt{V)2G|#Hm-Cm2H&WE;zxEE7bz%?nUYx^)gSW`&w?i04q}lNEa`TGs=(^!N zn{ZRHxUl97^~@DF$2NSM^!yR)K|CMCxc>quKU}T~CMHSo(bDl%^@^t+og=I!FRvnh zy*}wajYMjCUf)8-PgnF=*Sh^9#%iCLb$ObK%A2X2$U>L6FxcTDW%PD5A zAqgH6^(1KHdc;kbuZp5UpAgpLus-9bP4}$SN5MQH>B)z8-m~|HgeWCBv+M6pY0XO> z8ZO&lSM4pQMnpV&mXX1=aI`Z~*(E(M(dX`zz%HFb&anZ&e0qzQQn45R`|nk_zc+Cr z9VqN8t7+2Bs=u!@7lV%X!_X(HmE3Nvp#F9 zLBiBMU%O=FQaHZwjP3ls>Wr}D4i33N->X^AzvsPUI+2RPUIUma<_>#z*>K85Fb-ggXuwM_V?ZuF0)^ zySHfhX(naPlV!w!H0?lA@86-NWRi_kUIyR@=sj{Mt(%-AjSN(7Xhik*vs-#l!4f1; zp9Q#HlIF~QEoHTQ#`-XJxe|Wh4Yyi2@`AO!Y6`0{-Qi^28?Eiuf6|?uB=| zOa=wS12J3HtSWx+$jf}tz+skd=c?}VDnn33!YKvpGm5c4QlF0Oxa&v?rS+b2r)G#L zY0uZM!o5z^(A;O>f}qi-Aco-773Imz6NBa2scC|*;!nSN%=+n$BqE#7@ox$;<7YMV z|74{IQPMd5%z2;hVHsPI-9dHn%JUb*^2!lCTY+i|OQ{rWaj64;guZ*GXfM;mvFGsq zS@b6B3(=`WD`^OM19p~F{@`ZBJs#ez%?3a4_iGbz7Q-8D8QV3Odn7nMhWHo%ze>Vn z-C2rkVtE5tE|wAsWTS6CgUBXH8A@RwyY+@e=SbYy++FR2v6nN!hTxB0-25>0EQA}+ z-63ar%wL^<4>OB&q(kMop*LN6cJB0eB-+$N<_okyw+}XE?yKd;;kN2a5!u4tvnV_) zON*M*^j0^oOl(DcOY>TvWz#uS(4=~Mxw#u=w{u82pJ>lpQwMV_%XJoaF?_KDmlLK7x$JsZ*b>4XqG_G8t;u#s= z?4uFcsx_m7h$g-3YYJn_}~ z?!6LnFOJdQAI0~ylGCo+86HxN)5+;CACKK_)Ro{8I*`2|PqB58kqm9PoC;ZS?oa_; zGjj9x{^!n-8k$lEv|&*&)bsw}nMf7$bM+>j=%>)ec%Uznnlmz+>!~-b5_p^EB#mlPUg=jKvvDC zr8t0JWjHunL}~z5D1(WgMbZw0U)exT()TsU~B1Ll-q{b()v5= z?)W1^-2)qO4e?I3M^$ql=ZFbqH{*VN$l%++I~udhmuph_!3cN{*KURwyZbZq(&G33 zHsk)_c(VRi7S_sS~{3i(fSRHtAjnUyVs zHWZ)16p=*a(bQ-i~R=?3b8yoz6^WG1vb3F8JJb1 z%rA!TdPABaFV;P$r_lXHg+pee27iZ}soAHT_1z}P(kRT%{)d5-rFM5cxZc1K%jA(D zKP)0QzYG$g?Mdf)XR(R6C>Y(Gk&i6&bI#0XdfCD!1&O!zwrv;aF-g` zn}82)M{bA`cquA>W#9*-Fzy4mX5dF{i4voTKxRX8pPg8WDZ;HbLe4aH&EoOIQa8y3 z@__J89{C%BZTZr`qBS{Ta7Cy$G>GioM%m13-^?ofFqr$VzAZcxb2d*!!9Hh>JSe>^ zM=$i@SZB7gfKzeD=o}p5SaCK zFeR+ljIK78I5&BBQ({gulJROJeZIh6Tm(MagU)q)VRx#ET0WW#-OL^{ z+N*gPcereupra_7<}~(91>|fq;*+O|YT(-B*9B*}G5EH`Ux$7WGovZNW(oJ&e!Q4C zT1RisO5zNfTpHHX@_wNe=8Q!@PIk-uWMT~QYt8hVgUg9NX8f{B-LUHX+jeD4M^mX+ zJ&|!Y0Z%&B_#VjV`&X^II>d1dp6L1K0BV`qQvhzx)H_&MXub2-gQC$jZ2zJtPG-_| zkC2?7M@+1IqZR+s@e1Sha~P_#h;UDCCK=>GB#J3{sQxQ{>FvE=W}38nv=mtr*Zr{I zXwNB(-JieJd%nwR%g+m6V8mzaHp32AUwRhpUY4G?OVZb}D-Rf6)iuLmSAr81E+7xo=;}IB6(?-!`EK^nofL` zp0}>;N|zaS=eFeR&T|A4jof;DC1XsK;z);JG!CH?^C;yvnz1*)kRAN6K^wy zD)7Ga5M3BO;H*LMQ7aYZ!5*|C>9s=eQt}pjjpOo}8dH5;a~=`rNVG?3DlBB=?2Kno z>m;%GF!{XY+5Tl>;EoDv8vXjoMXd zIIc_&Vx6V7rWWDdtlLDa^JUD;lih~ubP0+4b*YzbS@pDttlTpE$f~<>>r_Oc>@kyt z&uZr_Shn;asF`p8o+cgcpLAWx73M^B+R#fL5n|a*&xxm zQSA-r7r$l4oC%T6t40Uwl4Ay%)aad*%7ZKZYXQ~Xv}@T5Lro(Z6?@zp2LzA1wbX0I z#EsSo(pk?4WDGAaf+BmUC`gA}$M4-`^*QRP#+T2gV!Wr$LgyB!0h`#BnAVqpBZ7Bd z{H`OoiGLvs24?)s!60(ICFKtbr#G%pvqZm}oV)Xi%bpQCqaVEEJFX$WAI7eTjPq%1 z{g+FAdCpB8(Ri~R)g1zMr^79Jn?F~BzB&a1r-Mx$qsd2J7FwJARp-2Y`^#mE`=BIT z=`@=>Z-+NvJtW`o3}fG`d%f=4(I1wH(@6RLt951Wx}0KqhPtL|9p8E){=&)L#i_ZzKY z)xOtyOo)nF`*CAz^LVYRm7O&aG z_m@rtubB0g!ox#2IMQoW2i+?yR1c?KGE96b+yZeM>nL1#TYDZAJoVU((i^_nxFdV4 zJ-ef)rTOYx`LDg*F&UpYu6-u}02&~4Nf0V#we7D=$nx%BZmTi(E`O$C-f>e+F`-qg zNHSV$eXoa`yZDuZ@vM%%p(ZtM87|eaLyD-~#o34Z_#?8tB3|mD6Ls?0HvQ_pcFI7O zop4~&mogBMBT7@vf>fAmJj`^avFh>tsxI%aU*GN2)510rA|6%VxMM5CJHb(&((g_u zoy(>V^2~n8W9u$ScwOU4LZf@G${7=T4DgY5e7E)URir~*5x4KZwzA=g)OC>PvU|lA zhAojGs&4FHCaV#+UDQpHiOTB#<&YK6q3wTBbk#LfOc39O)RN?0)n}=$In(~&z3#yF zyq(%-aHpM1)I9Z-5rW>AQkyx7U;1LtPD+vNy!$H`xVYt+AR6Khly`e{#9UHr= z!M-4wgRmtC3xqhIHc#2`^@H4{9cEIWxRCo+(;$;5gh8pu>rj|t^EGJ3tZCutC@_rj7~FqxxreNJ`;Rtd)a_! zq~MdL4zc}-$sQ?Ml&K$I+nj9Cf%EodeKobE{F@?2e>G+<2E^i=z&`Ki)e1->^hfAQ zMw}hA*45g)H-egJZV$1Y(85f$e}BD+j$RJmE%GICh-v^$_an9S@g zwyOV;D5dV$9h-XxLBvm-5K&XdcuC(hzkIiZT6QzGhDj8H_CY7Xi=W4WLBQv2!ZUiu z?&rkF>b7l5jy75-K=u-OKnh=-gL}oqQE&}g*q>c6YEb(?!CJr$>=?rd(aI+%R)Tm+ zw)(`I$L=I#=7!9zU3}y{Ac`g_a~O~seTgE{Tp;I)<3aZwrswIy+7=ygL7?T`c-jtE zU+6Dh-yNLm3%x#u^*_N`5jDQ1iSh0j{vVfiGL0u(T=LGZw!fapHTAhAiwY=zHRM7Z~MdG;ayts30wM` zBHt=cdEW<@L$)o=Vi>0@#LX+%`1-_sFjK@AlgW9JOg!BYSGVr zd`xi*Y{$z3S=^fCWft#cAc*qW1?W)-U-Vb$@7dJ+NrG@DSjc1iby@q(598TYU=-jp z7zOY@VEYuSWwG+0J@#}w;eD3XKr8mnSsI6Cts|cq$7)497YP)QaS7t-qD7j~2=y;# z|BQDfqQ{BM1u`9mhAMYs@Ic=J2` z+wdtHscrLx!5_;vAZV9M0h&%L8~ka;)}El5zQC8z#lRj@|Ags4d9tw0@!9va@tdWQ z4cfokJDkG_m7gLu{{u*{%I}_Oj~RfGY9QD?G)sa2iW;nLPYN{`_fj)R)o1;O z_os4>?W(ps4Mdh~51PAg)4Tz5A144ezj%2DUr)Rv)tI^b6tB6#-Cgm(l!wPD*l>Jx zWgblaY+WRWShm3ZE-)q-Jz@Cruz${RZ4Z&fhXZ3ZiC3v0 zi7?BNNP()(K8IrF$*}~>5%zIEZ^Oa^9};L<42-c5Zl?EJ)omrKN$ijB%i$Q}{HpBQ zz+8#4ObUz~!bAl;%nVf(lhWi@3VDVCqbj7Ladz#DfG&{(=*lTR4>P+4y)ny~o`2o# zXc%I(XK5gai)Dz06yka&liBZq7tfV&@tt;$OP~I-Rj)Ej3&_l4|09Ds(4ru22S!2t zq{}<3{R#xJu>K=Hk;?49uPm~dK8^2jV%j~XL#5xE1%oVfpVlZy0-|pq`xgassVW5b zyy7Hjd{5rFCf%An56EE~fZP$?YvrP0qTOH9idS}KIy|Ne&dnzP4T(n(0Qn((uay{9 zmu%@Mek+1{`9?J#e=ia&&T}jhqJqR?%{PZ+l|tY!@dlMhwm(sGHBLqll$Nv6#0m91 z3fjZ>S74FXuoWFUPpF^Zk*(^t&0ftMLXbS2nS%n9wmrW&blsXmvOQV%{@PKzhK>?{ zGN?jHI4y(b`>#Zu<3tgn8)oF*nA{FH^$rFG=8!~InaH76&-lT>&lQWaH`g@M%81iQ zfVOrKP^weaSHJuz#VJIhke&nUiorO4taLsDL5v+^VBSdJ>`O7dKMeLM7#9Nql5NrN zJI2urcM*b=!YaX8Gov3LXIcnZ$~KJ*KF5gM!plEHs(^Mpgh@t3Rn~Dw%Y?@j5j4}vDjb>s z_F8H{{g69G;+VJ79DXlW=G@)2PD@=JLu?e*X|4fSnUswRuz`g2p_ZywFHf6G0Tt>9 z^D7*i$ zH8<Apz3}v&sVxzx4?u~YWY`AXx&|Xw=m#q7f%{LB}<&EvVq?_X7E}leU895 z#bGkT!^}8jYnRjXhG)-5?6es<)DqBv2BTsAm+tv}Gry^P@^Qd7u=Qu74k&USl$Qh5 zrm1e;P(JxE^i|$;Nudb%rL7tr;9gRwHfe5@&Q{#D8!~0fE*dUwr-lM1!#{%Qsg}nk zVtVro4=1A#1?_)L4i|uedNPpAq)=b?2Iwu&ijjmpL?MHIq6Z%oQMYgK<(3g|#R7L~ z$IlPk((<8VrnU0bdC|Sg<-CkoEVA`yeLPrO=y#P)*5j?-8%6kur+Fy4T2`v52#67Rz(dD|_yD>^*eQK^Trsn| z?E7%~Y&&i+SSR_gp~nf+ZMQxA00co+N4wg9%V2rL!vR&XAETIK^&*U$pP(})Lf0H@ zVfOlTi@(1VGaqw5GPgDJzo~60r!s&fR3tsS!zctndeSAQ^1Cc%_Dje}#c1W}e9*E1 z6#)}d>s!E(RX9C8-C(KjL~mZQP~MSGxmel~K^-_{5eKmGW1|Q}Q)!|cpV*zL>G>RA zt7-sJ61z}9KIlN5$Hx))(Ge(+-2C`7Jgzew)ZW0 z$Jzra0&JR{8w>DE9EIR`ic-tX?5;m}`NuzK*kg}wFogR#5B4X9087nvB^P|*j1<1# z$~I~5TXkSoSw)xi8FqhiXxhb06O@QO72zz!PSj^3X2s&GKFg5qsi&3Ai#!6}nIjb} z4V7N%w@T2E_h8CZs0wXJu#sbb4;m*Mj`^HWMa3KTPfU`*Z$7QepP7)|v?#l2cl!D| zIg?` zbh4-$d=57QpG$aOoc^|I_-j1p)~S`-03Daj8jTAO#%ser&UvPpiHo8VuRf9%uc}4^ zxBCxtUsx=`^X?K_Csg^JR7k_cF0UbEyX&Kh>% z(RRs#Pcd=x7lZd`(qeW>{X^=5M7`18?CdirTGXjGT9Eni4_g6&;V=r4=|!5gtTbYx z^Ng>6wo8St5H&+=ih#^{NVugugA-!)?Qg8wriI(jp^%lWe)mmXuK_)fv2X$9s=>z2 zOTtFa&puEY-G7NmGca<_%0-UV{s{k~Z&0W-dS`kLK69RdPH!I*A`)kUSRsE(lWH&+tk?Ic(GiU4oySW6(v)>b_YzO)9-)1c6>b z#nh9A$zM<7U7!!FgMukvC8U%F;Bs*(UiCuS4$Kc`YSHV@x*>&HbQPpz>9)q)Yo8j7 zG7Xpt{fD&?0&~yx=b#sV!z(#qn*yrvW4%GucRC95fdvvw+(8aNgWc49Y?Qt6^`* zNhqDupLYkT6qH&|(W-edbQCa`gr-%oDko8>3D0YpLCw(6|wDI2>_r)*p!pLs6uF_mn2e-5gC@bKTXlip6)W{PQTZjU%_TxbYCJzjBn zGG_oyJTQ@F`2W)MCflv z{??lk4QZyv^Eb|UM$C;{3-xun+b5v7{buv8r~WZf<2gL=eMPz09+;}}PrMv@a%Li8 z!thY%A-IAqNY;PSOyd0LS+RXK0|st>c=eIUcteKzZi0tm?^a;yf6kP0x`<+8x5dt~ zF*RFrdLyaw4k_23AV$4DYbBbYkxSs177?O^(j>8M!dd?3s{eqi_E&JfTOs~dJv5S| zE@0(|^iN;L+Wbq*YG||Rtv^}W=u~}8YB?A-{P5|H=&9Cm9gaZj&GApL+JCqBvsY3J zk!V{z?-^?NiJh{uo9Q^?iyQ%&?F>YAR`Zbr@k8-HaEKr|q5SrOIQTI#PBLP|hh0w| zCeh{YqFz=eW;5alzf zy(Xi|#dsQ6OeBt!I|N3YjJ83AC3ipj{?r)aNqF^ZHESfV z)71Os=l|4eM^B!HMPvt|*!3JusSoi72l0dnTSTf>RUU(%WhC$CXN=$>U_K3zlPr3w zE!D2Tvg8-scTZ!Z;~un5U0y}*n(wpX>MX#y!oLV`Ha_JnS%maoY;*V21<9a8$6TSF zW@47xlmQPf36#u|dzQ2houM8$LZ^a(yZn{*Wn-uB-Zv`6y1b47!&dJ08B-_fKsqV$ zhd?@eMD{PlsH_l1+GVpIeqOryrEhaIy0e2zw&VwRItK^r16ttAqjIv~%PNTMvR&K3 z*YBz|j2%cT{m_>Am*MZ5aM7T2Q;x_Eg@frYV4aT4!0g7px+XO&Nf*T|tL&M6R&3i) z#ZBp;hljtBOU^xGP7=(18=2+*Q>ei$s+Mi+OOK)(j{P&CJw+olskwD6irzgXA^lL=+$?KQ+m7 z_*~Yyw5Nm5^*%5X>&|=dsOtPY4?(}+OyCrAurH;Ou;{z9CkRMxW`A)sx7KjoR!)n1*_aSDrFo;?2 zukAHDBi&H?D1diP0IYR#l<2LMI2^CLz{mO9-QeBv%yR`6AYyqeC&X66 z-OyRf{WRp6Mmgy@;?)6F36Kyz#VbP4k1!NDiPc{F^bOn#VNcdorJ{iA2T_Lq3GOM- zIzdpy?llM2LFukKDuWMD)~?$DAif;IChr&%kuN6)}KX*ADkGHAI&6?|vkY+@NZ?Eci=X5@sDS zOJ0$O)x!~WY#Yi zM=@fvS@ThcL}2Cn|KfRC3m>rWN5KvYNs4Uq-0V~8T6e6ZukP&QA}By1>=QYO#5csS z7{7&$ja}M#-_Z1%o#&&%V` zpz-s|<)Zj`_i2=yJa|^ZpJg}xn?|1I?BpbQGqX##ix{ISIUBO4A8BV z^yEeI>CVs`Yi<^{I+OjcF?WQgWjCcPnQ|)^K)@633RE}yg2(>KioL!S+5V3c8TP~E z>IJ0YTM}TNox#=~kzbabD$2iKluws+X0oueV2quV;iUzMeb{v>`F5HtnDiBrFMsb6 z*kO~luY^I|o<=`+MFHY9V1|$OQ>Ce&B_sq6D@(FbF97 zV9-_BlxNA^9)#sqe{{e~QWzYCTq&Dc(IHo@jWGPf5c|)JRoJltDKYIBG0Q8jX?~Eh zP7O`|H=MWn%?#Fsg(4qgwuicwv!9fc=4E3I7i27ur>SC^_#9}koHG~?bFOMs7W7$o zL7{3hRexF{t9r)<^@Ws&azbYWUmH0KzA9-yn-+O|*Pg9@s!vg+jRumy*B~wgz+qxG zG##YKN{*%;&%@zcXQ7roG=C73C1|eA6hdKz@R#ZJq#dyUpL?SDf}jU5VbA*W#qDRO zvyL|ZTbyX=Lh}YeZ)xHXfm_o2v@{O;$DRfz$@S)RIeZ{kSC&$~NX}V%p=-o;(NN*+ zbkPy9rp3$sv0T#yA!yp%j6osbn{l4O!t!mR^;MmKLE=b+WN>zyI(RqHVb4Hp;_G<3 zcf@e9o3son#@DZb(!(l9u&sOyu2BgOhekED8~gJgQumF@`kXplPJqWuvr8ZbHwv2< z*neesE?|4-&yXa32DIQHD>oUis*@(t67L8RGvrcnMWL2E%1~Nu`3KIHX+e4R;_oDV zg?_$FgDu^E$EIG_0oNpZ?jkw!uVAzx27!*2AaVKXj~(-vxm%QZ_Y_K1B4DM7poE>1 z;2op3vuOiIK9iKR&FSl6r_|Vu_ovx|7?WgZtzA(yNnhx(-=%$GQR~m@2{`zrYX^G} z)Y#k-|A&8e-!7Rhz-a5B>s+c3$avkrY-acscPdiie(Q@wlt&?&6WUKA8wAQRr^KJ; zh%x9ZU~yyoBlf`E^s)vMzk85e`{Vo24 zxdW5U>23gsp)_w1f%O=6OUNYdZce(xml)}&)&b3i(*&GaApm2{Z1ATja-$@Tyd~vO znY#>Fx5!52raWM!=Zh$(y&1cYa)Xg|CL-% zE=yC9y4bZeyTL98P!f9nS94Veu%jb#I8p8amz(y^$2l2=vU(w)4GFJ{yy29$q}+9v zd~?7BXdMlr*b!6WU72t=lMuwb=%H{Sjh+mIL<&ct5+r@{#|gH+f9BJw&B@MgkOq*1 zGm?WJJEo=LWP;Wg1Vtdah4iICOJGDsB3(c!Lb%K^h*Q4s%q9w{cwTm#jdGfN&+7kk zip;~zVEan4-3ICJlxq<3w$RPs>}Ozg?Zw;lfO{vHQ3B+h^KaZBz1Y-_E-60%GLTIN zkc80z#*!x3I(lSLsThn8!o(Mz!tBQLi4Tkr(dQ{ARbO48*CdW{%*Zw&}`S;FEoGo2vM(2=$ZkrP0F*+oDZ+vzV zHFWl42~gViJ);Y0u4Kyqb$yu))tD}CIVTRtMGW-HkS-3%cgu`I=plHIe}v?o$~p1? z!37V6fM~ir0FQxFc%VJk|LX?R?(Z31n7%=_G=@|l0xKdM;8Vj7EcFFGXz`I9jNHlx z@=X@?@MGkHC}Uy%PEK=rMNk@6^<@8}J{|jDih*nt64>#cwd7UKfk0c9Xy-3d_N zPXj?J)dR@$5@pMKN;L2-2|6V5=?zO3AdDA}pdtMwCCqMbdz-SoYah&Bkp}qBV;?IY zyJ%2Cqw(JBhC7gY^bU52J`v;iFLXCZ3bZ!Kk`XX8L9q@*PcDJy*4aDmn<6_Av0L#L@UxQLd^ zgi6j9HL^)W{5yZEvV+8;i{N5ad9Z@co3BqJtLdk;dKc0*<=vT>XyIa=&#Dwt0Ag8V z>`!}>Si4!MqD{$=>=%R1%vEuv!wP;Y{S*@UrB$8ES)W z=s1v9R4z<)BM)t2g(0Mr91ZCgmcH=s0pd1Eb9_J#4>#AvxX!Ox(5L{cDt}I*AW@>T zFm|T=O5+HK&Kv*riG2=6Oys-WZsbx^bt8H!hmtI|ZpSJkHrz*cCr3PHaKu$ zXuH`Tb*M7pe*c89wt=-bCP>qo42_*MiCa+wC`o!ZRDQ4{Hmo_VUAy6jJ@bDg2gX32~c@hapndpN3Y@tSikmQpCiN$tO9>qZ0nk5^)Ra z>=`4dKJem;GF}6i!bf?^{TN#_b&I}64}k|vbd^sWA2DEJ`^?0{zfymtPGVL(x<12n z|0vj*vZaNvt#!NJJ?V;n!ThiHWE9zGmJUdIrlao@fdV=~Tv)`X5f7?60_U6R)4>>q zCK_)Su_MkCbhBL;cQGJve%buihHs2++d+{t`?Hf`Axr<0jUlNJH*X4)b@IR_+NW`* z3t0PssQQ$F;tV^ z0++s)NF!fzytncAyw5i1xNgM?`F4#E%te-SoQVe?(d1X{xy&N73A8PJRHTNiUvA-V zPB4yC7UQETZ{BmXo*gIa>u>Ni9AbIT);SjP1fmV$?5hl1%E(W6+_jummb|XvLB1lm zEFb+x>hSf~C%rZr5!1owS-VOSNa_npC<&SHg`uD|@onLBo&2P-(*f@?RlW5qx{h@n zq<9>(2vVsJTJ=PcJOCP7{xZr9aMye8rW0A0^VJnkF{v zh>YFLrOaplNS5|V@*pQ1JrJGHoGvUbH-M|5o{M<)4E1TP;ykqf=zFL^1!Nd z$}lZUE<~uliuAfgHv>^5OgbIW~b_+)6Y6#0r%7W%`BXva8iKYPZrWxxBWdMjS z^m6}7(WX;X{+%^5MXy@HR{h*ooyq!aO&39UPKfSM5K3+-lUh%1wu_|5^4ej2@oLkUf$(;f8Y1M|7NqZb7sz*vwLQqXXXa< z-_?&7cmJ@}SbTg#B)aX<(#BzH7h%xC9g^uMJgIsHC0P{|df^=>&!%Lu7O-k1*RuMU z#cqha-!MNh6K=fTT{Q|FX}V9Mn0SN8k>S%&KWYKD+b&9*I#5M?2pl%p84-wnO%&{; zOsx{Jy%wAJtv0*AT!^+uQ5;2(6-N>*PTAT@``QiTVX_e0;Oj^k#N<9=HD%EK?g0MY z+?6SOZZTj`lq?HR66{XhM8|o}I5gvdsq0Wtd>xr0m6VO%4%hJEFldOYI)+bnT45!L za9A#+y^+lD|DlE;Yric8bx`7k$Zoz_zc3A4%X^O!x4aPqyx|!tNbWNrQ4FSuQ44Qo z2@1bDt2+L;Ek3+*=2S}6wOziH>*DT8oJBzrJVC84Aenw|z@X1|AGt`T_*qtjw~?nl zRdH&YU-p&EtYpgPdjyW$*VBAlPTqC&8(y&?AS08UE}Nao>h+8wV`2Q%-L`d}P|uMa zO!L(Ahuvgmyx(|8GWGp{K36%1xo}LAB*s-XV^@;FIDpZ4x2Gp+avI~K>yhs|nPn+G zd?t3|9Hre$^|DQ(_btsQ-8-p&3jYlJ<8V0}wmrkgjBn2j9<#6G?~7C1D(3 zgg~_=y9=N4wSrA}JZlzRYaFx1%&L;X8;9#*;fZDF?`lS5yaJzf?-by9#LM^}hvmF{ z^Z596I%27f4dHD(rr8D2U_t6XdF<5T`Vi}tTQ>ILr+sRw;?UBD!3c}Vuc3wxIdz5z zRq%aq_c==ANJb*=!k~2O&q-n(UDDIoCElgsqqKl1xa5HF(qy;`^Q!TsYz-zzbwmG_ zsc-vCgVF)gl06$&eu6WNMae;Es(DFB4JiG}%x-R9G_zRiMBck!=#C8u{ zvL%vvA6suBOWVV-$}m?`!xHtZ8Dr^h(^qMtLfUjmvufzZ>`c{$UK|(6?F2jXvGMRJ zjRcR?hK%-+zhWc3Rv6uzZK0f`1QoL$t2uj%Kqr0O$Bp!_?XLi|AQ9}@*g&!(PW0)6K|Y@wp{cqa_13Hxmm0=A5fk9a^I0qJvI3rC zv)Vkh55Y&Ey-7v;=rZ$>rSg1aGr22JY#|1ui!!mSHu=$*KO}h186Cn$X*lE-#OdJd z^a-VW;IxkUx+`_^_ul(uX`~|^NeES%Z9{Y*cCVw}wG~wsud^tYQ8GyLWg;)q{ap4A z+8c7iGSqVoo4-(Nn(H^6!Wf?|bRKOXv!R%pguJT6-QkGp+bp4*$ieu?x<{#dF~3`% z>pkK+q2{t&1(2j|H_=5uHoRJc$_q*MslWFuXgvbUXecP23rdQtJA_6*rn(UGG4+#} z^!>zYd&;|0s3-d3y!4m>sr59|3aCjxX)H*fnl{A=4yQE~)|760Vzr>f(!&l$T1B5b z%$gJW4qIzkI=dH+dJh@Hp{o@J6|~d8G-fuf4@bm>n%{mu<%jrc{RA>EXIw1&TrJAg zESb;B1EVf3puJ$3{=U?d7-2ygllNz{j`!F&Zu;BGLf4u&94%3r~a*91#=wapnRfOu#dk@RVsnum%vu7$N5ft)n-sPZf3^YXJ z)cVT@D3kMu=w=^pr0Tl}r_Fichkq)>)g@v!r8me1aMJkFj|@ZZWDDDK^D~cwAQ4{s zj1mSq6#|pA$G6Hr^%_?Og%O zA#Gg|{;W4dy<&iB*jU7j$wgdNnV%VXVjf_9ecAk-*{JspcUNvFC8iO%Zz$*KWUp{x zu!6Z1_{4i2ijVA)f zK40kLpWfzlr*F=W=BRBr1sw&T{;{krSV1d9C;w?R3N4*Sl;>`T!2ouO$C4)q%eM-o zWGXFh{i^b?SvFeuldjNAZ}S8&(&EjMaAs2^fanICFqmso_EE1)_d6et+()GaUs0D# zq%1?l;(0r6;*E}K*|nO_tX7j$vX@Tb$_SHW3-wRC`5*9d!cCI8TD)Q+&gs=ZH%^jB z^?oV$YK+w0>-6=q>oI}tbSuZs^>zxDht7On*NNC{K!)veYmZ;+ z1~hh0-`Nogp^1L98Hs-yyC|{-1Bo>wo&mwVlJll!1>Af(cOGnfscB&l*4dpl%+kB2+~SdudLxo#K2KcYpFq zreD0r-skJ2G5jI2Z!?txn6^0UyZ)YGt-x^@;lysXk|KjkfHLl%Ip*U4#Jiv!hDD&< z)bhA~{8-^Fb75{FO$$Q*IkfSGT!>UzBLI8@Z6%2f8!OWbCP!LLnCLL+zGXg7I$$$- zO%vgJlwR>9R9lr+B!he@;>XGo+_k#9#Wj{n;zD+8Gmf(j6DU+?wuQwo4kiMmApq%1 zbB=zt%7O+n`lVe_5N=$OJ>zqgl$+kFB#yTl^J7*ftGXm%0aG5yCXmZGD-8{auq;ud{p+XyG6t!# zNlCCxj38QQO)iTTj!d6Ja2U;K#&e{T?>5Lp?EJc`onzWzRAwq$G7baFDIlFj>W{$a zAI-i`j{j`$!QW;;+6K@t6fGk2mky7s`z2*`yZEG?q^F)gQv4bb>XeJl7RH_g5WAxwjoN;5B&yAs6R5-_HqrR02j8m-7|x}rwvGZ zL`lQ?rrMV2(c>`W5DPntwhnpbDmPv@A}V;pF=yk&fz@yPE)wPt}Y21)CP| z3}ma|8xQ-eLXW}qMcw!*pQ0ps|JieBktT+)>jgw zZ3Xd2m#12v11QyDq-?b*pOJkCwGr4nQ{Y44TC(< zs|*jai(}Fmy2n(b@BsrUv(&stR<<3q>!~x={eI20pt)lfc(!i5lJ>~H!t87HY)_!?mRS+?DPvHHss-#rS&lH^gm}y@?^-JDb-A^Kylu!-9xpqA{xO@ zZ6T#BDC=!Yd4sTouR>^TiFYYU`yy1NN12Z;?M#2!o93OIOH259^9%1DCgqGasiOFr zNS&k;xHrTG?2;`?kd>1@$1rD3?LDcLY)bN31v1jBUa#A=Iu05~814$ccY7k*mhpkm<*I zMn?1U(VA+kwkwJ_^Z5V|g+9q_1aPaC@kz>#e`tt@3i8p<;HcEQ{1E{t_nNgWhdf*k zDR#Uet8Nb6iE9lzbJu4-aBT$VM~0&0%kbJ^NCjZ!@T;t+gs# zaUEjL|E5Mw9H2Le@eNqa86CJ?{mr>}P^Z`>szR;pT7+ti?|hsuOyunJpJq5WWbY>x zSWdfd_0id(GP z#|rny0(>RpF-?e9vKFSkT1EY8Nhy)4U@_Y5WvbdtgFWv81JwvsN{@MWeRJ~j^tb8f zvP08uND;~-ao>rpWA*d7XTgN;1fXp!47U{W$&K4MVnV-vUQnA-dhIh8>LTGuTlx%o zEH4@+lR~TOVSZ}t@pD{L%l2;V<;xCqpIr3gAc3k+xQ8bwe_DaJ(HD)W>XzESbD<^3 zR_)q9A@(AX=_Pmn1eJ_iT0n`k)3hlzGNg-b59^8P2TOELA3vnX2u z^O(+`P#Anb8CE%K zfCmASa1ytoe?cwsI-vjH_Z4B(Gnvbt>i7w%>RIxNeZZKj*@ICVam zRYg62b%Gubs=K?v;MvCZge6dh0#K}_<}LaC{;IjGvaaeHk@KdRU~j3b^7zwckE7jz zwu`2|6}UnzUitOmpiTu9B^;xDJm1pgfP{1y2PSVb9RfwN4G|G0$RgvwXc)Y_pQeVIStSAat>QSzXK8P( z9WnQh<4!?GstRUHzQTVKMjOwrQbpThpqefNf`H}F8vd_!fmcGoetT0bTYa7DT(r^7 zwCEPfmoDge5aZl-BrGqYgLU;qa7j)*ZFHjLaP?2@M&$e-cP8+i*we7xJiUARj&*pY zZs*w8#tYtNxNZlAMFqPgHv99K-{4+rWqv=0o=Vz4Lzd|0h(NsZX2=AvqM72K?DL@cX!y(d zn)L*_)4aV*;$gh0z-*iz91HIFqajLrDUVm*xeeRetgN3ty;ySHcdq^}4cUw+HIZ^W z#r6V^ZM+cVKsrA$y)5Hw3^2GaKBl9!UbTcrXYwKOygXlW0dm-#t|5T0qG)mSK|GFL z*Xi}R*5J$Tm6k=Sq2~aN1r8m3VPDptX`?sF<-;66+ZwamloH{z>clE z8Jc##ABr@7Ozg$Bvc8>056Y2rWLW%-&#`9dLHD(yy&~jt{QGI$iQR9W2aTGp+h<^3#n|mxX zeTSvSwVgA6;>G~CkGr?%*9Gs%qc8b*^4yL<9?`G@9=_jaj5r>?7G`ZtyPQHAxW3Ps zZwnSH*a^mP#N(Xpqj%>DJHE&RFTXNjpPQ94WrSILKYhy?;bk@A-#Qv;mW-T8BitXB20%+_31xO zKPo>`8*&Y(ZGFliC4+a}mvFW7M44jK+N%Gwe-rr-kYmh-Ztt6kE!hSHXW%eY^ny%2 zF%4OJX|Xs==P0bz)i^U!_0-w{C>Qe(J2{N*xhd7QJ3h|vq~;4Z+Dw^~jK48;Dlv@X zn$JZ!d0HEU>IUY)!-}~k1)&l4o&0``F(dt2gzBXr&1?Z{V5;brJmvvu9&uRS98o$Z znkHU8g2tHoY}1h?bP!lXM{uU}EM576*Haj5d_0;^@@>7CwR(%+Ywis;Gr71Tzq<&M z0ChPhzdg&U2-Rf&Z4*(u>(Zo~tSjF<8*1eQc$B$U6 z3x{_!7Y|3n@(|-Gl#VPmPQ{d4IpQa#Drfij`P5Wt;^}fDppvxAHm0Yn$du{|ilz0> zZ)@e918cW$H{9KCi%>nqxW)0I{60QyZ|FH}h+x%f7TWe*?Ho1Qb9NNu^G}c~cM07n zTA`{7shHByvITJ7dxso(Vr;*Zz2}ngl{t5a6C|ikW5}V#t~-%Yx-(wEB}qvat>zV5 z(3?dvMYfSz7wWvJ<0-ck1R@dscM)AG+J$Y!rN3!t6IwB7XJD?;ws}EQ*ICQb68zHD zk{LcKjcrzb^)w-E;i6v?)Y35&mmN;?%D!CHga>@DJ`H3&ZC+Q@0hW(rUyM#$n-J0r z1bo7#xI4wyT_H5L~numyc3lnjMPvOP@3O zjwNsN)pt7&=Lc+!+JL_DUQ)hvB0n38#gV=q#kOVVj6R$l@|VkRr=yLhBMmr^uK66( zM0UsxFxZ%AuR@m(GoyWEXBMNRPM^Uyl~EaB#{}>1xETMljqJ4^f)TPC2CWp!Cv&-4 zWrl|WO-B`?tkPd`Xn<3>So6-wzU>-51=uk^++%fy(M;wr`x?xHoS#LZn7nDuXq59# zL(u7nl$iUCQ{VzKeI1L*(3Bz*w2yoCcDg%j#XV*MxjZ_GQqeNG6k#o^EU9R(4~_EH z*o4CQ;S`zfh0Q6!9y8Cui|g9~wszp;e73+>CdT})E;gl|O@ha1j>5S%JH?E3`1Ynp zNKH#33VWyI6cRB+5Z{q}%V@8T2T_c9I!^_cX%%X&`G92S1Ge@_-7y+=L$3q-r(%%%y-5{d9CI-Rr8qDN# z?06BM`2Z$zCjdE^H!rs4D8(7GTAWDI4Rl3 z|6#>o4{kbJ^RuufdXu~&S0<^fDY6CIpkbhs0mA)y_Yk5!h1Ajtwufi$3e=M0CHNEcRnGxW+p9z%T@!_8bcNe1w?x-KuVLRDtBZ5&zcB9@Zb@SH+w7)zZ%RSK zA*WBcoddyH_%(<7)dHFKo8JAL*>+?yDaCu~`#aeyDQgw!XswpNpDA6#^%}PcdZ%qa zAt^IVrBvormr)$@%`p4ZXoTIx&SJH-iY7uv?L~W=XLm)ABkG<)j*kSx5W`D~)i;&% z>Yr#Y{^GFNc9H}r%r7Sii%7BOkHp$raCU+0ps_8f^M0uUdPi9&&h7#4$T1yWCug_P^_8+Z3HJFwK_`M&Y;ImIi6W9MG7HK( z8p$fAZ@^}ozf6)7-Df|4W|i`l|K*FXt2yW0?S0GhPd5S<_)*3L)G{!)r6?lECr1-C zB3rw%_spgmkNu>(=WlROBt#C@QFta3P&HqWrslhQ5KG@@#wqj^W89V+yzLXs$fI=$ z1%y`QsC=UbUj6x+R%=q{Jbd9QQNSlDm)A>^ghr*?0+K93(&r5W`=E=~LEi+N^Rst* z1^w_L;E*SVa7_(Pu&9i z*c@L)`Ym#|)zw}EmdWKgxKfbGd&70DIv;uKh_8BLIC*h*v>uvRgh2MIfR`K$JxujY zW(Wo2xiO19%b(=E{XQao+S;jl*}I2IpyTsA$wv#%t(vfOdo6B$iHXyj}WEcCYa)!cCz-tSn{2v zHJzCC4;`b@J{}vz`A9!Ux7hVNupKG8t;)0|YUfX86Xo3Xt772?N$JO(rC?&UB?t0! zWU4!MBf=l4EIPKk+G`vLUcNY7Cc%qE)_YW7J{our)dTd7l9s+l2(>OUvrDd7cHbcz zl>y-8Yv=X$l&EJY@NFzv(p>g=;{lK}wMAiWr<-6`y814qXO+@2%)cJbj9Ui03#yfM z=Z_=A7kGI-mcMCY>PI7W4+8ylj(1!M6=Dj=#M#7d43L>#Ud-aiH?7I-^{-)eGp%U5 zLMG~Um9l~f*8u7@Cl~1<#*~ki8WGm2Q1q5#5JK_X1 zoY!?2yWZ|qhw~rZUHcbM34V=pAmUBhqrK`?&n`^0IZY^Rmn95nFmXDSO(Z+=#fPlFnV+D%F zi+4ErrISbzmI2A736pX&2a^n8@jl_^-u-rk6SAuy^h_5~G>Op0lNC5G?t!&d1u4Y? zITRM~g6iJFgwc~NSyzYhr_-Ig5&4a8crg_&1n)*|X6oGj%@5~2A7m#A2!+FFdXag>#mrn3su?jiK8hz{7 z&v==dOmoL()*#p#SR*=s=WzV%u^{w~G0lsmU= ztmF4(&LPi}!tMNIR^&&nrGXCPfHF?61^-C&xg$^CVSVfFuv3U)JmFfNqr+)l`=%mN zj7pwsp6iy<9JF}TQtLH!n6S+U8dD*( zy;HvK2Z@q>Ghzql(Aq%OMFXYmpLZ)L_C~i{Uq4khQ;`S^cpA|72ui2*DpD0>79}^x zCn%Ocfn636N_bb+Q;qT?AwM7uQS4S)bEb~T_po<4iFcO=!CF;Bf4!HWI>(NOhP_{Y zB`UHiHvRGs*V!eau-(I8OY913<15g~zFr)R(DwzldbQ>`{iPf9HzK!MHMY~S5x}NB zEZD;-kBiw)V6Tt4>|4cfFFtfeeidSUmeJOKlw4rRn#kwP3|^4*s?PC()(SqWw3ndv z=9P9YdacDPJ6b!iUri=&2IR{$+Z%@%t{I0*%J)b$S!k{1tyHRH?hjbvvkL#YBokq) zsIXkSMI?3uaH z*s+kz!;-;ynvZ-2Q8L^hg-_ZAI|pj&DEVVct^3ZhbZ1kCTwZS;`BwAwqcb5Q?@MGa z=ysN{!l`=WnmSGLnxfN=Z>m&TFe=3awJ$b;4*dsT=dF0lN0gS(I!SJrnkfMMlzR?} z)m3l7&Vu3-QrN0k&ztJTIwySEM>oL2ZILwm#pOlc`PNG9PSWyN11ZMlxJk)I%osyk z@cx-?Pk|N86kR;O?F?_}7V&rpLibJm>YE8n0|;)nk~~IK`cNs8F9rHla3Kl`0){^e zoATdGr5ci&RgVMxA)3YDy%=b+rSr9b9sf6K0mPJul&>am{x)H$K`YE^=Qn52&7z_Zu@uV@p}Ol%A0I8(I!^hs zTiCL3+@AI-$)dU*eD`1jh$6zZhW5@(q{Z)(T}c6#Y+-vFb4W2jq8yLi&aI6PaJSwa z*U~Ar&oTfgCo`lxVh;mWGm9ED54DpY7>N#xaX^&|C8o4$>I0V{pH{LX||RKl&dnLhmVLk=fQ>E7FrtS+$b zElCUWxcc(ZM9JEV2bg_k9B;Y>`!}Bo{1XHwJQ%MZi(a(^nCvsR;>4hjYI{02c;(I3 z_QBOD4&(&gZeFM+RfRUe>87vsyG|>$bsACD-Ob`#)7w!Au%^I*7{GmM^;5x_jnaE7 zGrT=+BUI%w=s+7GrTHX6yI9Y7I*Z@ayI`&PGcobsM_oV~ii7T3bKmilJY76%?wmo7 zltT64=DRq6p>AbgtcseFW@9(9v}EaagIDIS2QjTC^_v!$ip3$P1N&?DuK=8LGAbP1n*YT34)&2L`~Or~F*Dt!k4sU%{-QFzFh2;jLNmx*t8& z2P5z{iDTW+6q{6aylHpQZ;0>jyeaE!blVr!N*~*!bHSWNgi6nPs_WYFh)FOqprXpi z9$>fC>R9IHP*=7VxU}S_4*(_N@XylBN(M#Ag)jRa9T5TWqG zOr6B^JM8)QOd%h9CXn2pH#-kRkx`jhGk~8s*9W+N|4P5e_&W7&GgkRKa2~s>@||q} zbv+rGh7-zR9L=N+2xQ)vZR$O0godQXkIN@e;LjaF`YY5*^EQ1Ja1&!mw|49!aOH&d z>ud$ER#6Y4k`nw_=+y;kL^<(sL-Q9hr~+^{KT_9%i^@#?2P}wH3v89EINq$3kd(eQ zn^ZPF&^(viDqO30P{jfBGqdv2Wl_%is)5g$dZVC16R!t}IS;Gs2FH>jaI6E$)!+A& zhVyXum9jo|z#k4e2pbgs#>)PIIuzyC6n zk*AdMtUp++`Bwm8ZP~S35w1P3-S5eq7 zNLOtvHg5!$CZs*?yikv7MFR+Gw zwZ~IjY)aNrkJ|%|I!Eup=TYFl2)<(q2d6}_P0a@-O z!P7L&yAW=Bv^wXnm0zDc)ZPD=g?)n-#5$9XiH z`oR954>E;$aP5EPB;R#eOKZ7PQoX!^BLYqo;^^5g(>g??I!;Y~L`dPjwOyM0Iqbx@ zvi0t>EofEGL_pyIbVpOR-j~?sr&>U>63_1`OascK4as-~k5ZtEm>u&OP2+BIDaKsw zyT}Xj=Z-$J*=hi}bJ4c$wG`--GJ^J+CU_(Px@$>>1R6Pvm<$vUg%0Y*cWMH)6*gH? z`z9abme-fiLftriEQr}_5%P{5?^RGZ1{(d-^QwF#TilP{~$X9xD{R z>k|glb@(e#l!rD@ljbS+Sr%0ndeBC9P`+F-%mijyQExgzd!4@r_$=Q-&@;woLaot$^kmHd?C+kuh}MEi=U;AM6DA)Ksirw;Q+}WKKMhK{i5cj8NrL zW^=lbwDsOYW)(=$3+m*a8VyveP? zM(*nvc+TfQNV?QX=-(8i08U~FWNBXj*V@F5+(EomqWW3AHsG3Sm42Z%no zFJ(3CAfy{*u-nV}j@9+@VZjA07`{ z$&E3ZKiIQaz%t{Em9^1D&DGPQy!1ExF7FG z*lbN*<`E@&`m%jRe zlnk%;C;dk~>H~EwzH8f+2#*o2QjiB*#7j2p^g;MmJa_ynIfg@XGIY{BP^PLt!v+(1L2hwipm zkMBfH(=JQ+$<+}7Ex(O%q&^44*YN%MulGG~9|`f~Bv%26JFcYz^l+v^nmf26gC?HU zD+X6T{}!l*Q0_)1eXy{c^|C%81vZGRRl-q?j{W$23q7ORIM_`y3RC8^(k%MAuuOU& z6Sf^Kz$aI0?ovN1pg0|3nLOcfxFaGq+`KOr{@e}rqnGX=dut)2;$pImzWFwC8W!4_ z+plq7=;FgvUg{QjH-Q-g@By6C`F+$ivfcyUo;XY`n?czgF&#?b*NN0_eos)2xc81K z|8o+HkU?{`xsolX=_SMXdc?DvTCO-R#M6wDpY0$YSW-1igpaRwVe`+@Bs6isv;3F& z1-Eh1+cDCVfvMdPshOdy6N`-5>(d_lmG#uiCnl~dg8lp8Yi{TE-*JJ{RonmQ=-BQjUt%o2+KGpG)OJ|4|1MSTuVufg6)hN-Gq6?fYSX3 zHVO;JBlfSa8H=9H+B5|Zr+UAERpS`+Z?T3oVv7e46VK?`fJ;d$>u4yyK43j zYfk645S7NG=vRY_b=falAgkG`(XV&T3OOZ~asaUmh%igYM5}qbe+j!wr;^S{nHxB! zlko?grUfkHy^IZ_h*$c%Q%fn)k*4K4jF%P0HfA<@!Y5=Gn%q5{^}0l*m^q--ROavaE*AHTVK>sgSG;0K zKN2NG%1KbXoNo1bN{sx$Wi(oC#FKM~pDfFsB)FP)cSVoky&QFmWYziEp)#BDCvw%h z8&p9YyBf(<_r2^ns84PmY$cs&_f?!nFS#pZG#vma#aEk0N?X5Sbqwd+4nmAG<(o+IsiWNWNf)Cn?x~GYBhf_YKn)O zYVo5c&`?!V{5dNlNmdDfQ=#m18lY_LWZ%z4fE9mDzjU_3+_4ViM~~ z_cVL{Kv&$E+jXRzUwtv*JmzLG4Dqrw~=$=QRS;55rf_QGe5sDFL{--)I0Sf>q zo{p;h23ksOu2Z|ES`!$iR&(njNn~BLSAc94H}Ata#~5tON5r0;o-l#`!|NVaSw2Qq zO2f}^3?G#6YH>!);SWYVpQIK>6WZ1kVz0(6#OqPGM09pAZKo!Xi({ZQ}3n6`PUlKJ($&UeulWvqb@lzM(03?OfFPi%g^V+fNa z`s$wOUMxT`9NTO%LzTU^j`?|D;TC75RX0iFcHp^l+Q$LD?;MEqi&A)Jyufwqit*RO z^{cdub?_j^=65Ic^VWqHwA>n*qKf;$k2QEcY#IKwUIFp7-b{9ltX&g8gRvHx{;rhQ zG77U8t#zkTyyt)}z!pWTAGs{5T4+#pt zRo@d5OqX^J7w#QDCN=*=5-d-pQ}9kLx1xzG0&j#V8z`$UizzG7+R@8JBTtZ~HXC~V z1e)&f*2$&{U#iZ#0Q%`?{@D02iFq%8exuf-e|MPB4}KchndL!qjQ;2H(gKG&QnIa* zfmaQ7&Jzq*r^!)NCq_5%j(ecgC-f;Lf|lX;2+jc9-KnDI8&BW))A4qX%v5rbZ=Hfp zhnr4B?QJ^;4``B519bjO{WF<;Pcbu>ftK771V<7|<~E_f2OcQrs|5$I!kfHrul7q3 z1a(TuGzxo|{OHxOL|sr;$0j&k5GcwkwP$&Xrf`Q&ym$QYp8fce@ykVGg37&kyWTf4kI@YOOdRjlOUAs6KIiuv|3VtM1zRrCb^5=Gse ztII&#uuV)rd!6V<8_kT;a$y$>!koj4fZZ7Yyzl&EZ&x78kBlN*x%9dk6pgbyo572zz@&h ze^$1rUHj08E;<4r#jxTDz&1QZk<>9-FZw zOOhgL$jt0>p^a(*xKH@9)R(MilC)$B&40-T7Grf>TV*fsmRpljU*TwOeL>f4PDXMt(N`q&yLk+Jp^vr zzi<^Irk7Jv1plfSR|2R=^%~1a48y-yNn%1-eiKO#ST+9p)LvvryCPXW=4b9JOlS{L zsQK9HzvJD+Iw+a5hmMu5ZU|8|qqXD4_JQ9M>Ivu9rHpPdw6}Y>u7ycb@bmlNX8)Cx z4xb58L|n^<7?GJt9HI0X@kX{3?*ZliI1<>X0c^WI@{;~=2KI7|t&5VV!$9|Ff-Aei zmz|WdV8mlqJ?)PT&fMKXEMMf0wSkyn{f$Id>PsiLkp^c_zZU9@76>N`+r7&=V3i~u zXd`_-C`J6QLRs!o#x?L7QeC>14R8|h)M$7jFc=_@<7jGJ-TvT5{unVk zkn$oJ{sJJc_iW5l8mU~2$O2{*DzLMHjDPR3>x&Cf)FAuoKmqBA_u;7(QG{!qQlx*? z+y?;PD;@v2a1v_2AdG&`?EJ)~#l?y6ua!Ja=}CMZ19?z}6-PtASzHt*!0Z3MCN2Ls z9Ynd+8kcTl=(ir1wz~HU%Rm4z0?atEtfG|li+Id+5|URP3MC4)2mJU~D#(e3L|RsI zDCOhDXf|Sdyc-4(CtrDz!8?GSL|Xc>$(~imAQ43ZN*W8yTp<2x1ck_nSeTQR9XEXE zIuIW5+YrOr+9!W6o^b6}LeOw%g^rd<8QX3Oigm!6cUck1E1i0Mb$-SGS|L=EX*I~vAPkOosz z&5AP;kHJ{|;iplEWPVEN3D&=JNzxZ+t|0xy9Lh2pBmiQ+$Wr?&+2w#4kZhinAW?f( z9G(eD*-rM|?j<1DsRM$G1rZ#gc#X`?`I#|Eb^Bue|NQCFdd7Xd#xE$L(Zm^j%?9wN z|LjM`zb0i}l2^*=CayMs?;Q^icCk-MVXp#mSnoeQUTxkbF_h-H7ak^ild6A{j3zQQ zO7bBwlEM*K8m@d2hXnw^dBj!WQG`?0LECRZT^NJZ|AJ^qO5>Kzf}%r)@U2sIueXfm zueqegRuiYG|LV&<1PM_bAbW@T`7A=|?XePcb?>kB(*)5shy?BhS*g(n-p(9}gHik! zVanxzHlkaGZzrEfJcm$ZqwHS&cgI5{a0jEuAIA<~0rf!G8Xt#x=w#J@gQQ!MQp(~a zF2_a@A`PQ1Xe)G|H>0|){~bV&dm8(2NbtlH%dB|*3n?JO*v+4;ewlH*K3rHov2Eg*ya^J-TrHVFH2%d^RJ1En|bH;7j+~P#-iT(&=CIB%X%k; z-6fy!cWO7E{TC1_r)ZP)@BGtrRtMC1{I!2p52;w}W^Cq&r~Frm_P(8Dc9%uMaemOr zS)QbBv||+qLcfQ=^ZtKYj3*#Sg6~pi^t`)|cote9<0>uPBf+?>MpjP$zi|jOzP=^7 z(7t-#a=zwv?(||a{L^kV!(TgSzGA&gqAqHl0-{U;!c()WsP3(XTmG03z=-hgT*%!` zVs{DY7?oUqZ}D?HBa-lc;VCH?euIdcfyYV>7jQebXYpdG^1nD>8ZZk{{6+jDjFbmK zciK#<=lnlm{l~9v*|@lTuh-qIl@tr0E`PG<{K)2S^b}(Sm9jd5N8EebZ3Lck%iJu9 z+TG%M{@2zz{YD{*&xmuZdV+X>#rAWxASv3sZtEl3dM;tJFMP zKSXheILnAQ3vMbY`|0+TAAkiwQ&Rs1kr=h#PQIPl=dmfoh$w~`()Djt02>8Q2JlwT zbWPrwE`GfW(r*-1D+bPs3w!rVP*UblH%5qZ5L{6`PDgNjwSe6N7={B8(cWckW-7h} zHt#a-kk~QFzIO_=Kk>uCk@oa;U#P>f_O|Er{mLMFO!qea4HXEq5~HS2cNoy6mJQr! z1l$-6+{hp~=$4N#i_pfw4XVceof{+HFliIN^8ubkU{5%G4}%tM=YP$)qnPUco!w)pS5ac|?@f{6@hYSeB5rLmBqOVk)KtiEW=FhVt`)eKNl!@V?>$(bCW5Ui0>xY4O~ zWB18^v-fY?miiHUkF`zns@)eo1h6pQQv_NXb0$|mf0SS3$*~Bn8TeL_S4i@H|8^t~ zJzCH2iz^FI43}EIys;vQ0WcV`5@CR1(`l(B3xyw~)J>L9y53(5)ÖOUh*{3!6} zCMDeXv5$4R+Uz0Am{;`in{OP~b1Zy47f9a!!JzplC<;yr=^?4vfBuSmu;1{fYRUdz zO(kx0j=bF6Ov=$*+Z-|pmp_y=UaI%ed?rB8NDq>&3j{z&=obCPMqdl z$p@K@fUfjEjir$XfcrQ0@r21&LweH}jhl=7c|=CjruKK!9bx*6*nNJZ*8sWZXy|GI(Ul8m zR>7(WJ-c0gP9Q+!$12ZD3W3I2Z}$Gqh22;{l5C>YxA%4lZ$M-oeI9?J2nP*~R{Ug4 zt&S-GQo-X{#w92O$oz?Mgs=o(Ji{n%P)es)W;Ss8LHU-8avcW+><||^nP|BiOx#k6MD2dZN{|t zUw35G->hjn&Iru>;Y2s7AaY5;>cXBQzND|bXD4M>5Oa|1P;6# zJxx1+8C5uZjm0J#wLsguTUs)V>xJvr@LheCM*=HQV}55xqqEq!jLT+aQy5iSAkgsYXzC~$3-*}+s1Y?Q*-n7J z0>Uc9ht6W_|7^HlMJ&*saMV6f;P5Q!Ul+%)izd9j6gJ`&d$pR!k$K-e)o=`ZZ7jhI zQOn{96b)opswoub0ESx)zYsIx{f(UMo9Ugol>VqT!uY1>=_E4aKiyYqg&))UIM)O63-lS|QS;SvzU{);Hl>uEO%O z2hDIBdIVJqXcZV=$GY~Bj56nZ(#1+;8MF{kh|`&^_t$Pnn|qt{dBN5tK;Jr@;!Kjg z{ecys=d%v5sEClUqr>Zbt!_C&u9mc^c3(YUaA1WdU~!0EkD-<~edNsHe2HrT){KLw zRJKm^zbhH~`cupefB%Rjld;NZOqYLu$F+1@1cY9QUaZY55AfaG>3CGgBS4p4d0u#| z_SF=aKLtb&9q>n06p{=t8*^O$!o4d<8()?G5^MpJRv%T*P~T7L1~6p*r@bo;hq`V1 z+{zMV&5|r-Btl8qcOlBYm1R`cawAJ7%OI3BG*Vf|z9b}D!jMF=j4g^7p@za(hKVfi z^`EKx(R1I=@qT+hyvO5<OR*LnW0#q(<%-pZIk?wKKYeqMJh-`r2pAFBth zcdc8LyhFH**U%CUss6&FE;ke6@nK@pCe2%2N8w%mGG};0$zp>T*poxRK9Txk;Jrvy zej&`GzqOvP0T0eDhP8bQ{G;*&7SJA5zoG@)6Be%cFn74qTsxr1O?}-SoclS=59~B$ zJ=cOGY07Ol1<0V-#_X*E9M6_{TV9*xfZ>GgQ8BPcKQ-7bL^s?emNQ!aj>r!#h+Z9C z1U}(0Q3N~&4uC)Dp+mS~W-MCYnh120ZYf6aR7MkcF-$K`)IQ`MQ-%oC+`zvpyV86w z!IPCXKh?fkbsuAr`{5E?6swD4BVsihRj;4A>`R2l8+WJkdDfSCZu#<4TRpM^^4m2w z3=ZU70ui@OXS$}>aF64)hYyH8>&bG|%3qhet;|q0V9TJ3tvhRYYa#+1TL95_QSw0! zHysks+)=;TKgA8y4A<+xE{-WT5Tg$#S%OYmM!{37&-x>%cZ~ps@E@~RUAH&C?+^(hc<}0D7iFsv;=YW{B$7nOFNiZ;UHX(oq#Bv%N%=D@{;FrW3#!#* z&Spw*X@M|?Oqq{-FuewWj{ahQvRzB$oe^AOn=Dwg0KEKD6nA9}(S+T;%_Z;6+iC5x zYLP}MQGiNn!b0mMu9UrwVy}8#9P8_H?oSFOrC;`{PtS#n%iF6xvX3|^LT$Kc7SAPxfBjgPk(B>c>dnL zs-b$VtE1_3Q*I!U;t~+Y5)Oy0ce>dL`&$jW+qt3l{_3%tIkabOmug3{O0cLwW#!xv zMSi3slMx62-i&}8OV7lHAbq;Q{N&RFeAZNuh(TrjUYtWE&SBjDkO9cx0HP$i_J;P% zv}`5ZdoO$CjLz_)LJps546C3=7@+Cga;Tt>Ocqv}Z5{El5;^K6832CeQ2~050u*A*qI78DOxwtJbL}71?_?8@N-DvUrfHC3GIn;K(hMw$=!c~ zpE!dZ-uRi4IiCj92MDb@jb>LCdz3#p)Tocqj>jS!1uGS#@cP0SHWB|VzDG`hbV?c&Uaxm!>{zVQAK}FPBMIvBS8C?h zX~?Xm<>0u&2aim3&RrCCpj}1YtdfwW@Y%5*sP5u;IOFqqGys`)HT|rw2}merO11#y zg2rn>VgxHC8RB1QWJI7A(&eOj2(9|9q{C!;CHK+9@FPIo#rBV&H)or8rLK(Q;%~H) zCNIWP*fe-Q#HdlsMom{XiPIWs;WpfME4Zv!4>nQ!1P$PKI7bImqv0^yAlifSA}-6@+&`iScM}TG9Ba zfN`_0c7K9JEgcdvc5k6Sur^jAjX_|4+Q4;(Z3!^tzwy%!-7xUQu!y)!)yeL(RH1bb zb(d4}aj&}fql7A#CwhGRDJJ|FStEEVg}VYgTo%ciHWl!FN{W+GLc8v!?jn9jQe2L{ zhR zHEsog8s~1-u<;WoG?vt3Ar}s;C{s;9g1!p&qQ0osa$;A>dbfczrh?y(`sd(>k(Gi2 zsOd5B!}RGt#=b~&yFLJ-2ZBotGvstUVy=VizR?`4W<3;Oyce=lf$XbuxA8^h&`Y^vOomNzfJ5~0#1@9;VUTj zVdIV9I|7s99@HwBA%b6lgZB&;r_W=*Fz7SFB^7EA+=y1<2R}n3KRwPFZW85s`Lf#d z3PQ=_5Y8Il&kICEk1QADFtGBoeguzUCr;D_B`qq~e3m0)&{QhG8Q#qBO|W~wGg^y(TW@^PT3FLFQK z`*Qom3XU0;zfBn2?pwxgA4Dy8KD_dhhQczT)rErLb{Wsd)&e`|MM6pch-8_&X<+mONR!1t@DGao~)Jpfc6c zkEEX3Ttv)Mu#{%Fnih1#`aksJ{Mfs^0j7oOQ_X1SOdLzI{EhoJ1k+Vvp<7vR1+~wo zSyuASY1j8UU3c$w3ZY&RRp5ldpdS~tQ(x9K|>)yiaMvLckqs{a| zXWOf5H2Z1Qv3gYUq*+(;g!Cb!<90JJ;P?O48I>OCzn%TxVwUG464+41FfR<7YxSGE zA>L}eEVwpb1`fP6*7Z06nX0%R{BrNd0$)Simiv!18^%e}i=0cOJef(wuOHd2 zR3FnINcTEX=@CU09yHT@=*qbDI2+|VS-(0djje|3+2r!0TIPKtD}3&sVvED+D&u!KW4YU^Ow4ZdQ8marRbVXa|r`Nn9iLGwf)PM8*Kd}c!}4>w>D zb`y(_emo5u5MSSP;G8_nk*~toec?r)I}5=C?U7R9`$1tWN@}B9e1l~B27i3Fvry2! z%OW~BW4uM$o-PxR135ZUz|>%0bm2UOocSP(dAHSBlB48_S6IC5^PrW@Z1Z5jvD3jA zq*mUI4{h(7zbSEv9(Dz6HN^LmF*(&!z*J?=fRG;AAEQg5Y!q9gut49r$y(-TeCZ`Y zXO4DJa$_yO2%PB?vh%PQ5A`bT8vnQ|qg^B1N-_nOeg=IqH%?fodg*?7s`cRHF-kY_ z*oTs04TGm+jyfw>qgAjLeFBk)F0{u1ua)dCQfh-wnk|8+sD8M}^YGvg!z!K-Hssp` zg$F03i)R1GSdP76%8>+v;j04B$0fx^Wfs;i#t(mVm5oGvifPiNDGNZGe&-`I0$n5oK3r_q3vjJyll&(2+!Y$vvOJmp zQP%go!rU&Z(<`EyUoY(8Oj79&)6)`WX!o0Yhp+QkZ9S&P5qt@>!V^(V7D`ARvG&Uaa|LKPeGn6#n9#DwDuKAO$k+z$bjB(#245r|6V$LlXyG3_D{ zk6coIohcGe$SkfxEH=mHI)31DBqN)&$5W}2dqJ;Gy?$hWBZdoE#k2XcX~Hu}*4@&q z&j~y;!@<{K9A>B`4E)4rql2>1dXWg%NoSJmTvP3wvv}(#)*578gY6mB0%(96U{-jr z^b-OT!8p4?GmUy{p1PRWnD%oJG5zH?@hzgBtSfp3Ol`iw{rg(# zs>(ZFJUR%;HT~|ZthTW+y;T~Die=l2;ugikbkBAllb1@{>-O~VXe1)y3c`gN#|3p? zAtgtAKVpbVByH4Zqqe9Di-FbMC;S8_jTrv2C z)pFW>Ol*dkEcJ71ahArq8eZ@Z>@`}gR4bZ*r+BbmZNX*cknSy)#PVvr*23_|57Hw6rT25b2)e*VLA8F#4VB^Ib|IkBhhq<=h(`A)hoiQ+X zyZgnWLif$DkFlkDkN_C__ewUH3yJ-&W=M#%XZvCNo**EqCa=E5Ux@ z!X@86YuwN!u(+&iTMTgb;tU7lS+7;tIKJ=JK6f3^vxXWibCufh z;1;7GK`vpX_VL0GuEXI&-{H}E>ol3ADq3wO7>fHHf(Ola{83jYyd9L6?g9)ghTCaQ ztZD!dYPcm2H>mQ>B4b#-!?{!;&|sq6%zb!>FrN<~VYYvC!+0$hSbqjl`Xk39;g5TU znbaQdY+;E;+$$HHcHbLe?WPI9hqo^FkhaW$u#{(Z6zlj0*l^5hNd{(OZ|6cu< zqxRjB{xWxB*?kiRmgID-ZJJtncOjJeu$hokx1HNz&vP5jffh!6?k%aY8(U8(?7_bA zx*Ht**4k%1NVq0VRRo~)8pt#?)~)k|*OAtocxc+0cMC&(v%m7xwp%EKRt^eI7wc3F z$TR*9t54qwJkC>B-&ILXsjk(k;&@11H~iDu%P_h!wow=FaD4ovocaO%5n-1HZt0B#7%%fNG@H3ozqRZ$~HpZ9W>V zBX|)wKfeR4c7AVQn(38w(++NGypsRdM3*CZ1}p%;;!_drnj#fa?>S!ujPEu6h2g0U z{^GPzfdF~eUW8e2lj@E}e}TT_Eg?;t;Ejg^(OU$TnpftL9BIn76MC6pr4S41E&sp* z@%2|hx&%N!f*A0k)ZVf+S8e|u^NYLl;CLV4+a3h}Q==*T+u<3}+V>yRP{0inHo=GI z#)NS?PohF;2fPoUaarXT*b9o8Avg2)@*r~7;MDFT=D^s^Y!%H7?K8Wf8`( zgZ4`*!?A>W-ip)z>iu(Jj4^o)Gq**$02Gszu!_XwKKHSlv@f>1yqOn8j!(e!1=fL( zC28;x%lNk13H4FyOWr0?RDye)ML&JFa8*Hyz0o8G&4Uf^;=?i9%hj8*7;PRuDW z_MqFRppcV0!dt}y5i!?UZ|2#8_^HG@MusLW3pfD5L!auiM?0Xp)a@uCHwDXeeBAZte@Mr4nx=O=#Fw}0o-Heq@jfou zAYb!a8Yux+7T)cc27fA1`|S`&Bxw)LIF~Co;)?&CAsT4UE$H6*)0Tm)$N}7O{qP>5 zd}h>d@Hg&ew}jvI2F@j`D6${b;7y+Wa2Y1Wg@*4_f)Yf3Ws}CQ3nYHM?!M|H)1Dq@ z{qjKI$rM6u-DUq9jo8}XusAsHyy~OG9H5ZiqVry2Tw|OzG5iR)fZIP)zaCtDG6FJF zJCa?q1n+%5XX5D;GKu$x_ckOUwi02dSA`F>G@bb^PZbSLMryp+Yw8qy=yUr+=j$|P zzvZ8fTA1x&nDP3iMR$GyQ?>A#XO_zR-`kt$&bSkYd~^}YcRsrjhnCl>^PoK0zj9%3 o!JY!}2d`gZhqntGOcR98RA!0%iv6@#--5z0WU>XTL1t6 literal 0 HcmV?d00001 diff --git a/GAN/3.png b/GAN/3.png new file mode 100644 index 0000000000000000000000000000000000000000..02e8627cc86b7eab3cc17c7c72605b474fc5067c GIT binary patch literal 31106 zcmY&3roV^kaBSMmunRz99J0oPJLUxg4XJ+525Fuo*v-io~ zey`K#`};k9e|-8pyzcdSJ?HDW-w`@m>NHgBR76BXG`BQv=n@f;LWqdSh@lieOrj#tMT#CGBgY_4Cs_Ek62A~P$?LPNhf z?sgc3q0G3Tc($(jPhIBwY&GiS#D<3b2&Cr)Ru^e|CG7P9~RX4q zSIjUxSV%o?h_Ea+x_aVg+n%$`#mUB;08#&sV zN=BrF%-qb%RK``cB(LuC*f8Sn;UWZvDnC)g?11E4Yim|t{+{Arrzaw z+Ei5KZQLR0syk|S)+t1QQ>(NTXjDt>3i8lMec1Mq`-z(8lDRe+fvS6yZ0#oKJRqbV}8EOr&W|)_DmT=lpH# zem6lYpAix_rvl&ERd2oLFAN^cKKV2TXbFrGs}5oRZ#&y=7!m#BM{ z9S7~mJkeMV&ADUQ^7unN0Xsd$Y$)#^m+#vdWHL`#Ha79rGy#fqn?L#54XL#xP3pUdj3>f`3tta9x2CiA={Z{G ztp=Dm5RPY-h-0>U_0TuZ*LnrzLR6i|0Tf0NaTjXFq=Dhjm6$c*XDe@qsQ^8KR>qGS zZiIcTv(G&^aC6&c9QpN7mLSf1BU7bjlbxGsm7lk-q%wMLTcv0d#unzsA%{sYydDU^J<5dS)M9beRSLFR_$D zfnx}G4;Gbb(s?sg7nZG@D}+LVjtVdxYNcy~{LH#o{kE-RI*a zGr0?C!-r09G7awwAK_;vYR?k`;gn>i8qI!`f1Iyn;$0lsx1JiSBiAXqr9hE4<^Ocj zVRS$caaWgoznTI+KVL8RdWB;*%jI&}1@6uJ*mPmQ$Xq&OlFh^`&6?Ccn>C`hI3jCT zs<(!cCz_Fr>0)`iUnm)TU2Zq@f4PY>f7FXAx%^j__5v%+)!!zG>g}C*Il%JomEWg+ z_@WI$(aRdhy*i~Vc~$;#Gt@31jCsOyqDOI}8;@Oq6kR@wding^73nZftR(;3^`ynSXPFB9B9ar=WE7fuB4yK%Q0>& zS{Wk-7OawI!&J6HVym!*4ld!bfWLDzetFwRN&pVgX7cO*iB+D{I(gpJb$4?|A8Fo+ z;SqbevbV4QM%xrT#yw+SHa%gc>yn6XVNoW&1H)Gpr1yk;!WB%m)ZhMbbU;4%XyCTA zx}O|gC%YSd+4|wsan8Kp-Ly@hX7kjL2G0~Wc$nM7;Mz;vr0t_4pNNV5ufoSh*KU+w zMmRp!HrB6H13nL~~c z{nz6KI%I(7?@;Tai1M95e<&p2=+`a5%ezeZ_*#SUOLTDfS5ng!R7u3Kzt9bNM!AMV z_s6DhpDeGx6D!pLHYpI*MBGvth2!3?3J9z2Xig3J`-j+1{`$9BT;N2Z3}W;=16(&_ zR=UU8%xm+UJ7U6GEyLyh^KmHPcsNU(3s%`7b~P7;+UOFebY=LM2!-U~bnwXn+|#d$ zT{)>vG_888=HE{rYtz9^3$zHh9+32e%)FJju%8`d&YUg@i}6hB!Es+tmXZ&c;*-0c zgrJ9GeP33s`-e#@dKf={@BRnJ?Pa!ejo^FKk*p56H!0BRId?wy^hm{K}R^`_; zM8G?w0H2V0=cK!Yc>*{~{AHt&MX^|n3x3v?Dcuc|!4>xSXt5iG3hvSoM1%+si;=qr zG*DtDPg{w3l=vqWJMJ-nU$f|Unl#-ZJ!@nth$2BoOFm* zG42pXHr$!#4MZuqVli&KhzA$4gQyBrt{2`zep1zG3qyyen)vnhi_k!dtv$q;;Q+5; zJq>>~s z6w0_t9{%dR=ym^7*RJa00r4xIzCpVJh*VKTM~r85;$1E;R17I_Zw*PQ>XB{0Jl`Mm zi43XFb#2ToXu15^^3NDsR?aW+Ba{Tz^v5(pK&kucR!jQ%Yimhr0tv=BP=cOjcdvYxyisQ0 zU;izgo$TUSnD+YZsC6Z;jV1QcRvu=;;mevlf%hH3u5isdC8K#bAq|J?l-9H(9Uv!s@5i27tG!D5kl7A^l|GP*M%T4yT_@8xN+aQJw(m@veA5=&0qo3|r#OPuwG zdr{@{ON1c5XsX=IYOzD7DW=?L*2&DuE-}ZN5V@BzF6zER-c`qw6tx0KK}t%i|P*#*y(?b|DIBCLe8Dq6^Wo{v<;Hk^%5mMxL( zChys*=4Ee}C@o#B&=7sYbe@o0@?GnZR-Ma)SU!(@J-dVTpwIg_O48*Wb8xSEvO6X7 z0TbX$_l%0?eM#<+xHwova%G7~KcxJ7q92TabtU6>v})v3UjsB+^ko%3pzatU2Jt_U zlI0==NI1bLqg1J8?rUi9%j|M6Q}u`Y&sj}9O;8XcFk&cp|KrM%+|UKdEW4uFrJHR_ zs%_7TE_5Ic*c53l64aoEp6}>_FOD zN$sCuVOE_=x+MaQ88GYHro~IUY+<*?s=O8r2$X#x#&M}e|8%A@P=4A#sdjoOed@e7 zA{ItR4CJvwONn;U@I-oOAamERS7)47#Ok3G!QU^goRiI zgjl{+9OI)TF~kInE`^_-ntkSy**ZTb2PG$LVWJ4V=lKrRN2PrFii)CEPQT=tuIFuW zcTf+)5ovKT@?Q{qJ#0LAfgVO*U$|}IBg*R|HTuvCN}%hRa#qG=X?ALAZSr7DtX0x) zV>uYFHpC_jM!>XBR{T-89~E<3(&_2!(o&=88z>|K^XJb%%b!1|Y${C>D_*D%euOf@ zJMUl<6V1woXTePqt|ueQZ!A;@sHH(ExQtKrW-ei)D#?H~v2zz^RSU+<>kqzkJnS;z z|jSocSI-T9f1PhBdkCW3(TG<~<)KE&Yvpm~LhTc^TR^B@{ zO$vFm7ePvZvQ15a))3biHCUHv3*fMGCG7L2K%eyU)5C1|Oz|=j*Pd8LoB^_-K-ZF* zN>##^ZXcepU4WI>mCPXCyhLtl+cti{AB7-r?csTtZos_4hSXdP1ZZ26b+fYL(C=KT z(|*?(7fntE0)%!lbgnBodVTj*F5_}5ecr_u3Ia##Fq2p4VFm&Rwa2aWxm;}u)G_A> zS9k?uB$#1ZU%%M}jU^`NCmh5uo!yMa93XsX9Z$bTh&;8YCDeujdzofR`P90+TNH+# zNN@O`=aeF>zJ;Ls4j1=GW{$Bu?Vr9gqj-iv+BX?q-*G^j#f)_X5H?fmIpS=P99g zS`dJKbB`;WDcvba*H^B}moILfl@5ei9fu!iusoQ0UO-D&I9e^1CovtVX-Dn(rtn{G zp&}UEMXcAKozi{sIo&$rDMoM;9c%-QQH@e?arEjpypu}sWhOKb?RfL`K5Um0hja!JOLrFS;>cb!fLUzSVNrEJ~#hqcACKf10aT*^?7c+jmZ!l9Kc>M$dZjD zBTaDfs4{lEp8M6EaNj#-m;yN(J%X2}r~5ceNq8D67P2qN&@)f44~%CkExvqPl<5h> z5-h0Bq51mxOZHAH`UN6~#xBxM`xXrpg!O^Pl9i^7IPvh%LTw*a0`8hZj}NnSeo<3g zb#l`g8UOYcSpgyW520wwlva8Bv&v16nuFNr*G}O_iNl{?Rhr%y_R1o-ed!Tk2by)nf4;ijd3BROVLm>$Nczb$QAPjV;K zwCXZ~_a>HL-qffAl|MG6y}ewi5aYGcJ?YM&9voD$wLCI0aWSZ9;tQ%o+KQ(R1sK~s z7QC353rWtUNHeNcyd1v|sJiHvU)qAN$jiSCiViY$q9KG=8OcnXlW{)8#7;4Wvxb`$ zl{L-ELEqn6l0pfgP0kd*y#J5@Svfo^M^~FxLUAG@m%@T%*T+iN!8XjGV$yS5jXz;R zYW-?XGX^O~zVFa0g#-2|@O`KfE*B!}@6O8#rJ#{7+688EU>y}V#^=qC04&uhXBFJq z%5>1C!P0%M(m3apPkVi5PeDD#$x_8k5)l%RIR5qU!$MCD0eTS6rGqW*&8uckX3dIZ z=xCbqhkh@8l5tYeY3g4D5LSsOKadL0!37^ano*E%9kupb@cf;Wv@BIf8C1%r<-ir< z5sF^NyZlt3IY-#n>gP@OLoC1pm!}M+$kz~muynOhW^N$<%_sP&JXX zh>6-a{%yQj&3d1b_`>svSSRNydlYiPn(72{_B#*x4=!z5nVr7LOZ2extptPJ(~;J{ z#ZKa#)DT>wwnTt$R*t?>io$)uI%u%$3|jGk$bjj|fF``uXB@E}dQV+#=4; zd;QHrs?z@HqS(ET((8B!`RtG~$oD6z&C2c`o1p~BD#fczX9?$TGFI!=**ge6cF9<< zj$Ae2n23JI499kj*(kK=APIVCU}u$azI-E3nckBJGpR4Wup&)2LWKXI73%sMMdvSB z-_-PwurX7kG(Oz{HG%DtiXuZ>-E}uJTiB8ozg+U|iO7LQ8%n&@w1ad{qjZ{ zxj~K>0}Sdn%U}8J31_$4h7{Q=BPj8a2e?R!ebfOf?lxkDm=YWkRebHBg0l zqcdoFI3@AP7Y$`E$U?q{PE1_DnI}ne@&7vsg;-pzs{1?L7EtTH(zd7?3$$h=8&z^~ zs}4V?`R}|5F4J6`ReFta;Z8pAS5lfF=k<_Uyr7#rKu-{^oi7*Yg1N^4!ThTK;u`@(MF_ZH2F#Z@RrrrFqVt2Q@NGM4C6H#Y^m zdRcAWly&UDm^|8`Fi)S$6oMX4*PJ+eHt#s$RIuYc%V_~*W`-t@-^$lZIPSV1(F8s< zHK<%L8u4R$$+6WyPTDy%F&E!ZDc5_Ll+!r?^0%^bHg52iHAVZpU&Kr*%RZe#u^UhI@%w<+g9^j05Y(-l!FD0M zl{hSr8RT4A3O^?`%>xHVrosrqk-%oE!duzhU)W)8 z%VqWAl+rE{z44WVA2!Y`R@iVP`_7nu5T6$0tO_2@Z(69+RP-_^~o+CdsepGw9z0=2VwTXDwg;_ z@d3g<9Z}W?B(L~)|K@`D>dZAD76QzMW;Jm)+7G=5E{Hx*od6tN1VL-^vUZd+aZ+Lp zZ~)27vQS;evQOXAD&Jcl`?IP9ayEkWh?@yUh^6`r%F9n%cK$vXA_ZM2v?!B$FtLdu zjP#FQkO*hB{sHeLVenAegu_VL=q< za<-beNZxgs9#*gjKb14P8PBIh{sdTQcH@OnDhi#0y5t+3DZmQ>Gr&NdS|^){|Dn@7 zzB%8izzw(qrD*E%+M=U`UOn3}M*Z&I1EcSsg;7WQTl7XCm`NkNk7wenPlN@1wfI0> zb+a?i!HFE)HWry=!OQAPNrCGAdi}-arw7iD6@ikvQB&aK&BcEkpw^|`IVmTK|KSK% zYgZBvEK79&orhBv0He*tC}Fvm3v;rbXZcs&k6h zNZFd{lFr;Pm6khPLA_H^bsymLNmKlRy)bg$tGd!r9Dq#}y`3KI74|SS>KHgccsUbT z%N4qr4(!-1S&UIv+u#Wg2Z*r1m61F%_rwDqrl&{&UKs*0-~xrBVy$^u3r5pIqS8N9 z#k+1P6M%EGDtUDN31#{Q;32I`&yAoK^})fkvQk`t-Wds(Ky&qXX>nnu!Mu}W9!~5G zfKFvo(v4tDiaAk*e83?NG3IgN&zp|`T_WH+DbU5O!;4hZpLV_EU>BMa6u}}~RM44> z)b7{5TqKB(JLv%GUZFR}ZEk1$5K^7)Tz+EpV)DcPWzNK=hSCE&0dUTrD%^rq^mSED zTXbdc&5U_MVv$b}7$XcMAUBMag*$iOfJP-0vLej*xSi9Vnxgx&YXghHrJo!M$UXz` z!x)SrMMFI4iLl++S1zB2cC-vYDPx!*ZDY-b7$O-TninEUC6&M^V3j?BF+%h((5-qH zAo5~0_~cAAhRx^*DzrV>xea`HW^HJbUN)U)w^sMpWo-S0FaRM~xj(@@xYLx&lm|pI z6%61epN2hrvS)5vVCDwr6BO`+aB`X(pZ(wOLM1o!>w?H7L z{uaqe5E|NsoYZWxDQh6nDxz0Pm5G=R{_gL0c}7^E-jL~yAE$>PQ58yYSbCayL<`gpf-wFDN3LRF$l+9)Z^evpxpt2Ut=c9xfxt}yO%jhr4IPrKzO zUOhE`dobizS-hWIx3l9S=XAO|R%Mb%jMPU$J-YFg=dr9qMSI%Dr>8Mu%d5NiKLJnv z&TH}C7L{WPLN_;=FH435?czzkAGfEQiw}E?tsnZ3G`H-?%TZGk-KU3Fp5ARPN}G7z z?=wg<+*ugM1@&(04RTUGIq);T5|AN%TFEkrFD3<32oF3*PA2xNykJDHfsek0d1!H$ zpLZ1bbTU>4l>nQ)6}Elp&@M;0`xi-v8VwCbcJ~LP>J}U_ZJ^w5{%*;Lq}OYtm601 zRsYbqZjTk>8cw*orktt0Aokl<7pIS0b+ZObFlOeyHkEFBtU_3pe47>S>9;N047AmF z)1@%UoG=cyo6zp>D7wf-NAU-Cyt;l?bsu8o>^L4Gs3{76fmd%{ zH^k6ThOrYr2feY=uj5bEJ+r|fxVJG^a)U&#WVs+CEM_Q|+b#FFNGtTYJ#Cm9`5|u- znxcCHRkGd}NKb5$yeOtU9Qu|F-Ik?It()K(PP3QVEN+II?(RBp`YsV@5RRU|TWU+f z?u9ddy(s1~9QtvDd1u#T$MuhfyQs_1dbycA^Y z+mu`p^}VYBZM@o(NHoj@AHVuNefClWdC0^ZryT?PLq=L!qd&QY46X@a2t@gkte5mr zou4+*FgyGjj2s)JpxR4~yEn8?ZerBqddODX9GCTl*y5uL5EvA40MiuqZ?O(mHUz0- zSp{hr`w$ms9s>u)f9>OB+G{pRhA_@(nNid5jmEeUPjHsJO9&+R zcZ8A?T6svCBCO?TD6IFD6SCL&Y-3;HCy_d#_=t*76@z4^^pC?dgqs6v7|V{Gt{mFj z>Wm5#aiStz&@}55)$10K7Nb5~aDQR=wcSXTJ7`#f0>&%y6P!esNizFU}69w;FH>OKOQHXI)!pH)sX}xbwt~RJ`$jK1qa3k0g`L95BNorja3z|DQPc;kKDar& zywdV3oIJI5fN&;m8ZOi_gi(7F4bJbj-rDq|6!km z60aIEx){?-n4LJo&IrZqXKyZY%)Y(_f-k^+y)blME=3Fr5f;NoJ$3J6VHnVnX6tY6 zsyls|Z(AH0q-{7>!A!ul9M*=BgWFXJfQcx!HnM4P7$07AOU3xlTD7K#G&R^!4_$MS zw^j)v>=@$NEK-Ue8rm%De7t$%?p+Ex_|hXH?J9*GGE$sU2JRWTjpMWBhq8b4bdNaT z6yS8>I;V5tvwx>Av^m#+l6*(GzEkXkX3(@$zX8N7#i48}VV4A}%pv-@jqd$y%vYe! zC?&thcB3G^D`Q?orK?xGqhKO616mN1MD@Jo4H;O3iDPteXWhBUoea~ZwnLj`KHo+y z(Z6F~kLNGcCGK`hw)rHRBu|4&c^Q3~3GV~d6zWLblB;2{Uyx?cwf@#XL}sYMi_=x+udul z8K^VeYhcaz>k<>YpFVWrno*+_U|N0rG5NjkGt908RQsy`czbhvi``pqp=Z+wb)=n* zMarY>^gA#vdUy!w(!KleLfyW1al35NF}?3hHs9jBtK=++59v>AB;@9Ing+ZM*|hY~ zlD>6)dM`Qgv;5npZ}|eMxPk}NlQODd1~?nb4Lm+|9tznOvpK|J@9$i~q@X}>or0oE zaY6khd4a`E@=3_8yhIH1In)vPW{A^}i>*Hb#buQ7(n1XM3-ya7`tid}BOQxxKC}b6M$}^s#&*aL> zp#MwCP7}%c-5~9ATZQN$XNlbJiCZq!`%DIGHJu@0hkXHN%wL5~_z}DbAuX%=|g{I}Z2>tAHSo zTb~f(+mAdm&>QCLDwg5u62CEXl`)hH%pBzR>GWG<+nsoc#WIDXpF+8Z-o%&+AH1~2 zVvbs+gK9_5v%^(94_kgU(`W2%4pMe;BOZw&e8Zv)8k~1u8zq(upJPA@P=8oV&)JqOVf@IIZox$Y7x5l|p^kFO6X3L$rVx9X9ka}Q1 zIy`#cf5XeK)m$_MVNav+qFj_vv$BoU!hU)N8=jg75`tD1va4h9jV8Z`gO=Np(X-{EM`4G zYjF5kHy+Za#>r8xN{h0JD~eTcT!TV#k6+ON6z#byU*^4uWM_jvR{h?oU?A(Je(RBaJv2qCj3_=mjHe+Py z;m+lH7fDr2k$Z9jhtTg}&@|l(o(luB2fcT~74Yop8IF-}jT&4HCfzb<(-@6gP;uTo z>lH4!3mr4KCqbz7R}Y1@705mh_^H04s%z04KLkdWfSDY~h374en=!j=#Ufb?C&L~l zif&-$#4?>-bc-#r?>Xk+4ZHtyK zD5NK>+3hBn7-$>Ysr}+}gy4Wl>TUr<*;Y z=6<8|=)}!C^n+#b=Al9W^lsVUgTpVNbalE*f-zse>XL0oB%_QR99)O}j|Uw8ji4-J zG0T+279UXawV$>m-Y*6OY}9^F*6cC8bFy|NC3DOgeao{xe0>agdEYy{|tehveI5m$<-%iSd99NXAHPK@+g-y zpcs^y4HEG$fqjPxm5JXv9QKO-51)Av{)u`v@u1IpzitzA5 zNNaR-L^W?ahYvO|1r#e^F)njh(~b`ah|zgEh40;cSH9TgF}Uzz;DPm0aQsQ+|Ind^ zOp~bII~e|a@@g#hV$0K_G z^1{_rdBj$w+H9g1Bw8`1ndE{?cAE!g`$T$ zoQThe%gi3!NOT)UM%ClYZH$I{21Z*{8$2pcJ5-gb_jdJ#5Pee!np*JzduQtZOeS@^ zbprpFFIOiEJER2tesN0rv5Z^sWn}oV+cQ?r9e{B=f)^}nR*v_AFgWRtOiKx(j@HVV z{yiI=>}oJI(siJZeq%J~bHprJ26796eG@7ZIl*6S)@@iS4`M!L9BEy{Ur#Oo8HwN) z_&G3a(7k4v#3MtjL54a2QN_^$@)yFvPov>hl zGJQRgQ_NKjMDKv!K-H*U{*J2Gv}u4BaH;C|CR!ZewuclQf!7C(FLR*+?Y zb)pvLG*Ym$cv6q_0{kC1q!uO@;_Bp9O5`z}2a=aFds8$;m|D^1a4@;4yXRw1C=dd7 zmZ}+_3o*cc)j*~EzqMLuw1Pa;xqQGVwk~EhRk8cTS@D1=(4)rj(JD7mEL4^*d!$+U)u4CG3vtIFkuQKjMGC zGLfT_r=%F0T)>RXlcy=8jAL@5wL2KMzGpH!Vzy|w!vap{kCUKM$ zu?O`3lHu;RSWm`us4o{Q{STUxmFDbfMR9JU-;|)+>KA4}5#m4e=A}gFM$N6}Xca+E znW@c&VQNr=13y-VhYVft_}$C#$th~>Fnh1al8A~S+Kl$t_pJvx9njQF2V&g8Ac@TO zH4FE)Oga*b6YI(Im3c3hO)JMUmbD5O+!32kuKIZ|Y2C-?r#yoSYZAZ5ZgV=Re%)?y z$yR2)_Z9)@du7A^6> z=$L^LDtKW5%+nvl?=BoZdX>wZwV=2>p}G3p5qb`!|J|y{z|=UD-uJ!Z8mcVwr3a)? z2$eh-H8@Xyv*j{5`=*$&OWtX{Jg$L7h0ufrQzkOJu;!%G*w0kkhbYtSs(xj~quN7z zQj8%K8AeN7qKJ6(CW%qqwi%NP1~17%Z+(d$zH-Pbcj_;4a)J-uYV?s-V5|${GcZ{u z9%O?{CZoiAkYLuj3Pt3jidB^4pjOUWX9%64R2Fk}UVU}c;m{^PX7ML0^i4RCAU)hv z!c0LgT2)KDx^pYhW0mBq1x|*Ud0baDJd!oU3rdb{iUyM>L#Xw*{VA^=fF{X08;im{Jmzh#_8HHIw0* z1N{C3>#j1s+^-`g}snlKpi zH+p*kp(#=ct$Jhw4upYZ+?^$hmc&=3pR*5J&0BsNa5#}dGW4|L-=9iumu+G_#G{TZs*$%|}6;R#M6)zbNqc|HkS-pOmHT-d3f zyc(ajM&CV}ExubWgmP|}Jvyl+=Og-b84)6u5l+&+z^5A1U#`0{C=ir2PZr#RF)z3L z8$L0&&L~|~c?!E&T;?7_qGN=Fnkje~LJDd%m*r)iPJ)Ky=v6r}zm@=8IHWj0Pi zui8Qe3OSP!m`PE3*mZ=G|XvQK0SrDzs!IDKEs68>j)g9Mv44f;YvsG4B8q4r6UFNv7-m-zWB zUxMTP?tm9Xq^0vhAfLQ&xiZzxDj*asX-Wz%=5B-r6iwf>B2TwTwN3)v0b(V?V2sg@ z1aj(_=Atlbp~zDz!lk}A&XheLvxHqQ1|#Lgp}%AVr0OQq!N5u()!M3JRs3!(>Jf1_ zlxUWEbuex3A^guJaWea*JutmX#3)u`X}LGCB-bV-;dQ{1FGL{o+7;HVW-7(Q$mLkq zHEYzQ?Lw%@JB~v(0;)@<_XRx0)M@rFqcvKG9$=sVnt6coF+E%H#3#=11a1bl^A*oV zi9<+Ai>YoK+KFz2V^hVvcCu7}0!rN+j8 zWsGK*AaF{@4I>w`VqIe2n?1Jfwd2=s<&3THC*bz{3hN_v{$=N-xJLi+tND!Kn=nJlknj{=}d1>;jGn1W~DcHXK$Vo zzzp9fY6bE|fGCCyqa?X>y3zio&hpWVm_tyOE3ImdScm*IcBvGe{dyEJS{A>f$* z#vRlQiQYY2f!Ed~V$L~9M!*`qyR`@hdm~5v2X-Zp?^owQrz$rM81TT4j8*j{K5Q>5 z^qn~r{<#G^Rf|K$ubY1PX;c-{LK`!);6o^YxSOb5qWf`Sfk;A@kxRTZho2Mh%tU>q zNok|=8))lCP`f+K7eek@R04=eA*IQcL<83FxI!rmNDpp`+jBP|tw3vmw# zD2+w+^Z2mA%Juo2{J1EgpsNS=J^K70S~IEQz1FtV3F2Q*7F;hldtx)d^JH$lR_8MQ?dURF7~ z+%nFn2up&H`zl!derwq(@^7|Y`PzHNp+9O1f?v)J%kH9gUA#`8g7v3y{ z^zvcbs`#T8`}^msF97+byr@nB@)i24u?a*V-5^5fqki=FRV^CS#|(&n3I09YEe1df znm*#2UTVQCya@JA?HPQ0IoTYMydv|*#onXCna5Q%U6$FocYbQ`#lRAmj}uV;Ot0_X z0ZZ~t&-QMosRo$6#}FlkFks-45vk(>Yga2zVrs zpRwAs?@s!-3%+fP|B>zBTxkEGv2F~$8h}Z-My`bt3{oUBX=ujzYx{Z1n0gpHll!1o zs(?v~RXPm>H}Oj%!{`2bMF?RZx&F~2W+!90PY;cLt60Bo`$#SFM?^#SyAy*K!k0@#%Czb;N0ojwm=cW72SyCR{dBDGe3!K6+IX{JU{>F%Pk9-w+qd3UJP z#Vunk{7>!<=jpCw!QD43aBM(;h|DEp!d`9@)}y~$nR(hYD)E+Lq<%7$&z+_Zm4i^I zG-(zaEI||1B3~+|pSMb9zxEiaB^b71-J~7x!pVDJK|rGvWYsqDMqfO@HY~ADcDIJ2 zyys6w#)`(~hvrucJbc)me=%zbOA=u}8j1`-o9>K)c^RN{x^|;0m(u5GJn=&$b_2Y9 z@zbM24TLAwTN#F4cm2@8@Vb;BK&AM{)7CAW7)?+6lBJ&;ZxEyE=@%puS zj>ygzsWC@)WWpc&-e8`qjlDN-}d z3VHmNYI1PqacrjLz-|KQH;~Zj>{aWgJe7IlnJ4!foxs@>r#bLF(!XCz5{Yv~ziiHx z7Azw%$Ac(3Q%l2zGp2vC1#?V^80^yz!T#aL1NC9|KUWd8em$7>2bcrdLAG`!O|Gnz+LPEt~OI^-BHEwO(L zhEt%BCNHWo3!8}VCiyL}awdTlblcK{VrjqiW`B0T7}UZ0%asLIg#&51`hHL8hEQF- z!T@ii#g%^QJ2&TO=2;ztI|l{S!RW;=AK+#J8JHe-#YbdT4M$LKwGV#VgPd8sKg{O4 zI}({cj$O|$W_X;T^Z8QU+KROj>A|9c{Sy zh!yK~`|GUs{kE3*Px$gVwktr&PV`#%OIWkukJpr9zzJA(1P-s%nX!Djsl47`VMCSBTi z75kzzJM%{W9bOpV*-s`N*V>Mro(4`1p8tB!@%PK~$`Ye%z+r;Lo#2Jvaa4OPU%Mx~ zug-(cSzr;fYLtd}^#EZ8iS;J`Y;j>f`1nwXBPw$Q1jGGW&$mWjh|DjK5-g1V_b#OF zQMGL3dMZ~s%P=K4F3BhleCqhi{IGyjVKAO4{zr?T>t6@ihTDm5r(Nv=LUk!;0N86@ zes-`U5!f@Y`32INuS5fYj8LV%(M+Gr+!Uzv+53Uu1k8GOe^gHGhgMfP!%VvBht@}F z|5!n(_Dg~=XhKPqb|<0r>lT>r!V!IPy>c~*@v8PP*SJ_DL$yE0@9vk|hc6000 zYl!F0^6wf!7N(RCnK-z&5M2+O{N#GsB{<;Onu&t|fVHGk{%uFXvucY6;g`PM92Vp? zpG*V?+WejRt>#S3oQAQowXz(Za%{L;9&8uY|ForYlgSegdhF-fMVO zCK5lI8Lf>@^`RzcOOtd|f{zcIQehV+k08iNgj!o#JuH)Xe#+JA!9?`g+UxHcjxGIf z+=I)~V%zF622wZwHs7`Y7p8uuV^iZ-aV~gGVyh?yiO&g1O9adJO#@-gCarbX`@vY8 zDD$YI{BO{)1r1tt$4$Q4GVE+u?_gXbcqssWDY<%lJ?zIYmHpF(&Wpr2Fg68V;axDT z)IMn-t6bPQq|U)W0+u3qrZG3~bho;CShI2i8R;{#l;S93hbirSPJYZ$@=-&#Dwx2! z8dX#tAmH!(-?I>cJ{KVLjVh7@5NX>vfA&PcxFU~x?r$A3yKyf+hc!BI%9{Fxzg6NN z-fOT5rfVBV4Y6b)|M-!M(g1vqz8v8Bp)m9J{C=4$0;m#?T60uwWcPjw5m!1KU?<4> z*oUp7f}woQm+M9t?L!nH3~3I<@__85oS}TJj!TXCe98SQpbiY74jH842je~ueNMDT zS%I!j=8Chb_bUWkFDH5!zzJrP{Lh{Xm`!>#(oR(4c)WrmDsOlWVf9TPxN?X;j3`g+s;p`7Js#0gk7;9&i4? z*_{50N=OLly9a`_&6e9Og>K6W4Y{pD&$<63KCkh|C-d@Oj5MsKsRc z61NVIxUb_xb6E*+0oN`t-o5DH*Gq%HfOu!D+)Jt~<|R`i(rPBgL_rl2TD5wbCV=~X z1xS5~o+`|O#wGO1P@K8#gLkY{&ablM+Dg)E!h+?ME#8DAyI=rAtHFS)IzO(*$;`ke zOF7G&dF`7NKix`7J{`Z*E~g=A;iO`?UF7jrhyxQS?ZwqU!wTZimOaT1*}ypyv1jr;Hx_}_O z(WKhj>9IOnC2@iN#w)D0ICsCc`zrHsrc<@KAZv(b%V(j=3BC5n80~d`_1p&v*9#i1 z^?(-~_&Ks+MGt%wj!kd)vc47gjtu?1G@mvUC*5VCmWd-*Xzu#q(02Pa2u8?MqrrZm z$ogeYZJL|IVe-d(L(&Hqd(CWy!>%&-p)GeWK^p@Mb5&$2Ak8(we)N~6Vc@IHM=K&_ z3~?3I@d{<@*%8!C-3h80%-Q^Z;T-GI;T8?pmaL5Jk!~Hp%O(~4cN6p5JIVJxcGW#$ z(Q+~#obYgp4YV{gr%L&Bea#hEr$mu0$uP!yU%IxwY{JW_1unXHnqi z4Vidq0>;6qSiFb+PW!E@4EcZ1MBck6CugOfQK{9TsiLw$ma{T5yS~ZbM+GWNx-<2{ z8{ICSEH20i$u?#R-|==9vnGd|p3wKsC&X|j3uAFR}n<7!~mO=>?_ z2&v9Y)pChd=mrO9>cSMy~~_ zK1tTsX_n@m9T`qYk)g1wt6)r9kO1BIp0TGs4}$}BXn};VoMr_F6q4Dh+L$H!-7&zp zqrvFa=6j1fDZ&447IiUBExNPvT&~9^M`hsSjS=|&_T&D)`5W-H1P|?Tn9cvG?mMHR zT$XkbK{BF52_mQjL86i~g1X6!A|gW&5y?q%&Re30ipT&122hepjzbUzBnrrohmkPk zA?I-W9X$JdXWesu+<*5j*V@bdPKT=M>gwvMr%RRsSpB%eiOlXV`HyUD9l@N@3L58k z>F^@PQ5r_Ss3vgep}ZHHfzqnyj=B0TARI~xfmMhDME)%}OLdqc#_UzuLHW$I+Yn9o zNhTkNVO=+s(>4_`G!PG-6*SkA^eK3k~l0fBO9& z5IHy!jdV{{ROWvHXaA%^119TudRFPSjY%TwsmTH%X7AcMck=b zjWM(vq+qD?GtzeqgF6@7AIwj<T@Zx=S_qUr44my#5211Bv?3 zp~$wfL!y6|4xX$nM&GEvx}+vre0MQ^xbH;~;H3NR#Yrf1ltclP5c!qj8?((ARAE+iv|k^^s}wj}!QL8A9?%pHKnZJH`A7x;4NqkPx( zQbkSY#7vE?p-|K|#WSAy0K5f0&Kbp^ z|1z*w8?%{|(Y1GT)QwE>U#vKf&2V4vXX8GCjVN<%v(IuEgwd1{1UAe>%v7>#qwZY} zBFNEVhu%+%$2RKY(93UIy@s0hid}+vL8xY3UyKceycIdWPjgh;XE%q3CATbp$p)Aa z{qjSm-$A1%=rQw{cD6&@xv?&A^ZNQ%O?K;vLdo1VkL$K&AgQ+XtzIZR_>w~BMf8$Q zL6fPB3NE)r$jx>CEd4siZ|ZhwfMbuN@?E>t?N>FvVZ*S*8?+=;*9gaT!OW8z?bMaM zij_gA|3|xl){^cPcs~xXMA5s4;!xIj@{I!1_Fx9Tl(~no>|Zh}iT4Pb_ZKNi%v0oH z4I#A+*hAMcAFEnb`-Xaf(z!nJLS;RioI>orsjqQ6yor#R{I+=StI+#!hN8a?+RJ~q zFofRTrD~Nc?pXaCD$4`jDV6UXN@5=(Tv-o?tv+}3f0AWa?oZ*V&IKh=U?~+GpZE<# zp?nH&VM~OxV};cQ89=mMP|`gxk-t9Y9r$a}JCe6}Ic=fOFw>bCm4NRv-Y}cA;WpF? zYbMqC#7|+VaG(IY6LeP`ll4f3?MC{ypr!jO1flRyk0-tBJq24gBf~OK(!xI4$`H&> zW30AHt%{Ea6>-GJIV1hvLB0W5;PqBkhVy$mnNH_Hdc!Clb5>dTHayptxh87;hpaSt zpi&Lfru{421sLLp_MLCxjQeYLBPORD@al?I;wT`!qE)J$$}p(dF~x;pXdmw(r4b)6 z@ZdMzYnRBED1r2q6#WrgrrUX2k#oeD0|kGfD9DSm2n@0Bx|wp=y!{KHc+~ThwwUKXWhxS6vGU+e=ud`wsjsr2ow#A2l&TnU1e>#g z)D~2IalFLY=gBGR*H|C$D0Jt(bTc(M7M{XSV(Di83pZZ0FtFav7(4r{p}z75Arl~Z zWIUA{d-?xt?qmMcws5Hi`hu)Q0wQXj!J^~3&l%=zbu_kq^ z-(p|675js?o_Dvpo>vU^7S3E(ZYwC`Hqx7Olerc3&S0U4K<#!@*ji3_yQt6yrvVJk zjFaC2hwjrde0(^tI?H9-5+9AOfU-A#(=q$y@7dgMG{tbOLCB z6rNYHRerT*?P+MBTbl0={WcyAU>2*}ikrOk>W?ZXY$5>HZa9n2Y3!`@kviBu5s&;z zFi!Gi{yBO>8q?~Vfu$a}3q>z}=GAqzi!#s$I?;;Qk7mH%=uf7VaQP0F-Wt^ackx}i z9SG;cYCOS(L;jw><15hR5m7j-MW?#c?zgyHB&s1j0H8kGg4NRGq?ntXkEUvH7s6vE zPhl5N5S(9{#px4m>OpbiMEb*{z^*PDFeEA}3`DW|JTV4t5dJ5J@Vx_@d|I(7ZF;>o zxKMwD-ZMODowIb9v`}9Dsi6Z`qw4gtIsv?Kz;~%!tpI}m`%TU5_N8o>IzRvXz0MYh z@wKx0r+S%3>FyNjAU`btcpmx$$BkDt;{)vq>RX$iN4!}bCICzf@A0AeA za!ik_v0mNbh4Y-GGj$;0eWPkWtaZyPRr=*^Xkjc8Sw#Xf{HPCZcM_;TW*Ly}g+snV zZ@ja`U7%&$i5`7cuuPz9(D`Wn=1vv;(Gh$Qr~T<}fDuJ?f(dw#w`ZRDhJfE6;VX@X zP5a?LHCUC|_H32LoQ3OrT7Sf3AV_RnwP1vz8?B z9g@aO{&Zkyq$yOGrkOm<4E9=rj(m1-`rLxg>E1i8M`x**Z4=W{8n+BLZ8vpVQAaO! zN28Xvg4F8f)3YZN_M+F+0jh*M+d4?@MwjXg1Uv%3l}Z)aJ#F|Hf4HrEMn2#c}I7=IxlRZawy>C}07R-DmYTLq;?F zEPK|b>%JIT%Xp*g#(T9{`Ivlu1$M4Gy}sXe(o7HRg6*2;rjyJsP`qs?VQp4&37oxX z8uKU?kF;Qf?_UQg?0Xp-FDu)Q(1_rV;b9qsfzbN#k`~TbSX5YZ;8vv=IQJJMrx$I$ zC@o(nij$_*c2ZI^hzS56cV`c%2NazxT;JGy`)p0 z8HI?hz-oLIGGNkyR5EAW8A7cDvAonudNIsX>fD6oC=cmNDNJmuCWJ3DJ;E$!C#$E+ zAZ8?K4KX{GaSipOX9~qX*?E5@x=$JWH9WdT)@`GZg^~wwxH|opwWXg?kG3XSToLx! zYPfOz+_(PmL#7jrhBl5p@ zw#)uKFgfePy!IPxi4tR5;f)&kB?pw7TV@NW6t<*y{ltC9>hhKDPkoT?%+i;6bN}_` zjQ!*_h5Yo_`!%YRXG;e9uIABh7$t438Yl0ZhD`Qj|M+3B9?YSQ-_%kOvUENu>0i!I zd@L*ShHn`CMN$1~=Tx|TfP|{=9nfj*=?Bc3u$AhaQ5t{@+cK$dll1d_Hy1vI-2DjMJivn!XPF-$h(n=wn*GdVmL46MEHpd=peO#S z90h1>UY~tR4VVgnRpLk3@@&271GsSAsJ9)6W(%xBu8uo%hDQ2%{~_afi5Cr67=U@H zB=UnP{}UJWPixl9pV<`kahr1U;ydeoAU>r(37z`M0-CJkONJvxuaE?l?9Mqy za>!%zJOk*_1y6&9AFk=Bn#5QcJd*jD>;r;y05e9U0LJp6m$cD1&+O@tl?%+}Z;YBB zv?#}t)%`r~@>+E5wC-8jUCSAxr)S+(-``CAAHTzq^f4n9^coBLsdxLATE7(Bt>>2x zJqHOdS^>CPIERS2yjzLv(*o-ygDWpSJOs5yz*7_876a$Jc9i8d!vIbd6*3q7%TdJ} zlw_MJ4HO>ePb;qgkw#)zAVsWws>I?as76EYgtxAjI=mJOuG>)H!KJmq!`S7b$O&9{ zecfZ5Kljs0rY{=F(g)`r_F-p`>;Pd`=xX}kp;LdN6>~;?B3fkOk5YQ= z7dLNmY-$PLv&&)m6NRXSux~E~9Fi)i%Z3&UEnHxa!X!D;{&aoI#E`C~opnGTlGUrR zw7Di4?I4^?bt>S1?oW*5zu~9;1Xf@)SnJj-=?eGSnIEw5MSQhTC2gK8cy28T?E5B1H`vp)@`cYgLP4^G7#*2yS}tz)-o10nd+-oz5Hn<{|CkV}E#}>q z{D);n!PuL)XLVa4JeDKlT}s-~dnZr6U{3q!;J}yx^l)8u#ZHM!f7ZmXqN6z*;GYZry>|A zof?<3t(3d`Qu(dIT##p=g;FuIg!{^NRo{(o2*(b?mQolR>aJB(ac^?w{H_U#_+YLG zB|)Ij%Ksgb>bTEx*F%4%NUDGgt<^qWrURRUs!wV0bUZ-Cpb?)lo^|@nhBChgf}&jZ z$09%3q~0*|=7Y+bzoVnX(USYTfdJS^Lq?PES8On??7faC7Zr822C>+kqnywBL6ir9 zXVg^BGDYIBig!6EYt`z+{VBn#-3N(ft>GtAr}f`s{b?w!i3w=Gi0g|V;rGZpF@d0nP9yX{q;nU*{_?$o#lr2gEq zhHH$mUgshi45q16jXj=NPVs;qJrQG8(=m$%RSdI|McNtn?OEB+vlPUHMg&ZW`?`T1&izw)q1qdZg-IJ8BdKQF^lY`q6YOc)8B4XLSM> z+#JBudD`?<*k;k`Q}7D;3T_>s_s78@-nMM?A zA1VPz?-y;IU%q6Sud;-|h@EcwR{C_YvP{NvOyx~klC%|GE?omptif@VY7mfCmfINYw`)0+XoT9k%gIo z{gSvDl_ymBsN%{oXV%pL*R5A7*mh2VI3m&SwQxy>N%(txXmWQVwFwD4-{_j37qDVR=G%`vJtT@W+Tvb^R6E|=W=a-BGnH?^l88o zcp>3`7tNz^%nYK8B%{A#JAR=LVJs65xFA8Zj@2L(>1uT=vQ=BR&ZQz1Tor)*A&D2N z_ws@H@mqKUi67Elx0s>IVpLlJEkrhLm2KwvLrpfm|@A1f>iL#gQoc%vEi<3plIKX z7dvJSLc7593pqCL`zHD@mZaVRSx6H7?1#HoZS=wnPAd0au*o>Z_!8>7$<)(^;N7jQ z&uAmF27(DbOTI3a9USPqyPVoGr)AD35C+HuiCnWOrmo)C{>^Aa*S2M-1Q>8UW^Hax zD*H*G?N5BHj(#AJERYqb^e{7}J#b*xkbdg2va>^|TfVe6hz5~>G6MVECC@4?D~yh( zHq=-Za6TRUI%uIWpoBjM-LvgE5e6iP?1N1<-Hk$1rPMY13iyS9W-_IyvLtq?taH0tX+47}61P;dZAUsgU~NSXKQi?eOb*ZUv}POripd9yZXm ztoo@LG1N_53?y@eQsl>WDm9Q^=M3D|?Y7YWi+W5Hebj9+dXy%T1J%zBXw+KQioJ2<#eJ(@Sm2qi?ht1wby z%-F`hIh*d6cz%ALmJReiy%W+-R#B5=S@L;9j9Y8c*hrt)Jyi z9>c_t3cqv#`*pI^y=X+%x-LiBqRhxmK7j{p=;OW)O*UiG z56XseSkN;(c(#DINRR*{xnuBDH_q0%{p*k6H%lGIE#EvWN|wZ3Klk`rpKghq*;lF` zAoB`QR6NlBKr1LS&d#SDm_lfO;Dsfy+G+(GU#pHcLC&|jb`F$Mzh;SYAn2z~NA?c3$ zZR_5CqeE=rqlf)L)cAU$JK6_%bZySq^I_;}{DpPbC*~c+gZk!bG9)vaxR>xO_op|? z-<0LR&$~yr$_He-qSyE&R4bSn+qM)g`^Z56E`ZXDXVIllRBR!Oky5-~-YUpzzLC;= z9&;ZUp!XkeTP7((9u01+hfBX;Qv5T6+Bh#k@rO< z(-DYG%VItzOMs?&bW&ICqBL|@wvmO!yg;2o-KL91A5V9T&;XB{gy|~TH@(vZ7nM=A z!@et)zvpUQXY*1t|*+XGcIb$}QvkfQ4KX zqxn(#h{g6>_kC%dxAxyeITyB_g`fxE!CBdjUhoNp}04%kv?AakiWOLvy+y3S{@`E1T zs%LvZ&uKXf9xr=<%cZguXQB5b`)xySEIk-Y$nSYNgsjZ zoE5~3Y@8)BY%f7;z#t^m(|G#z)oq0sL?~fQod4H7c4^fLP#{V<2<1F$Mx+ZAYv7u% zw&715>J4_t@QDYL{rbLfvO!gpk(7l<5uA!bR5oI)Z{@MxO113|vMKP$ZogAz?Z%`D zkrq&ZTJX@Fy4onO?tANQr}qu}CKmXlLfTQBVR^AW*SytdAc}E3!f_+N$K8 zp2~N5Rc`MsGh@@4c>nS3dqi6L!^5IJ=F6#H-7|0qUDbg#s&0?kK30k#_OEIH{Vh;i z`JJTXyRdwI0d7Wm-V8k=3Cy?)&Sk?f*x3)R2ZHCaHjOY;KR}JE`t%)UA`2b#6s
JpT=6%+(CT1l@3<7=xMrDO=pWPhV#5%m1)lT0z2$2U&w|sts(a7(R$5`wMKiqk zhMYYfI{S4*$I|DF%70cWmFDab?a*?>OVq-o35S8DdE2ltVU)`YC~CRG*VodP>xHA{ zINF0ndD_;myg-s9ra8uK9CNOPaWbkIRR#0J{xfcgQtgAiKoOQ~FcWG{^icGIkC4RW2dC4oR@! z!OYiMn;qcgv$dZSblgQWVc@ze8#!?~s@(7tWGt|w*`k%FWG5<>nc#izGd9&J2Ur=5 zh{VQ=R;I_{Kk@`@$l16n$$MP{=S5;u|A1lQwY)BH-szPv0`^~ue)E-`Z%LiJowip% z^#ib@?;29lF8Jm3(BE&ju;93ZKIvG#lJ=Ar%<~<324UZTk|gR6dKC&03ribJyK!XiuM;x`Z9F%HNjzvQ2WfiDKc>P#$`V)+G0k!1k20Co_%P`z-PU5<)u<=)5i#CL;K`F>oH@OxsHGdjM`l^8NmCI z^9c;koCb!ellgWMg4Fgy+!I$UKnj30Hf%Bw&6e4fC=R7ZoCF6E4aBL+J?eKK?mloi zZ#qhpx(bFSYaSv0vH3x7$r|n_k&#MM+9{o8PWy{;o=TV07tGeAPB6Uz5YZ?0JWo?$ zWI!HrzGk!yJvE&mgg_z(BiV4LMn2m9t|I>vw{{WGSpd=b1h$eSUAn8wf#Yl)y*lzm z9<()qt;f1ir{8lV3rZ8x;}ZZY3E+A*NwDSE;xqdm1#cilP|1x+tIj-odWiB+#wHS| zEC9a&2KiWI!w|P$b1wxqjJex5gi3%lcNB6lbBj*>Bo#Wc#!vV(oJ?HgYoETPOfpFc zIg&+mzN@DC!F@bYcqm`Wot<=dG)(nmQ`d)Ts)NEvJdm{hR_L@+_M7`pE(&-k(KSkZ zJZ@gDHZ5nvJC$06aOw8B9`Ep63IpwtzOR4ZAI353x;ZuR31FW<8)5EFbvtc9a8kNe z7oheeQOsP?uLC=qb)s2vrWGWip4XQpD3~nr_37bp#BWQ@PDHrL8vhW}lK( zQF)IjCs3)(Dh=k%R!Wkre6x_aO8^!SEu1~>-J_|W>V6#@L`KkV0@yrpNC2dcNO zonY4{6hpfkT+m9lJ&YJHIt{ngb#K#mZXq zg*q{ls=M8NTh1mzobe@~NZ_uquv>JrpCehE3~&;_79F1nefZoRy)x=M+nuwvqa>la zV**Y8{GRsYVyWCO&F*q{Uq_<$L@}N5X=E@fK67ogIv%)?-fN z2*4J6tGEF~w{N7NFv&#k4kl7YJ6~jcnN5`50K6$qDpYrb3|zjz8V51a7Rr)0f=@E$*oG0KHW_0TQ5I&tC*QPMHOe+a`|_ z7;+3bz^0?g4`kg{%Z#pnRg(O%o+7>Y``=wc)8TR7SHr*WYKzL(8dsHzj8~3Vf+KFR z9Eq|KnR$(TcMG-S=>Jv96;47N%<>FUr`y@Z|EF{K$-1VICeDLXXx0Oux~A>$_MiXy zL8I;8Ke&kBMAffopn$@g{?mel)qS0V(|nx+M^g9yYg3f5pQ&@4*H6F&x-7|2yi>f7 z$dHS;bC(UldDKbKde}0dF#lJ7^}I$1Z{3RH%5_VY0;*I}O!#+n|5`tMb#FHgTDtN# z(gewbQZwqn75r`L(8R!ZlrH`pM?N;pa7LxF^HsiUM8!32uVSbE_M$3Q5eU63F?0NY z3==*nIAMx%6#>r$VtfLW@$l`2L#4z=l;BNT*u-#-#d5$yQFx^*aZyF4b+-L$mfsxh z(JEC*AXLtbZ&Oo5fuDw`Jnt4&=?ZdHQ&gvE-OA7r=t|6ax0l%Kx06$jd&AF0a|m@8`IYViUYh8|Hwp~ z^HO8fDduV?L)z+T9sPdL)}EVw?1z%z-__F+ZoT8W$4WJShQ9W5Z7O%|p<@X>zlIW&ZeI6lL1fG`ACgN7K{OkJut z?>~3E0DHq<+`XtafUN-3Vs%>!cfqR_z|f&o_2NGr{6^h%yt|LrVY3X^!}nx2WJ2pn z)z9>K)o=HIs~pcfjE&s$R1bhQvpmLgUJ(;kaV)?x)Pbh#8lA}l+8OBrngxe4YhaYq z|M|^q6O?Rn7e`{tMf7FZihU;}|Ha<$l;U-<6$W&fJSHSS{aNi$CFa>5c@2W_63!wA z2(q*^;6;tj<3#&9n^Z6LexiLrV22%F!ke6 zKPr6nV<<3;NI9$f;oxIw%ksKfOR|fQ61Zmgz>zZvx6?0auLHqA0wn1A#WlEu1T@tf z0;9BeN9I-mMFQO45DC^cIHtnlIX5l9QUc9rsQ23*wPte~z<^~TZjOV+YaQqQT9<4t zm(&OeoB&(rCr$%)&|CouKZ{H+I=r(Ek&ikF=DjD=;;l0+Fnhc(@ko;*$! zrim9^nw8#-1M5{(MJmn2@~0!Blr1v*gpc`>Is6WcYhij@&*Zu#Xk8pwb8c0fllthysGBWgdNXZh_&I4 zJfM2m_&2Cmf6%=0;Sq;!RjFmx@#^Uuj%XNN{Oh$~O}`#6g7;GI{ESaYr4RVi7j07; zx8RBJo?ErM0SKSpHtLDrg0q`I8wuD9MrA@?omkd`0CkkBKNpsI$hGH#wax}n(Vd5E z(!eX>9+ry-YQ$fohg{#d*HmDRmA5UR)8LW7&mk}_SgfYSfi8~9oMU#9_d){`gkg4p zA;17W@Q~khE0EVZCJ5DTV@h)h^dOKAi8~t`%)h>MtY*OQIbUI$0Va#p4*m64bT=g+ zuSN-5tJA4ec4{{mjO5qgX*wMq*1wpUbxi%J@`Ev0Sjq%s1I%Wozo#DWgN&o1{Hpb) zJn*&uGaWzNr1=iCt60}6g9^+#dp>BP&4A)5u5941@^i)>8;1Sr4EvrE(Z`U^cH8*r z7M$j%Kb4D^?<)G&nC^;`{<04;Z=o`)z&}n_j)VQ;;Eq(hyBb=5FO^jdayP&XazO>j z0p^|YRe@nH4E_#RKT}fSY^QGOirs35gj(0Mze=v+N!2@*(gDt1tcf{?Qe$s(>Pa(# z)N1iKI_Y>a%%nSfzy#2ke-Ib8-koumax>;j;{AS!{dSvrdzJaHkYnqNIdBi41{v~r z!U-JGF5k4Y5Av-{+fz3y=FS2HJ15pDGAuzoQt)^mQ~+$&_;xy>D9(*VIH%#>8&o&O z8KDIkT@jGUm#OWbqDmk)V!N{T-r{GI{y*oH=>+?^S+FoAD6^3$o}1j48|vD+-dh6$ zNSy7bGj#Z-WuP(`Hy>0zOF8D@9heGQCa^D|MLj;FWC5+B$D1Y|ENIOC7foH3Vs?zo ztMrjr|0|@XtVB0p$V(jiC^|UNGgAe%V?~P z|M4m@5sLER9E#&0r<>?Y*T(FjG`U{Z-Apml#aTw7 z#Yy0t{>wo{Z7VNS%-BS+rf=C^ Va~_W^29%N9*3i9Cpk@*JzW_=lfyn>> literal 0 HcmV?d00001 diff --git a/GAN/4.png b/GAN/4.png new file mode 100644 index 0000000000000000000000000000000000000000..e67202c8b4743e0b263072603ec98af95b0d43fe GIT binary patch literal 12948 zcmch82{_d6ySJSP$&wg}M0Q4HOB9g|vSiP`WH(K=WQmY{%QD$QmaN&ymXxiD$}Ws` zWE+IBjOBgCuiyXQ|D5xl^Pclw?|WU}xh^y2`z-hO{@nNH{@l-m-PKT`rDmfhA|j$y zy{)88L`3q9h=}+a6$$tx4EZ>YhzM$|s&qrwYjh=D9d%JZeIn+}g{Sb_J8TVE%z62# zA?Cf4=VL7)VV{J!J8;yNNsRU^SL67!^+s&s?&}$TWlQ~Z8+q}Z!3bTqCChDMK9XBF z*vw=eJH0lk%La3C4Q1G^`N5`pwLRM^={mKGW~-~Uml|9LN;W2rbb6(G<+k9f?-29R z4|k@bIDMC=IRy+PJ9$W~PZLAKh>%LB;ub`pp(e4aWPg7cfGSu2|MK>Hl62|)mZ|2) zyWcTkS44h~vPH5n{6Oiw zIWNf=58;A#baIhFyn9>r_k&~5a-IkY8@grvcFiN~qNJ-#S@ZSV%(*KF_OI4((cRnEgg zf2G!J53^J@no28*?YQawHrwB1tjD~@8uK&d9`D$TFS0FuQ^xZ3bN6lNv?$#YjH7g{ zql0a@5s?y*cf&0{E3%RUK{q8rz3}O*Ln~HJL+KkEnFn**e)bT)1Hl~qn3-ul`HlCA zoZ1~_RBiI^H4-W5R}pCjVCc}R@%A>$G(Rk&?CQE^m5^2z$WF+j!41dZ40epP-m~5n z6~=RB5I)vzZ}g~B=H9@h-FR)Oy$={dI8j=Io6)7awRmm3>t0p1ZnZ zgX4DQukkIj?I!n2%ka;^)*sZ*HqNknMN6S0;R&DlVO5P_MZWG;T2AwHh9!(kCL-CIx<9+&t)TL$e>esCn)l zW@?VI3s+9se#8Fq`i9JJR7B4^&B!h_#=`3OzpQ_F`QH4hQd?F{UDq5LuhCPmI|e*c zh(}>=W&&&bmY-$YUjB6kD1_F?qrB~@>)yxF0k`iRQb^1DR3EOX&;&{#$Q~*yZ8uTQR>UGBhkT+H^~mU>A5K-TS9f-hvhud4^drRJ zf@zMY&V+N?^+#MtH=URL=C83!1vt zbn7@-@m+ma?`6q4BOmiJf<5_2k60ovxXG;L z!@Qn`5OCwHWnS3W?8DQH!Xk{w9MP!nHaIk=tm$b;9hKD`%-v=QDXe>5?oe!aEjq00 zEUGctO*R?sZK~D!xusSjWx(|CY6iPVLrA|31=!`eQFX?NQ1u1HGcFH7D9}64h`iwC zAD7$Y;~##wH;b~cpkO;f=N%BE5LM@w?5|-<7FFCgg;r(crEb-yw+cOS&vy^a2%c!D z_o>@%T79>rw|=eTBycyU58Do-=tOuzn?0<*{55#|S=N}QibK2j$MH%kTU(GeD`S!s zBgy`hWKXf)Z-I?`L`E^Q8;4khjvWQ8VmrN@zMW!_VRl1*q2#2-3Y$FR0P}8!*|M)i z?`DPx2wzI=1Hq%Vbqk&Lu*+{>f$>e))ilxa3I!F9qKCum%rHq@8LNs5$fK%__EcH+gz-#Yv-WQ<~UtAeBzb4`Cnv^ zkI;_lCCM>;QL}e-#@LBU8crd@3hS=;i)u-`Y9K+yc}L4WjU^$vHOU*G2QrQln2(AA zNo4dimB{D@hRERL7};0qXrxZfiNGCG!WhOE{yjpS7`P z+so=$p2~nkzgG2u*=RP2cVQ?l`pOG9PPtB|Pi&uG^lj7DrN7o%_u_mxPVJ@2WX5N@ z__CU#j{nXf+;ry5nC`8ff+=*(jFJmCqWDEqA^jstbvuhsLlxR|HBv@do?$~FWhUN> z7{(kcI$z9#Y%E%zRL)F8u#R6jd*{Ns_E2#!&qeYyEEq}kut2;vwG$G5f-t$QE1Ava z6a18rW14tvsnYGBFbk5lGT0`q4!ye=x# z&TYilp%B*9fvMqQ5&k@c^{V-s6EiWpRhYTy$ezw=Uj~c49pW8*A~GRzG@@M94F6@c zz%C=xL&H(SnY@vVTcxqT&{8p-Dtq?MLroU|VO283}f+Qc-!ewq3Z z6>N;VNFlQq_T`aa-5a8Y9ny8}%p!w`viKME_JsRBs2jeP=xF?VI#>_n&Fa1OE74cF zC`?Z4lL!r}Ww;AOZ;-T{qGi8{30M&86(@GpXHKc%?0VTb&~qOHHt_;KH`F8|X1ee7 z=H4eG-jxIxBH<7NX_@VMma1EtO5Iy>*_{!o2t^@a=e<5am)n*lI%Yx`jiifs9(P%< z6D%g%7?2v+&oN&Qp7IDPURq<07uvDd>aMdUb>V6$vq@pzs&oq zm7A&Fo?v7NUOC3)%LJET+Fq#e5i`Huv$bKhz8TlEz2@v}6>})qW8y|rq-?|{l@EO)SSpIubg1Z48_Zx z1W1y74Sx>&lxQOmAob~AT=MrnsKG)k|BHpt#Tm$--bqYey>`HFMQVK~EBR|lroXJ6 z&UUS438yv+cpy*A#`_v<$Q4JpPJH}Kqhyp_rA*lklAOj9iAiw4`bu{E=2D4E$hJe% zNe}e1``7)%#sQ?Y+|oMK?pLzJ&$4_S>(Q#{b_76GZnd~x29`_WJ=d)xnaOH%E#;do z3z8e+1Q#+`J-zxM>5}{QY7y}~OBIPJG*5z|iuWd6u9%)QzxE}MTPp=2`eG)af|F$W6 zF=AyqpQQ%EWP1=$mFA)Ij7`t7riB*)(IVT?(CePP94k-_|7L6of>!d!M2QVt{3+`^ zl-6uD@z{&^;m)nzbWqA?RI-f7Krh*kvkPyEo$}Kg(gwSc9}h{EJc8G!JJd=91|L!j zbv=>{mQZ;!lvLVUc)P(q#yu#k+L9mOYmim~(npo?ws@KB3+;wctGd958gB$A0LEyp z;DrEt@<=DKR>wBMI#nAxI_AR7wXcO%k>!V2ZEco{YB_9+x8zaB>77??+!>@| zCM=Y0jOk*Z`t_DbWBtdp(_W6Qe)0euoscCSL4*QzNu=@uH8gb2I+G;p82Q<#ENu{) zXjC7L=_X1;8$(j3Q<$$}o@)TRcl_50FW?ga$-fIXYXX+R3rT7&PC&9-0@a^j7WQ0~ zZcG4q_ZZMn#6lEHxHnxued}K%JnvM(oI3eG3K^XcZgD@WZ#%&Xol2q>#est{7B5rZ z$%oh<#9C%Ek1_EX?ROsIm`hca*r(6yYS9Lp%bmMW2h>mCT?%99XC8h~R%Eud?pna= znVKu?pYW~AdhgY;cVq}CTzRjq^)Lp3kX7jtD7z6JIPpN7;4Iy#qNcl8yUcUeV?GRc zX1BMW%B`E!8goVj^)ue>el!?SY>{MXz;6#IEFi$c6+iunGc5U?tuRlQ=%n8O>3F!t zojKd+E>qcnR7>j^Hbeu+`I+CkXBvxDMhvWRjKrYc$n!FtY?pyiJ zX+V@fosukF(KHy8N=+5bR!NwT<0zThntGacr`{}EDF5YrN_yW*9b;nAr!G)ahkNBo z4^pg0;TehGE{adj^0Qe$inIFklft^Dnd&bbk0c%-X=;}dJ^w!a7RAF5IvSYH?NK6^ zJFyZDs8wKWm=GznH?DUU6}N}8HQCflaC(0cK8Lbwnl-c|fcZ)%&lQJ9vC`+m+~0`t zta&`|aJT&gbbHXX=6EnzEaIP#5S>_X*5tCqUAPc<6N}6OY%2 ziVDWdl4)PN4KIHC8^=@RV@zO6=SIu}kMZA$f(YoozXgzaiWDcGHFynE zyXS`-s!gwagSSdaI$aO!`e6OSk9X{Y#h=tw-4cifflqbpjnr=@%>=ndfvN0ag69hh$s?j^t@?_qg87|;8%-))Ic9dPL zh*SbFvYK7D)o`hYF zw!SF4GB#JG*TaJwGTyGJ@dBh4ECX4k8JMaU@&H&>@43(R29+jrC%4xJZSs~B8_kPR z>;&?xTagT7kv}d0^p%O~>}`tC07Hhewsgm-6BR~2U%DxGriR4ySIa3%;Py3?lEJO& z4-J~YTA}ZKa=kcBX3{T)qho4~@ngGol>Q^VEnW8HlD953%t1{SU;5t!wg}v+10n5P z>HMXR`kQ`L!B}{rQE zd#YxftPZ(gZvMrK_Xt4ZI^kj@E%*>by?^jiz&Ilawc&r8ah9XtD|@ut1D}&cut^Qu zkcs0Wl#mRO^_$8x%*c7K%_X#X{$im;cXI)0z`FM&ckO6-dG0B7hhl7SIYK0}T9_gn#nF=ejl@E@E5eMfXQIo9y;n zCU&=I(0g6Nx!8k`9h?noK5a$+I!EM5u2=K->HQDC^IJ6bCCOG^8`u+h%eSTou zZ&r=IW%V3>0DUm|qs$jyf~CiAt_C z?c@dbe^C@f*2B>9`T(mg6Ks=2D8n)^m}%&Z|A?;WX86&Y<5brA*rC;j+12h%NlRb?Me;8eJ}yeV z2!p9*^A9r-GfHVVJ`Twr`BqnU43BoOtxahMm_rjE+n4jhDKZ$ehv&n42;|E;`z}rR zRcnW(ye~`Dy7?-YyBYm?h)BP~Y)|jCjMUJh)rr#fh?{!_1#_0G)-Se1Vs7u9lZjlb z+q@Qvn_gSklkeI+Z7aqZ!ye`SHu0^`bw|AMMgV`GpZR z8$d5ML&H7CRvNIrOSQH8Kb~n`8tvE%$4KwJV7ZR={+MpCDEW0F^{rXO^*fcJiv4~Y zex-6WC`6}@-SB%!%_0+@p7T01lEQoZJs~jl@ha~o7J|JfotUF$#bNG|qI6}DXJ;?u zBND%O-IcLx1gfcnG(sSQMt%7}NUm4>oHwRk?kG$kr{|o?xQEE~@KMp6>)5N!eO38K zz?_-$!vQiXI%JRiecR!ejdYM~b@n62CS3p~%}rVcbIIYH5?Q`JJ`wueIKOUrMzdZ* zx0{x-d4bVU|FGEEl&T^guh*{0Q2+RnZ^}D6Vk_L|H!-g4wTjXQ^P`ADydF=H&M>~0 zONUfa7*E)RFku({mg(n^Z8!9%rDEABZ>hxQ28sPJdbs&5T3Diu9)q>DNUGiw7mk*F#}^Ks?zdc&>(Y zFPEukwKZ@Ew-ct^{r8S?Tn+Nyu-QgOD)I>;(tbUri&(QL9Ot}z&7i&hv8@Om=}JGk z`Y6+}_eAM@Y?;Qyz>~q(Rys(dI{RtGsm;o4XZAN-s+=QXejAgOj%Et&J)>HC2 zzw=j5N!n&J^Xkgk; zlZ)NZ|8iKL6d96wx1;V-_t8um?e)nq7nv{l1vj3-_z-=VtzTbtfz}H-5@jn(o12#& zRBB)45^fX7p88&_mwus6RTc1wgh$9|fR) zy&A*BgDmb1h$jgb`5@`<(vN%k|3XGm6e=^RUuu=tUlbHYd++J=+_Ap1j)~A5#}Dh% zAFY;6Wi)rQX*Rnpji~s`Bjk}K3eU$#7Jo>m>H#e&ev+3J;tAiz6<+_!aXCGhc>|IQ zM4hUetEXFN8%~?iZoXPScu_@ij+%O>J2Btoy12t5*3tH6mv_(qVw8btT8cj&W}iwV z5X+4IZ=~08%6FA}YdK$&HTYV-dJll{=5vB7#=HaE`vfSmABlpACey7$R4skS5=v?eo*jIuZKn0rdvihUYI)p#|DUs zA97h3D67{07*&b?=fz4vX*!4XgINNvR76&kwRJMX7rKjqMjvPhRmnRw0N_K|DnVBD zsrrs)M{BAJz6!Syxa89OT&|A)q)WVVPg4bBZ~>v3-C7HFIz2%-tL2p z$2_#YV;$|lK;W9PKt~-oA$}i}4CeoAEBsL#IWhhRD$5^5+8-T@Km$yj$3X~waZc@w z=jU-By4Al6whENVV}g)MYVPt|r{M-RBMbV^h1vfd@eRFQ%z0wJ`?F`pVgGmk1hLK2 z%8T=dwr{p{!qyLXfD`gVt*Q5mi}Q4IpU3jl1}Jyrx(+KSjlHmrhvD+7f!9-goYzz{ zwho^@e2e(Whnk^?SmgtXcD(-kNjLXRrKsnGMh6ZQ?QivzZpRDjSUy31Q@4(;{`D80 zy1k?*#LTZ!8bfFX8$M>@8>UTZUtDd@Ow)7Id3G8pgiB(rO%vhf;lDKbw`8L`9Kp0u zL#=cymUq5jHFE$(`7lY6EHm`eF#C$b_s#ePD8JqDrs=qrm3%QIbf{1G6#=O)OQvGEW@QWjlf_`Ou~6i6DvUV}VXk_I zra+A$V@Q+{P9#bGM!IKZJ$De4TvKEf0#NcdZ!_Un?nR)8Z}4`%IK=9m=l&+9s*btq z@FDoeo=eJdr_ICsp;3h$eHg!HXUn4!~t?l;h1TY7+j))HSP0rUxhP);tbtX=OrJPjqR@V!D@#cPlau!{TBIqwrw%kezi8jkHGdz_E-5FCFRj5t3 zH+SW)W!`T<$hi~8pD^NC-^X+hj08c(&wP#q{!WCV`S*Q~{~f&k!%hbGA7^vM+38%Z z{;nlaCRpufl17&>(n^2B`8lYHiN!?!j~g)mvXE0@>wSLMUI}g;wx(yz)VR8qiU$X} zmQRjTXCw)QAC-oXKNIvD+?NB0|;G}tkRoCO> z9fZIBc+pd?OU;?_dhZo)5pQP@Fg*>_wJe3a$Y`}31*O~C=lg!^H}i_^tidnA8US2^ zeFMscl6{+ASg;lO^gU-4YR)8JC50OabNa>`L8U4{&AM7gt+WiXWnnY|@tLrU**=1t zibBjzuSfnfx57kUZS;UJKxm6Fchr~7P_HI?N3#{ayP#8WmLMS#qr0is{TitEIa4)!L%T%Vj>T zFZ`O6z2xV^jfg}4!ZUoB+=W_OK&KGQcV38_2f3IReSa#m-tBX9vtmAy0G;;l9NTj` z7VRoxKL*r_T)p{)y}2F3=mW{sqs7wl4YT=k#U0DdN$CxJQ z%BWsRMz2{F`cvSDk+Gj$Eq$ z1h~g!-X$b-?vY8tt!F$)D0#-sBkKf_@*or!gO0w75i(Fuv5k4q+}1#7-I4R@=cx|_ zaTSJqn9*5$twFVl1ZmyErJ_{+O`U|5@kr58$2pLu+-Z_vxKV|Hr8XB;nKo z3d9iFzhcM@a3te@OcqY{OiAuH?@yPs>eL-)IR4Xi z0-D-O-0zBy=Feoz4Dv#ACTPy{Q@fmQH6om_$dkR?|5>z%lJg1kHlcO$jk-x~zrLji zUhoc3yQ;ucZb-#@`2K3n4THR*r`JxSHB|*Ci6z4no`Ff-`xbU{_*So#JfWn529F%; zuarJzN8GrG)%*fxw~?5`?oI|cl7uiV0qj6n4P@>D0KJosrHOH$ZokRzwZ?>+NnC69 z#&-b*9K8OKN>hQ#HLW%ikXv#vPY7XiP~PbG#DTCIINqJt%&S2n5}MBcNYib8v;OaO z-WO$|#JgurN*I1q=~iHv1aMI4>CZ6Ir9?|TO`mUYwNM}FM88F7VDR+tO+p9Q?oD8rVn$;{jCA*<%FL&5tA{lB8?hBA3%A%enadC2q}_B* zfsI@N8;Nb7vSnV8vdFmbjAN*JDa|S0yJ_}@tn69zF`<9+3fAm3MSJR8l^S#!uXUv) zO&G|4N}mA-<-(5lUfA=NwAQ|bL&TdnWtN4kc#dh_7qklxL}~H#4Y*-gZ3smH{}|7+ zEpSKdEf-9H*f~4vUgm|>sK1Jlc1B7|%_*v8$>z+LdJ0p#T%EB1aHK$a{e+)nbG7_Y z@)&!;UtFrw?}PdidC(3yv)cErk)C@Te7;|)f-LTM3>>5n^vb~*(6{HnVZ`aF$I%bd zXew2VS+^5>@)A#y-ohoA{CJw0EkzEg3|K!!yS*@nnfZJHuUZ<+1B^uijMW+79jyxZ zw26gWTf5k+RmU3-f)+?E|_Ya@BlCsSD+&FkO4`;+q=A6()du0Pgsmuvn0d#7Rl zb6wX?4)J6!hI7A{)2DXhm;C-0bmP9+5&FBo3HfmEl;Y7GO){4AXt$_kuiep~!#4=- zGkPeyJxD%3Ri|c^U)7ao(X~ijZy`W!o@P+i-%+?;i z%$=2#x)_%yGkaF(!+L-G0Yy_D7PrN|Y#}C*a$d(0-)5eqAq)q@X`t;U4j0T0mVNzY zayOpz`tRub@AGX}B@;%k2BSMkAk14XDVEKr?roHE{K9ip4!M49GiSLdqSJ$0Zxzx9 z8?~{VAECd6eWY6g4jy)g1BpoG>(#x{)a{r`<+j)8yEf?}eN7U2NB%|r=!^02BOK~A zlGr`2zfB`TvAH~&eOm`i0mpAiG(CQPSVwS$@Ca#G2X~{>HW$N#}nxFg9*|cZ-??o zmAacrzx$Arlq7t415#FYmfWq!D{5#G()SbYGIL6O3=^XN){J-JYzu>#Tod+XGjWh1 z#R+6Z&9-Tplv6Ado8&EItaM22?3k%8I6oQwHUsFzaS75-^gr0y(3x$YxsLobG%^)R7ez~{tEKyl_F47<8Y}oM0&$L3hV)*imDet`|V!Ky4 zC;F^MCxu) zoV2yDrGW_8iOo!Zd_paua>(4uX!Ai`WQm{<^L0U(=k>0M;&#{d(f%_B+vs^@(MLa) zK9#%!HOy}D9_?dRln~}5qlXJoU+OWe_N&#aA1h}O5x|9o#{op0B3g% zTv*#*AMQPW<;{;|-@C22!oK^1u5JOXs8@IMW^w7%M?d-EBI+c-{H8b4^Mw-*v&$+S zE;7164d4XHH`8|_nO_iLptk)cN*fvfgL2F{GT0D0#Tzs^gA%@9#n_x7YI~ssI2_y33fSfrQt@ncv<;nR zgdRn|M)m%pM2=rGds?GD8@;)F)aK+Y-WH>*T2xky2A!gO-Mmd)cX?{BkUhZH4RC^Y zY!*3v#U305|8C%(@0lmjG1}?Rd*g}PzaG~g1li*DK_|_>wx5=`6QxneqP6>W|JqV2 zjtE3C_$G1w>$m@Hv&uQ}kF))Msv60Msl-G?3OqnXytx69Z(Prbxxe2Aeyeah0LHDr z%Wyt{3j9)n0i>6}8-Kq8KchGf=D+{>|MG3%bJ!6lm8a7B6W5d~@bd{G)ms`$r8mt3 F{}-qS+%^CJ literal 0 HcmV?d00001 diff --git a/GAN/5.png b/GAN/5.png new file mode 100644 index 0000000000000000000000000000000000000000..843d7e9d58a2c70f005af8d7fa16b5864e2fb33d GIT binary patch literal 85587 zcmYg%V{~0@)NO3rXx!LrY@@Lo+iL8_cGB2ZV>^v)+cxg*_kQEvd;VmM{Mcuo=UJF* z&bh)AAp8bF=TC&KjDIV*5&3xCHixS^!epI#Qqn=IfW7AQ-f8P|06xk}1wZ4(lzv^`B-3 z`-2XT7tK2lJKlRv7ZdXBw}X!!opxUOJ*M@j(7;EcbStDs6|wq9{Ya26dBP9WJz3=$ z8)=@AQZC5I!zU8$FiS_weguWOBDf;yCVh0@tNdHb#wUJYSM5c7RD;JH`YSr zBN^lhUSE1-MpRYnZlfAt?2Hs~~n-9dFxpZ<<38fWo?p-F6e&rh_X#r7-xT{Lc4A&?r3VlcB1a3i& z*LbUvk#c@1AvGr$ewiONTc}@C15Ie=l6S@7p++0<__0H!&(Rq1e}6d*L_J}pQ+6fS zG^$v3Nc0Y)lQQlwm5%r$%xtWiP=_`WFNh^Jp>|mWLk?HajOxKbQvI-}m$6nZ$-lj) zCF1}~l90mOr~}P~o%zJg#l-~&eefPYRyc-JC#w8_E4`**K}B<3k?EYt!ZN?PHQI*m z5A)5kw5o>JYiF=dTa_gkX3ITk-Fs{3)cG$-;y3ZP7>ud-;-ZCkYLg+&B#6;=c}?{Z zG$ZM6#&X|eaN`nPvSz-=eMz6YhPgqAZO4z(H*&O+l$G@JN3@jo|#(p?8EQ zQ;+q|`Ef&sYStm!BT0mn@uRLNmOZ&Hk7k$LL~JxIg?c|R@h&FQA&cdgPJ{1n|9I`x zv-M1`wp6c-zZcu_5h-I55Yqp95{}SLuG@`T^re3y-<9vANiDM3pW9Pilj_)$19nfa z=-N1o{q*)`g&oU7tH~j$^CHOnRSndf2%bndm<<1Zk;%(+iBeWj9OVz+q$woKsX*XP zAWujqtW%I1X(~NijCgB{GqaL%Hfia{hFeqqFU+5iKN`a{l@@~7F&@h?8kOWF`2-0X}uQ>{yz_c{N}1Do{%je~EbUalLrl;M^t)u#T*K46=~!b%-w zj2>210I^Vzvr1#1vp1{4^g0zKg-Sqy{6A-#M92ws);L*~VmFc_Q?0ybm*^@kOCe1) zkVGw-S2n3E={r&h+p^eT34gjLJ$Vrv>}6z<_kjKU8w#~1G_SMxsIkbsPD|36Y9M2{ z3qBYruO=lZQxh^iFNAc98ufpEN=ag@)BRfrVg1&JHZk2fgRU~xf2*!J$`?iWSU#W5Yh_u?Cog~V{$bYpedK4yupC!vjDq2f0g&(E5s9g7%e9y4@VXzL znEMz5{WA?KXAQ>a>Jl#Cs1W0|9;ZJ2M?8%#Jw~A#blHvHcNex6h>~YUs~&LfaESj- z2vWRGDNNv*D+^a44xdI2k%{WnQ)T%4yEoXgTcYDq)+7t9_ffj68ip#U=s0RVhf`QLmVt2RyCyrcw${;Xz`;$nKIGmZGS zOY_q^k>!pzraYhAy3024!zb91Lb`=zkF@?|8h4s$Dn7V={MW+o26FksX&Chr7)|r( z=BQ%Icxz(w*~wl!@ex!h=E1;;L`y@=Jv`qYDx|Z~kdT0^U7qdPuW1d}wOcROK@+>@ zn4Dg9_+Iv)%Dh-yzr>8T(EM<2Z7pioDnWaIQ*FzZ1+5Use%wwGI=Tf_ts3Q`)q4@x zKZz+yg`kyYsv({CN$({}5_R*(*7xrT%g$E@x%b*1O^U#xU+M64GdA8kn$E{&)H^#9 zbyyRo(`mMUzS(bcy^M?w$93M!=%V{6!~a?5cp<|~8oVZ1x{+NLSxoF_Z|A_sU zA4k2^6RjXSw>ioA8TxufDCwm9kBTL~q-r*^#a{Ii+sh#ui5(DCB^bZL!f*wA-U!{+ zrVC|Ke%_y~yKQ=-fKJF`3|01~v6^l8oL2gPzXrRtRGSdahL=``M6uDdJ&xFlHWKHh zD@b<|rn(J#_d7yoeNb4%XEr1;cu60Aeh;-So6ChFR=I*{T;0sGaqEwR25R28LlYQ=i17Vf~Us_tav9UoW5&d>O zM4Xj{6|D_MVRq7azxKKlyf^@pm*Ahqewb0dp(JnSKT=0`ZE@=1CkN87G>mm$`MiZQ z`Xz!&>2*9_!L9Rzk@4RN=}5}R+}_;m^y`!M^!6@^#wXFOXo*CIC8bYIy;5_ZB?+M0Gh(b@*{DDbw_YuDxK3I-o#Fp&6$40l+*}+w7 zlqYr5_voqds%V_^{my#Qw%*z*zd{xA1kJ_~@vECRUlU$Z#M5+&!cQF9waMEji3z&G@~1V9aC8*2_aDDAZgez&h-_Tg`- z{<5vV5Thr>8&Xcm@AYN=UBE@FY5eOi2BV?q4Aw(@Gpc$)zo-CAtu7z$E}wS}yNxv< z(9McV-nJLB)e$qeAl|IO6dCS8nw(OGMCHMtCQ)q z4_qdyblWC=fAie*e&pt@C1^sa___j6BF!nw|29 zw^evbA(d%+RzbkUl?5KOz+*U;RN(Wiz8>AtiGa_YiI197MYlTt<~kUeZpeB zb)YA3nnN2y*JHGGpSCvK;M{BCOfTcIXjoD6SC@8^ExlHQ`*C54<$PHo@mih9-xjCC zwe|JYMl1Cu+jZbacU<+tN8xjRoYhZeX6Z%82i5W(_6EbdoXj21mCi;J@@8f+M92GM z8pq<&R8<#gNSVL>ra5Ex{^4tFZEbIV zLf!INJoC$?2h_|p7qgqbpWcrb>$K`sLA`xFVdzvL!NE~D%wR5k%di!Z)TI=b98pgL zHa^Z2QWhM-=CzUBFZL;q=c`TD%Pd$K&v6n&{ww%A&eYC+_4@CWev*XzUQajsf3vb; z-~N@ibatzUvt_4?wU(>&aHsO#1&D=APMeiG;62HzA1*g1cbt}Ttrn|1AI_xyjtYC% zoLPU-t?Ap#be0_b*s49bc z=<=Or{VJ+dilfWRt@sc7`}?=-nA0>|9?7~eo1&G_M=}4AEkQA zNn_4ca(@w5?oZ{4Ty0PF-Ul{q`tY7@tu$KQld+nPxj!tM34s&xI2%X+X;akZT{3&V z(&!14$83)S+;_C^IX~1KkPh?wba04?kt3ioey64$9UiLhy>bx(3AVmaseKK1+41*KWR6&x@ABP+}j&wqPXW91&m1^Fg?%Lwo3|02F~IBD&~7 zKU1gY8s$YsQ9JZ&y>BE8;BZl^2U@SD$% z%g@fwk5}NSI4<7Hbtbm9wi7<2jt}rqOa94iPbU z@o7@vGv_XWmB1Q z3y4PTKi)i+AQE9@39Mzt;sXc zZz!tne1W@>7x0&>8PEn0%9J(7uF$h{kzTX?_J-%>H^)7gw^to-+}zTg5Fll1d2MSo zc-$@`S;RWT&})oE!|}^XwONttV7bu+Xz9O#T?fXbxlL>o0vW#AWGA8Oxf4buX(b87 zN@&ESJWwi_5XN6GyFO3KtMg2Av?RpEg`4thk2$@z{Gkm(3>LTGwyc22zD}Z%Fzd1k z1O0&WVrfVl&)`gHK2@x`27Yqa`@<@V_>|YAd3O(ROm8iRzh94wvqO*wPtG7VAYNn# z6$IYzo)5D_AsOSE?NDax%_cX1CIuAOYs`3u%}(#?j)xV`%MLR>#2BBK<6@vGX_jQ{ zmH{mTXh#o4W&xRk+;$!JK%wdQg?N>X$9R!e>g+p<@t~Hgk!|74bhI-N(L-yq($E3~ z(dT2==XNm=br8-Ui~7FzN7K7SG@<<-@Ar!l*?k}g*kg++`aZDw1J{d7OG^ji84_Y* z+qW?SA6$-m!)PAVxZ(_ow{cChY85yf);OIH$FpX;gHf&olPB{)n*`qJz@653%PiYF z#3_|Q$SQy^WIyQLn5tWvY}L@i^?XGPGP)9s86pWv`~0Y|=8oi4@YYqJ<7p?tepLg4 zT(PsAN|?_>5Vvl9Z@nd+_kI8O({_T8(hfaP5unq;$dLJ;NP_l&)K{<8lS86+nlDqW zS@(UrhHjwm%p1(v$jPdQngpSN69|(7@7#^%-9i`i+jL#EX-?X3>h^;Q?Bc9!r1KFJ zI^mq?*=*OjLOV8dZI}88*Y=%l-yz^)j&=XQRgQghglO36Ll!_FgWr*;1lg|LRrH6) zqGN*VXNew3pvph!6JnG8ASn*q8Xf#>k{5%4WfkDI=scm6o^nuukbhFp?B z(G|2kD$mwPV}T!xzPsEc9(;JYKXrF&dle++yBQ_}U|pcDiNw~Ur@MQ%^y&MvtPmcp zl+YO72Hp(QVud(jkf6Vw$L%=hxsO(>GY!NLfG)%%adOp?{?7J~qbJEvrk}_i_Um_s z5nE!&VK-tyMH3#cw{d2=NZtdJQEN+!YNZxtVf4zFPjEPNun4*!uA;o1zb<7?WBzt+ za94>c5UfE6n=MXMiDU=~4h86lP^y1O&VINR=`9-l_yJ%OEMnqKQSevHm4~bCK1mNz zQHU9+Wrv$Rse*91KxujTLG6O#;>9Xmd`1}L8~`I28X8KHvVhu!Vtgr895T7f~6d70 z^lQ(@04wcA%U~Ijb`F~r3^cR=37mRVEC@=FPRjPE5JdbsRtM6VkS6hXpo949$8k5a zifW@`iT0!fOols_>UZ&5%6^=tMkewM*iFpW>t^7c{qf&gzrDj%SN~Ki?nCc`I=9P%hgpJN^9p z09<$i8B_#%A@K9g{DW~IBr1hbA1G(`Giq1bZmKC&Ix6DJ;R_zTRtt0`&rXLExjR7b zw|#rMhV0@{-;wYXwF(dmAcBK~WBDD^z7D|k`EvDXEpKn{IAn7?^O_gfe^n`wMrEp- zkcyyNw5H{B>x1{QJt0n$*;3*{kY-oN{DTKQpR_Mo_!beDC8&dN!rwuV<*Z69p~th) zd|LR@#m(3mhgv~FVM(tI1(JydXsM!*tQq6(ZotPFY~%5~X>(!HpGJ^5R}1fy)#4Q1 zfIIH12145d(jlVhZ6Gqg`}2Ov^?dwQTl0&2;Xa85h((i^k zOF~PK8qoGcqRd}Wv~C!?-tuBddV_L>dPgfXYQgS6cB5}eYoi_k;C4G#s&fCEjZJ;d z(VfqO0=%hLHBu;QNa@%CLZJt7TVaVEob9#K`!!$?3K0*28(IIPFh%bLz=_xBlC8kh z^mH|^uJ1pQYb|+N?zd-ln`>}y&~_g;pswe!5A=Z{&-0BAd{qMDYV9vL>G!9LB0tE2 z3vf?;-d{-3yUk(`V{e;-8Y~cpDb}#0ymzBGV@(OzT&I}3nYPv3v5n~_B=AE>4eI?3 z2o1=(*WBTo<+kv>OVIegRKSvRLvZOKO5|9OxaG)SiIbqU^UpXPjN!iB0gZTD>?$b@ zx#JM(`L-9HF^6JT9fy)ULyXJ6#ea?$XqWquJ@pgfzd$n8AYzF7V~Sa0h%dpAp*|>N z`RWG3R6Ag5$b7DNSkOJdve9}`;RG+6pu6=-giH49?==YE6Y8YA$g!z-T8KgCT%z=TCnFFqr$S6=4{$$FFLj+6h>)8%Nbv$GPkVVqepq zVDiEggKgByt3PgdR`Z~blcGmvSvJ!{j8>BPuu(|buo-_xekWO>VavNvs3*csJO;Yp zIfI#e;s$O4?ZIUBCvbDTltd{x9}U*aXl{eh7|<5C<*6+O2D^+kp{^4k!Z&W`%7IjY+M_O2i2=Llr~-cB3Y%S4>*) zswNVhO1^>2ht0ht0l=ko#Ui4_T=pP$V++_dzhQCm0r)^*3X=>bjvfi04=dNLmRD~G zZz?NQf95W+WW~he1-38_`OIfAL!SDb4WXU!DAs}m$D9v_Gbr95B=vr;&%bZIJKsEr zNx9AST==3EqTZlsYaPgY<%y{k0BjCM6aJO=!y6tO6NT!f-ldX6PyLPoA&XfhHcbK@ zdv0FnPR;5%%+`LB%4{@MX1EfYP(x?nOzrJ%5Q}tmkQ-&WST)|y+kk{8U}5C*6t<3~ z-{y81%@#PnCAmEfkIi5#Ghhohv<;H=gwJ6OQ;(D$r217K)d1)07x6r75}eLo(>>K{ zJ;JB}c3&7u7;_DqgSh%QrH-#)S2d(yXYC#b*QXa4mR#W*6TiDd`@Sg|H$MZAakWyr zX=+Mw&WUTe1OX-eXTBeo-*ikw1nVE(AtmyK%xP;SRa*j{#lBWE`1K@97S9c5`=M!Q zNF^bsoM`_^MGwWHE1uT1F=E$#WVy&cx9^Xe_17fE{NW(cXTa<(x8nRhJS@4u9ELos zt$TDT7}8C$XP2Pq_5uXjpPOad4X9mt4blZ{uxdOk!KNx6#c_N329l*Fp+G2)Z#%%S z;qND?5}Z1P+}qg`-Se|MFfTI~0tc?GC3(!?Bz;n&2pE(6M4O$Dn8kfT9 zV)bIeN`Vym9@^_lwSE^c+6x=jAQ`GDEJ@Q{a5LzS#Tqfdr?y>&)1+`rgsd0G;T5R|+3w@tCWKZ_M`;yk+}- zSP*y{Sc+$l4&61`rZ{hfQEM96f$AZSqq`tOLC^gS;va+5fnVx~jYWCa()c>3pms6# zNor%>XG+_U2y)CIY1lQtM@NwUIB?BjrqR zHTCw1h7$(&&Y_Xd8Wo=U0=Vq>du0hIr>=qCW@LuVSX%g(FntnQDnTJ2zN~~GYyePd zO-Fketyj#?(LpD}`ocBNU_K1Cxwr;Ym=Z%;%*2E) zn_mCd_6O%~k_*jgy{!w$VXm;E2npi$=`MJgMAFohf$wKf;$HbRKjVhYv-ufrxhE&{ zkBAafsIO2T!nQnEoJY{)pb@#moUZqQsY2ngTP0(z<(Q7aaZe7RrsL_grD89zC7B~5 zBPCaKJBaD{OEQyh08z$FtS&M6`wkiP4Heix1(smQT%!^ zx4x-JjJh7bXx>F?fS+U7ZM1HjOHkm4)iaYwb?Jr9U-PF94Q7sStyO`>4Oo%X@-5!| z3HJwuW|19Z>Wd<|dX$2H^$TOwScOi~6 zeY0u+!e4B3v;ng;z*IK!63=5}YCYBv`Y!}{;zbFAg4%+3UFX~E!cd#-^oN<3 zM`QOoNQgm~=Z*u&gp%jF?@Nv$?}HVyRj2U?nxv_QS*qBRVC3P_Rq+O;kh?k6FoAav zW(X`&N8FR4WfW1@G#bDboTftMWBTcKa~te$_l54Z0EK)OYCrc8m#GHy7ciAFXw-l( z47@$x-X|r4@VVpQiFYT?j#QX|WlZIue*zq&LE<%5PPtqLN2N~7jO3d&c|b!|;!eNT z6xAc?bIzRuN$^S}hj3qFDZ|y8Q;u zI7t4@8jSVLhnnvwB$VjqQHEV-i@=nOmm4ek!?bEI2n<5&60kR{=Lp$`(o$#0LD z8`Ut4pk|3t#62B?CZ12*q1U(;g5H75b+;S@V4z4uwH6jB(xhI zhlJv9)}y~1p0I|-OH6{ohp50c)HMq58 ztBHJ3MdqArNqmxFmjgZ(DAxdkzHka6v9O4u+lIROP8>VW2(!Mb}gQ7*vN#22UnK2RkEoeaqOw2YiN4s)x0HuywimJDm*6trvrdJ?b81pY_0HeV`e zDwIOhGibdA9&DHa_x0$nlc}$u?_y&nw?YRNOfIq{3v7~S{%=Rww?uSqW#V~p{J>4v z2#_{K9$4yV9l>(HzXKJd(x3+j{8(df5fl@6XwD4|PiX^5f6IsM>Cd7We%hNUVy7nn zH@eN-(N)M25G2Vo1<|xzzXH^Q^;wquVd5^u!mpa6nAc97KBEtL= zp&*K}+mh+q_Al`$Jl#$&&1}$aaZBe=zwvRygvsSZ;`epZdV4%=a;bDG|GPeo8h*p} z(v4y*4eQNLLRZ8@s8=M~qF2@CPXLC(*M;r}O9f2%UyG^L$p6(@)WZjr3eODUgz9?% zsHARBanR#$SnjBEg~Igw{m;WuUJFO{%-CK?h90y}LAa4%*!5{uQeVFUWY&rxACV5;5alwid*cURw*!5+Z{TeFgTK!76oqk3 zoJeE{dqVGDF4qq+XzZQLqx=e_RCv8VmvEaJM5goiS8mei5%-!+x{-ThQe`r$Va%az z7z5bQygD8RrVf{3s)}*B9s(97Xac$=(NtJ>%ol39UG8t4nBe#W&|STf+w0dlT)60z zvIbcY)}{p3h(|$=eBi?{sn+gkvTTYI>6{CX@FFn_U|relo}Gz6)?4 zOQK9zd_hSx8TW{_jsOGGM;lP+XKbh&?Y7}TB|qg&!uN%S1~ve;t`ug!cW)X1)1>XO zAWJl{FAWy6lDBV)3?#6bfuaE=07H#Xn>Tbl0LugrPxk?jW6Ah_C5i&M-QBa)@O#K` zCLeFl)?kDzh+hI7G4_Dju=`iep$_=jDx}+tHiNccb#{I^DAv7hOi?e~FG!2QRUyKY z=P{ojc+PnXBU)6Te zn@{>fLx&KB{*2@Twv7M{?PiR1@@O~fa56g-8oV0y0qHS_&W|>x2q_Q=D~L6yNf7lP zliPYbT0u&O5lKiibZ}jJyuanBAxjRM3?BsT1bZ1S*Ao~Z1P{Oy76<6&A2kwJ0tRvh zoITeyk&-y_P^H~8h6#VJaFKedyFTEak;~tK3&7_@2%hdiRFX=~MkJn_Hv3Tro*3pP z+Ojom-xbUE$CvCzP9GYe(R?b&aG93IUNlp16-(L&X(hl zki#(c5&j&-A6I4y3dnKj=dhg+N~r2n_H24(GZhpKr2HRS5No)-NL7{m=tTSs;h4d{ z+|0`DaIQ$c3#`RHUsR+-+>;(3)(kjCU$bgxcIybnaat`Pz!AZU>xyB5ZDaaAqF}(C zu&%5G!((re=FI2V;*Uq8(yf%PqalX?Jj<6jbM{y=^IiZ^5JU+5fLPrEVTntFnUlgH z#$kgoVdL2oz++rtkH{_xlp`8*kroJ|V*zbkcNpB+MK^tWpRI?+LNifzy(N~Nzd-%^ z-oPIcF8G!NO*a}|J8Teb_>%w|A_bL+`!id0kvk#uJoyfTzTLK`=S4sRSt1Y$QIM%7 z!<8&O7>w0dyei;3*mT`8ti73GaZ!$HmvG#Wf#LIE{DzSC# zAX!k|J5>f==eVXmG}Xrq#8Xbm=HM42aEq73raGuU96h$_-!{M);LYnqTdCn;o*uWp zbD6awL$l&xV0`c95)d~wG1=|_#M+QL_w&ZZ91xAE_zXDgOb{?XeB(wfQm|N7I&mWH zCx{dby}5V_nY&c^E30jy9vQtxOH3~zN|vQ|bN6ifRE-!mTX^Zd^6lo`DsE0Oz<>de zqUoG=NP$(v#;6zsREFyq*2xP`*Sk~-zcWACzRlpk^Roqkm4z~g>!X5bGg=0|Hsoegl6xgu{|pTSC#0MA+reLomk} zPG+%91}Ix_Bzaj`x|Mxu$hjy|kr03kgco&!{7ULbH2MT+`Oyi6%WtFD`d&)a2ZwwPX>>U%9KQlS%fILvcL=dUfB{Q*fwG}yJPHyzjb#lw-^X?><50Q?5>H*?v3yT|QK zb`{JubWeE7`$gL&TwSQ$M-B6$0PTe9k4)}uGnRzP352p2gaji721+|S;x+?&&Vhfz z%6vIC0Re!C#hEzUUEM!lI^`gT0D6UFO6et5#elJ-0dTWn6T4olS)_;!KLdU?ygtfg zp_;2cu_Kfj(3a&UyUp0xSd+iW%W?ypV9$OJ`{(E1%q9qSzbg{b4Ktte8z&+UCyO5M z;gH@JH=JVZa#p!c+F7qHelh|A2Wz*;4|t2zr{MKP&g0RE2`H6=RtrTft#nW92azd+J{NHQ=+jQc_ZqQm91%y)S)>p&MYtI-On~ zCv&B8>1@+|XnWubx(M1~6(w4YCjc!oBppQGU^I?$#_RcDEiMnV41ms>%~ii@Q7M*} z#-D_^2gVV+$lrd{d}RB*e14XuhcKI{t%18VFsEx(4Sm35acsnso($ zRc81EFaY`K61i{r=ZQIU0q7lYHC=a>xKqou0~&U|(>X=2&@RD99W2&4^WwKOxM*Oi z?g`+&kSri$X1)eGd9>0Z4hb&_?tNpH+QKP%lROWPTAd!ZqyL7+_xq@{&=ofLWE02V zmnv92VO;?r(FX4B?ts1GuC_Y@n=x;>I}lK$9+sX85tA~p?8L13rU?pDyc_Apyj@tW4p*g10$=0N=i=Vhz;K7aO zE!LS{{_OjCxrgfSbjK~P%t}|m2^f1&#V>6J*r0>%_$Ig&`NKHSt>)BPvmqvJfVKoo zCVvm^O5eXFLp+bM&V&tov0XT@tsR_M$hz2Q644&h*%GcM-|7bniu%mv<|m+O&G3#3 zA^#_lcBMvbFLO?AJ%~E~1=w2%z)Hnot(i__a-*W60uwhNQ(ox< z(kiU2=V@h=;G}ynnim^BGc$uG17r@})=^*1YV8fc9mYjM6MNMFj!zUGXe0sy($pok zn_Q95-YTFwBANcvAIZcck7f$twSPR0P-Sya}UUfc)|t%i_hB{o{PBtjq4{ z>Dg!D7vp|BQwUTvKZKv7TH>PJriWGE70I){yxwKd(`WQ}3p63fLuNhi(kCcr~X z@7v>=6ZJA6N;B#-*8t46_sbor&C9p%(||5XkM$RzuSnr@U^Dm2l4+>ZAG8DgQVdOkMu5p+i9ic}!TEeijH+z79%u7pa1z0ml#J>F=0jNUme=ffW zOl6RuZ5;I{wO!za`a+RoA|t&3B1F?`6QF$jR_<-UB;g1BvX^2xa4EYJ4srks^9T-X zv8i#ZXS2e`Ra=w(Ps!+aIWE3otV*;_r@YL!}qysnWpyV}W0aP-449O*{0(&Mg%a9L?|1EY0m)a3nGozrK948lTA zr<+}qD~+cS?+tM9@^AaFfMewe$oihmf5yQ;7zV&@WeRv{^nKr5zPXE4u?D7!Lsh;! zJtaDZ)q6}|o%J*V1{uRuP{Aw`=0W?-EB$Rm5yT_ATxjr+=hLa&J|Oi8IUlI$G`PsT z^>IU#AJn;|5%ECpIBioTYCp}sJ>{X4^SnwkDV=kcT=2S9`7Td`(nUV*|4q4Ffy!gq z8f=fs^myiwlbTH{9&plEVWGp9n)lu_r7i5EQUdbZG1= zVfRyOYpbcLX*^ak5)X(J9rQWRSfA1l8g578? z5DHOSVrPy}%RYkk2<7uyD(*omw417cdwaG6S5h*}EGzXH4o_kI$gQ^v2MpRW!x4#E z;562CTlpauW+&$W#bJ%lYF6A)5s2>FA_TynD!q=;(TLy$vuQ2BBKiv%K&^S1Pt7kr z4=B)A@%QVsOVx#%JJ#8$fV>X?2_AZSdM+-UW6)~AS#_(Vq-1SHF}l2~x|vuFG$6VP zx>wAd4uG||@{El8fQtYIXCz{NK03O{^9yiL=eH+^8R3KLQhQ8fYsMkKotmpRFgOS} zS!#DWu{;_r&Dm+;Z&Mm1+V7CWKE#=|K7C6B=Dp~|Q6mzo`n05ol)`J2TA4x<}TTmJwC zRUokd^WWQ_RogZ|#wPZ@Q*x!`JA*~1?Dhn};(UoxKL67exHrcpK&^L|(zW{@=jeC& z0Q#H6&y^-SUw}dfsD{w{20#VyoX!*bnZm0Fw_*a+?mX&$RP>t=f`lI4`ho`aQZtgE9#!g;@Q0mM8IZN)(UR&fOklz)wvYNc5DV6!O?8b3vMG4g(=o(95*9cy0eEyr?;fZ z_Hs$;CudgES2}yz%Cy8fx#$no$QL;&E;Hp}OUfHNkxs%=Y5kkyFD($bhyM1XG^jWu zdheEG%)1qtbxC<{iffZUlq1up844hRRgOsDa44UG>a7o-^=1EEHAsptP#5hJ)69^Y zHfCp8+1ZocUjX+&b6Z>B?tRBD5P}G%^CCa|y@48Kce1qdU~uglLo#3 zOyn~Fex*)5vjOpvuO3Lwy**=M;%vav*`CPk=c}W$wl|W1j)sQCsOJ@d<}s^#&i$1m zaxGt;pkAjqC=270YQU!8Y4-n#g_0cQG z@gBi5(TXg?KJWv?SSsjAvU!4eet-6O{Q_R3Ix8_o4x#pG$(Om#vHzibXi9)%2g)SS zs~=A0;W0jDWEeXDPvO`l6+In8`w5WuJ^mB-H-OP=YXz_X{xP2xj|c&vBH$V?F`N9I z!C~`7u41lQ{}VuwFR(xu3pngRtm^ZrALYJF(~lD*;mSg+#eyw}O7l}w+2k(C6_s>V zl%7mt-eq}Exj(x%qyno zGovRhSKw?@6r3&EBSQWejll-&_r;AAM@r~W7yk>utJCT(BqBcdnF1+*LITeK2r0kw z3rkUP@sMTf33fGsRji6T?8@U+*g6`Q=(Y}0L;GtdT@w&}K3dxHexrLQ`#oeMV!wlh z)xAjC#5>M`>Y`z>#5j7BlJ`j#`5UJcKJ5`;GjCD*<~XleEy?ksyCr-HC;UO^T-u*p zT7b0Jy7-A*`GuMLxq@c=M`Jv74S!My23uwTlr%rR)QxJ8ZzKBUd>7`wUQh!_VO&GC zwY4u`ZW4(->(3hB-vBQD17L1i9ys?JBR5(`4z_Bvg(eId$z`s~_m2iJ8ihuO72m&` z3hB;4nmQVI!kvkAdQ&`#2WYFJiN4rnx;GZ5fAH4n{?0Xx%iC9o7GXTL?Vy-7jY!&U zQabrb?o@=;bQ|EDr?+2IdP+4T1gg9*)c_ zuu1eu-BFXd_S~06OHdtTNgIJ9+>+W;3vEA%SAZXBqk3*s)hUp0RnCes-rm&D zlJpt0MII<}o%`!Su05f|Uo_`y4eL8H@>2|NW4C)ZRu>~Q*W$h zWEpR0l>4S9i(DOzk595p`og91fW+~h%n37r`@4Oma9)P$`YCCuEZXnf=Ad*4_%Qym zU$K};31TV230-oY?bZ|&)0PRMGKoBl)9Jax*Ob37Wa8zb8%)I$DAHNbTBAFu@nkD7W*&7XsKj~R_1ZJsX-*!m8i9M zSx2mv@1#y3n)Q-sBlL-)cJri*?at#WWZ@k_d_;X! zoLr4^NI^mTviiAM4P~s@X`xxxc^$|0M8!4#T!3R>*z(-Z>ATB7%!CwCTk_U8?VOhk z?o?5AS|US^1nw#0D$3M=3RB;V2*xyF2pY-W-7(U^@25r(nP-226{~+M!d$q~DuE`9mnifTwkWsIQUsMNjBnx*b6tWmZU)@@J=XH)fn`P9e4u4{}#AC!>;9a@wY@mMzc2&hc@aPmGCY~%fDBm3SYX4q?6*5 zht12)$WlJ_RF{&j-G9;Zif`y;2w$+UYxiTXIB)@bqyKJbq+9ZVQ~2fY$jNAHLD&AC zcVcsxa3gf`0ih+@GcD>SSyvRDIr0=A1@AW#9K!j? z1w4#SG1+~n{~Zh*V%BBjFLyPXQ?ye4cOUL^7>diHF^#(TJygL?LgOxuJzNI&rdU4w z56=!c_);hMheOpc0oTU%L!{Dqu-p~!|L=4JnJ$LSR9N=!oW3qoS)(WXp?08JqVt}n z61}!&cy`URB*QF)YYDEql?nA*1_QkwZMvCeR&Emr>h}46Pa(tBI2LF-FU>5YPW&0W z} z*dvzsZ|}NhDC(&hZ?42ciI&DN3&%}9ZeH%zm=jIpLNUOOD%&<*8b~Pf34~ zk^D|o6704J!XL+6wC_6~(0fmE!r8ZIE%yKSl)u7%Wck~*)mqUXlU~;w(KyCobO}eV zi%YFc{CQIUCRxfK_Qo5p4nH!mIg!K|$h%g;_{$i8AN7>VP5EG(OetiX|7~ACP0@Vn zUrb8p+^IOueGS(q)e{gqJ|TK2(?hd89JEglzI;6W(I+PA+kdTx^ zH+S)VzW2F*#Pug1AI~{^uf5k?bB;O2nE&s0rPV}ce@SF;9Q2T0Re<2p7!eHU=UZcn z#dW5ap_b%6Z7;{Jl%=Q=6O;%N{Ang1#tZs>*Qp!{+f=te)vJW_-!3f(?D@9u(2pth zVS(C+m%_Suw!6PjbGMtWs~4L&Ebv}Y&@HjG4MMq-batuHWTu%-xXngGb@3X1>$vA zZ2OXJ0|R?2+RUIQHVy@)&|^AHjg}0O5qRrN((NmOjIx;R{)u?H{~mdgOO3y?CpUp$ z1Nq1ZFU_spT&2RQe0V&!2;`KqdVYIB`OH$xmtdq5M`~@nq?#PN)b(MsEu*03e-|ZggkP`mct2jA^n@n%ED3h#aYmYrimoJUrfK&#>@%p_h9r=R%EXaI zxY~Mu&~1+8ciR-(DTXu^yyuoi~?W5}Oj3X@oV-uh0zR z3-5TKE`0|Z6ZhbS{Fx|WB`Q^eFk^z_u!71US0*RTQ&(+#j@E`Bb2I&@S7?v8(@l%f53c}UY zi77Jp_%Z*xEou8VS#D&dF$p9^*~O)A&qCa&gZgEaVG_J0udJ9tJ~6_h#*YU?xE7nX zWT|u!X!Hm4-Z=FLDN8ngonO#h3g1?)YZ|LQMyoM=LK3iXm|k`v~`7YdTG=PKWc z;L!wR)3l_bb1Sp9t|6prSQPKR#j-Xbu}I80!XpuV7y&Qxi!>T|h$szP{_8YK=)N{{L>uc+%@%V=iPr2}8;vlzIo9;z1noUMzA+K;fHE!WR{u7ADv?lsPzK)G zn3K_?e`S zvM)IVVu-xd$J_%?Vl-aE38l($sc5Y(#OuY_ixQ6IbY7~7ocflR3#7S4Q7vxSXX`Jsw5n zoO@?oxhB6>?2-DoP3Od?XZ!81_B)=l|IB1!R*cx3hszDvj{8Khn6jv~{fE(@W{QdiULSIope*=(!I$-^jI*3B^CSH#u#?{wNA>xXH3M17-x2`1hsRWHq#coKp=+EIp`~B84ig<3Ca9oA;*h>m<|~VL6F9SzfAS%}&M-aG;A-1J^%)3hQ*n4ONQrJ%s*W!1 z(Fd3EzsG$BoyqTLr&1W@WzXJ2J zx><;s4%>tVtc;4I`nOAb42q2DqIGSUus6zcp|h)puf1e&XV_{qKdyBC5hSRSCOOg1(2V42YG=mZmPMnpMYDshXCMr0W*~uS zQb-_7WtXkUt4YM$eHrQeYS@Bk;5M|0z@eIBts>#aexh-FV<}YTT8;Vi7)?lwM}s5< zmaPx^<>sUbuL92Nu&6CkvmC;Y#CHiTMG*@roN_#Kk#k>+B zm{oYltooI#+W|8%s2)4m(Alnf?rX`fQA-|4$(2qH%A7D=cE`makTXk21;%%Nbj)#x zSB@>KKgUE>K0uY0QS-Aur>HK*=JtQ}5qJ$@r{bATq<<@@Q4AM2CR+L}E3JC1rdXa8 zK1`2PWrTUV9Bkcs5LB$q#_sv{W`+ph(^kttsO<#7ox{wYO z@y*5CGn!|I!fP1Y%eoGTTehDh!Ugr({m!)ZkKXjE-J@pwe|SEUXC_dT-~&u#>1)%TWQ_8}De>8fD0Js=chI(W>dL_g zC6`ag+dZ$CgusIfs(*Q_t8z`U$@ezea!m>5B&{R&s`qM%!hxC(d-kdTJKihpxZ%QC z3x_1R{=j}}Cr&@-$@%%Ke#F9(I6EyGyE8a}NfCf3iPWV`w{MajKE}KGh@HiY_Elm> z|7%6urB+(h9N+Ecl}2obO~maOp^RflG+oD;ePTYyl-o_b=XL~976e%xRLD&D)Wrnm znaexRek4jXnmrB9>~F0%rgC{{1~d?^wk!Ce0TsA_`Q%*Y7q|nBy!q?)Odw3+k1u-; zNu-N6N!~7~1iq^FBqJf))^%oBE^E76>tegfab##Ocj0Upe`cLOc*l#Uav?R6xJ{pM zSA@)XGOlasm7Sf6$vM2R8!^>RqoaerBdx6H!(*7F`Um58K^NJOQ`a7~Syer}m4L(=$P|>q4HKnO8iXE8i7b{^6W|d~w5{>A2=E)V!x9?KUqS59Lq5^KqQ*7a z*kKcjg%(r@6YMK2$t*8R{U*O&G&}p(Lq{v|^zubor%Z=AzKJoNWFF;7RT+{($IJuO z>WQM8e#(MwtCgvZ-C1WmqpXYA0uI@^s{0C+^GMdb5~wj9FJ?V;J(e??&wmv^)*)3W zRMBSBQC3Q*l4Odl?us51Aq4hVd@Jx4(wp?#bt&VY+CCYwVj7bB?{k9DHdUI|3w}v; zj7o$0Jp0^5-%{w+=M<$61gzkc`gK*JSyr4KlbD9l8#&WO!!`6`0{uajZ5Gg!`QdP7 zp;#2;@%4-78K@(=p70PP;mY{}O4O-r(dXK7nYWr+#y7ZQ10N^RH^oFk^-T+NJ zU>9TK;vO6Y+j9%rpdit3b|GXGj0>ljg)bg5-dCrmVUdwe;E!uQa7P6_rn)K4oV!0<$Vdf6!NuOK05y zQlOg$aK-Xz%)P&9w*LFUC3Dcx0CK8?#Kg|dPT&FrK2R3}u<$4%0bk&;aDuxAC>20+ zzxq4;|2~0$h9=h^Yi(5)u-UU-FV88^FN?2u-LlzEBlX z|M$Zs{Q|(O#p8T8x!shPz}!HsOcio^3j7uVUw*htsVdy>;_npjz}N$_guWj?va(YW zdO<%5Jk1yV>5C%`@c7A7Y7H|`!d4omz_zlu;%C`Xkd{7!Kpb3sv9Uqp)AMYEYD`8= z=%do4SsAYqdN5c>Kp^?`@-&C2yZikBWe&7(;TRo($fbTpIbpHe&kwARzVGc0@C4}j zZ9#)iiwqI509p@2Kxg?}&$EEFG1hfCuLHIw@6t=4WdL7_FP`w<$3VE zBsW#3$=ZUi3#>GFx17Nxs+FtX+yP-QaDSKq6ca)YOVts|9!)P&Qc_fWZo^tl*&T9R zJ{>>Jt3$-h^A(_SWYB3!IxA3$#AP?11hPBOJtC`iI#{Uo0}eKIIni$k0UaSWBEl1R z4Cw0WI(~v~^9JTRFJ2ajip9=Qe7k^m;R9MzOq~}AU=0;Pw?iFRe27lJxy*`>-#k3j z8LdXg!^`aE;&%Q!39c`>x>yeq?gu0`ZYvIy!nzwZ7 z8#llU2p$DDc%pgLRcD0qb;4;h*P14Z14MekN3vb+=>TR5xXTsD7%fVYQUx8)S{x7}QA)%5vJdtRf5 zl`;(a|E9*p?+>L_D+>+{EuitaKW;Y9thp&tU~3KBj|G%3#1u>5Q}ohVOIIep%>^3< zDBl_R#~%LqJ>LUcBpe29XJ9dtd`8Cy2p2$IcMF&mMBb;p9lru#Uv6;S^RQA`UMF6O zdy6Saj(*1s&*Kwno9|%M2L(Pzuy3#n6i_NMZMb_AaM|KJH>`QVwP&TJ-7MR6CtIJ% z=kRxexKpN94s42g6M@kg57<1wuY%X@M0cFGUVdzRT(*N>Kc$kCj-~)gBz#akPFlHc zK(Dl&fZLv!lys{gmfsUH@GkN}6oGZP3+$ua9fXA9N4I}#*|F*(LjFn{={tAj?d|P3 zIYi#M38NG-!qEBlOAQv(qJMCZ28JdEf%U)!G zR^`Q)9Bq1_+-kbHzXx^;9`5eBKXa?da#mMXdc-ANL2Dep+87_Po&)gGI{tyi?;^MW zOewT}7{Y^t1Mr%IHoZuBDR_ke96z!Phk(g}B1e#nWB@|BQgQ1b&&g6Foep*ULM5>D zYWI77s;H;{s{UN{+|Nt3_kgD~6iXDV;lJ_v)1FJt3;&B0kj!3dp`h%!zbcahR$Ci! zy$ntdm*2cjw18QLZ9Z2t5|paI1B3g_S4hauR+nPp>K3U|!WT6q1kX#C_=>CD+WVgy%?6|Z|-=$fMUFfFN*jZl(V+xnD2l<*c416vDPk!Q%25eSd&kJg8+toG~2Ug9&#b6$^Si@$BB|Kc*YO{0)GZnBQ?`t{}`wBB07(ja;uw+QWDFPSR_ub$zUjW zY<%bAYFtF*TE@@0JK0k$J+1ELqAC z?@b8F%66wSOsK>2V1$0EV2GfL%8_7@?$Q*$51drL$olv1acN=VQTt0}=XHG!6~>48 z%b|16t0k*ym-Pi7y_|_X?L+-*<$Q;IgQv4pnv-(7F=2K*f;+;40h@}B{!~R;fvkp| z6rD0%6O-}&mt!ov(k@?Zo5?(Z-|MJWf*1{yEJ-R`pSX;o52i%%ETQ5BI(56FB|&Iu zb?C?{DjmkXm^g1EHp+&T3$GA=g??h$O}T?qSMn}Z-*bNeM@N=VHiLbC zBV*_Kx5r+#gKI(LgUMi2Z4g#v-6$=wBK)WHII$5@+#@1*?u6@vE;hZx>mO< zjT1L}yx{O^ChM%=eeZUJ49k6(BZb6z%%WS9+m*`ccD_PyBD>=BgNPQQ4-G4ZrmYhu#= z9I|Rrl0CnT+F(dgGrbZr!u25SXC7qFAC@ zusx!oRF7yB!uR%w{Oa;O2s)OX(>Y4bXFmoWdWmiK3hbzubK_0ASOd++lVbVybFPK>U zy*(zepPHs%%S;_S>^6D=ynrkK+v1Iqn6{qZFcMk~BBaB+_@M;5{j<~hLvs0CLBCF3@pt# zSR)}AKN`+n+KgyJK)0Mhg``QZwp*R5ss&q_*yPwzuSBB~$c>dSM0im=0a;`R`1of7 z0ix=P5>e#t$A#`ESmc^t!1?FfdeucQL}?Dz72kEy2wTmUXaH**vle#}5b%kfPD8Im z_x8(@Nz|pdll+;oG@^Gx_j%$SW4UQRkH|W>`LxfMYcTbHuldEK(Sum?igK2q!0s11 z;?tUWLA2^|?M^V3e9OhO%=f{D*jmXVnQ^qYs={=~ryD_NmRHWA4-xonD*JUubz|QE zjc#8!J5J?*JqHmXg<=f$o$lm=r~9Gni`6U0ibre2>-}KDi+6MW#WFY$ao&6Ol0uw- zi(HDI?G3oODnRBdWbnJ`BiaR9fLu3AJ5{GUEw$<2DNcr*54eViKeKN%DrGDZUmKaRXnfL1wQo-o^r9SF4V?#tg>f7s<(A~H~V z3vzA1K77Q-Z`+?mqN^}`ejxZzAoVQGfS4kn)b*jae;pt4?z6`J7%*IO1NGpcyn6dU z&31y!e5X6%JH&GlgQk{LC4CJls4!xCMuIm;>o(1+j9oWd4HGmaS;ByfAx+5<3_Xu= zZsts!XI>11Ck}ZbI2l_fcR0u39Mst9>vx&gqM{%s=>l;gQc4GbhA=XF-?uTqP^LNY z7z*Avq*Q{)C#lct;;&GzTgxYid&w|{fW;W0*AWEJ$qRi%HQE*g)!YtdrCf*O8~T9Z z$Sl+h283?Vlr$za>Q3MNtdhrbawyZLNh{z6Bsq= zpuo6rc*1p;HM80J^rZ0}tJh)-`1*PEK*JY?hK@kMi=E|6r@+fxF)Ik&)~CEG=88@v zN)?SWUvrutts@oV z0AES2?n2y(l?iEqAuNi{W1DVx{l4TKIPK@6eoUM%JmNCUz^O|Lvg@Yh8h$Bt0P%XO zUhJJ7HkHf2wMSszIra|=9cl?_>{Eb7>1LGT_l^_;zBKkuT{P>}*+{rZ)~8-H-?*q9%JSH0W%3!^HNWu+pRr*bwir_=>cO;}rhUa1ixe$u3yZI{c1F;2pX9 z!1rXLe1w&EgCXow1Z_3m-nXU5vpOG8K4-hAp9znei)@y=c7AVtUF{-15vZkHdIKFM z4;{zUbwkRenHgo6x1}K}<>&YlgB$DfkGLD8VXO}g9L(Vts_=IPp2eZB@~zF~AGUch za+=;d4DsD;1cAzU{OIsY_@O*Lqrsd)9p&R|W(Vn&QJUwg-Aucb)sG>s>Ts)zc2+?d z6r4P3x1;mMAu>X9d+~?HtMHfrIOe=dlKZBL)&AH}?2mQq--03MDwbbs(fxz{0GD@0 z>`c>=_GdL>;^_u4WhMfRD4n0_!nS~C*G3@nbY493?XkPwS1zq33S%(?^pY5aM)7;+ zTs7iyTwc@0JZ>I>nxBka{ch(3=Do_D#>Wb!SrcDGG*F z7^ygQ^Ni2OERvMtxWch<2jsL~pf1krNTWhpr<8S_5_^Y&&wV;1@Z{i2D)y0PMPqT! z#~6tSeJW&1HBQgxat@I1-DL@4BWri~q7avXqFK4lv@yLCWDnl5yBkhs=J-xPB|_-H5w7oHQQZhfZDz9eX`%1@J78oSw2zK{=?_PMS)XE7d?7Q}2>&SkPh zhf~%@we~2A7YI6}ePfMoXJ%1bMnC6KxFc!HPcLn231Z`^CsuP=65QDR7XxjkGd=KJ zp+2=m7zhA!vLEq&58acW_p>guR$D^cd$zhu;_pz2)j{`;3>|wRf2c zMLc4ZbhC(mA9fK?DQk{-2%?BT>~#NRn#h$_rTg6Ip(jQB)d4n+-pXy(aH1_)eEfc7 z{pnju7Wn|gu zW;hvSyXo&_&;8x8@G%(e10=B(T-^Sip8aEo$DxAj)%qCdmxWPrYUIl*L+TssIU~nK zqxcZ3MWNOnCNLjPC#&G1>@VXupe1T=3QI_efpk5MV6=U}?d-5xve&m%apMxay|oy4 zGGZA>Z)^JIJ#+4Z$nWxa0FwwU{Rogg2bzR{e?0}jZ3TH4BpmIhFsMbBV+K#keg0tk zDUMsFh8Tz7h&z?Wv4h_CFZpZx++D;4_u#e~k*v0pAo2I8+-H{QH-Ek-eu%wskqCJ~ zWWrf|w(-j_Af>*;#PYtt0B@SseHtBahbTOT?)dkD=?AwJUcO6(@vtv>!X`W6Gg|m5 zjNyTGRYf~BQQ4#=BgQtBnjURv!Q_7ryXJd6#JFW8LyC#F>81kvM%jv4P5`XaJg2Tx z6diuEPqli@Ffy0#JBszJW7i2=jg5GlpmFZ*0)R~DrCT@HTgzlMb($5zXx0jh?*8$v zAI*?p`7Pv<88<_(8U?4(r*7iNX2)bhDe zxv7JmhKd{ZR$uZVtxYE_;5|-ilBDLhtgN*3k07@1ad-}$_H+0pZmVpWL3Da7gNyG^-3j4oH=YOZiL;$)DSv5MCvC`;Oh-l%I7_*5iv@ZV~+n^6ui$} z@?rjLRC3w6UT$Scq22{)H1_HkxI*5F=f*3e33;Py4Z4k-y`Z7>yYZZ>>BB1^DTe8r z@V#OqgvzLu|H|r5+#`6)9i_py2mMK%n;FO1{;E;h>MYpD33*jfBXNNC5w3Ye4n~S< zyk9MYXwrzzfKpXrlsiC)D}GMw-vT|qF960oq1i%gH@^icW-%KD>Tk;wJAWrKdx3$o zHkk5`h;2AI{JslN%6uP)mRSmX zv7aga-mbnNZpGfh?Hj4x7Ss(2zh8GKl6l&z_S>%Bqx;34T*c+BnCZ@>(P>rHTI_83 zM2x-DY0riDd%7WZ@?a6RbP!eeTkeH>(BZLAg*}U^7hw931!i! zVn$>eZRMtvGklIS#3>M!lz>+rxEeo7iXFK1=yWN<-pi}F&Td(L6GyA~8cJqn?DCz( zWN@+DzI|yD;Rv1LOSa2A@Q$|DPxN^jiE2O+WkI&g?GFPZp zjN|5SL2SyGy#QR7QL411NthirM^)j6Msd{mI4jrH)h5J*L*c z{k@<`?hN^(N_dT`c^@W#M1zS5^P0O&O-=gqXM+iXu|LE(sm~jj0g#Z=j2FLekVDYq zg^gQE+W;SarQi|4LZA{uQM}FfS?R$!cGg_&jph&^#d<0+zzP_`cY4EuL{Xp#gmITI@=si*WZ;k|wO&h)g{0=-Bl@5SL$MK}_O|SZ88}=4;*}t&dYg~@hE(rI{Q?%2s%^vT%=F}PU|#- z%^`q8Dl}sJt7#0nDWbSzVcs{QEmG!_V*$eqV)`z~1+p_)htOYoc^Z7LUI`;rG%Z;= z>#D231-^FSIRb^!8&=LGbF%kJX^^S>0pXdQ52iC2G@tfB%`I;C7=bu(f6~r0=n0Dc z!V`cyzEO72-%0?%@9O4HY%HRp#dmF=J>nyu? z=qy0(L)KrxQZeuaESX9nO-CcK$2@&*T$m6N>@Ri+t5wEeGEC>ly${BQmSGR_yz5bgUh~4dLdd zT_=7P8cAic zthjyRy&nFR9+MDT;fP4awy;!c=U>>9nmmO25C@Q~$SaTzh$dvaF41&aN-muiPLXc| z`P_Ay`U@yNvc_cD)Q>5%9i-+tqiL^|B(kRI#PIgShy`&BBk5Jh$)wY%Sjk2^p%1|J zzA6N8q({PuhZHIj)0jH)S@zOty<7^th|8 zLev9J~2-vmzm+e}iw#B4df5uY9 zlWG8$>@tnWXRu3U`^!)Zv(CORLcXk1E2D+{ zVMLr&=dlKn?Yp2xp|F#hukN=^h0CDWNkW4KB3EANYE)7Z#&IpaU^^pDW4Xbog1T@5=J&lv}4AyF@u4#9zhOG=7F~Dj=8kWwzWYwM86rTTZ2!}2?$QtS0S2+%rBiNT$`+OaUu`GW;g-eO z!{p2EJ znCD+N4C#e6YSP$P$UcoNRLy-~UTN*S6nq+nCv+!%E=eZ*47Choig0h<$1%G1d*93_ z+xBjKHr8G!ubRk2>j$`*WLW9_xswKkwGpMBZt@Di=ca|LYzSMe8wOk!^iusqJM?fg zcK5%|8+2fv!yH!Kd>ajFX;ujIo_Sm)E-A<)`iwK)9o1QxbkL~IN? zy6C=u6rir_FyQ)#-sb~yh*Vw25pbY*tT+t4O{ue++G;XT&+LjhWq+-XGp~gddCM{5 z9@n2(w4cmF(B51I)d}#XHQ@VB$@TRQzj@;2cz7XbaIZ(N04jJr?YkGQiQTdhTg8BM z=WY5XoB!p%^&C|MV!@+gF89Vm#ZY`l$%>q6LrswQoy%Z1n}cpxTN@{(dFX)N z*E8wJS$|=^PS(oTIAfa}+T|s0BN3saaUPf!K}7pxztJO}INs*=@2TfC8oP&lo=MPI z<>H0h!%Q{EkuO8u>6=%dQ!E38@6I$`bq9cqMYB-;WC*y;_E&XYX>*8H5V}ta!O!_D zQSJVoI)WSxvRgsy^(^^*)ABa@C9y`hV@j0$qe~-YA-+=VtrGp|7gYU5&FOfp@{b!f{ z&$Cj#rX@cl8t}0|;*_iEOus}G2LHQ+q|GV{Dh#xYJ ziqtt>s@z!9C~bMvdluuR*hKfZij#cp^#&hMQ$*6&A-vU3%#zc;;!N9*965QTmQLJBujJOg;Hqh_mO#;#SLl7c@_j*|4cNFDmOW-S(pH z%3^*izIC5kb%|r&npP7G#%Xgs#+AuZSJw(EquVrWt z-R-B>Hm`Y>n=nz{s9XOwOMU$1)^!eQ0ZtDs12foV%ks*T?&l{k%^*eNp|qlIo}qZR z2)4C^=@2j>keNDi@9ZvO8un+mIRD!Do@Z*VJAJGJ3y`pC--iM)+w+$J2eWsdGi~O9 zzm51m%q%z?@J7Y*orT@Gd{sSJkNb4BXd=VdYMMFrT2);OE7D^h0++qWYV-rff}5Z- zbz7tRZVtQ@j0D9uR(#zI<@fq+`vbIFIk+!b0>)PWFKZcj6(sA^X0lipXV~cf=K7M& z>$YawemrgI13K255p-2A+?@TxonH|zNt@qSjNTWhzeDk0*;Z1bg7oRT5m?L>5ZURx zOkjOY{V}`l4$47)Y-eGxx&m|pftQjNyyrO2UKTK$4<@XIQ}x7BHd9$Ic9S!}@G}Fr z$8UB^gkk{ni+p_}#Pk1tURn6d|x^E($A#- zfB1Xmw=e^h=WD;`Yk{Xf0+i3(_2aBE?XLGZ&$mQ=RL`@=tW+=W+l;hINg$+SaC=$( zN_;h1WnLS3)7j{#++QJH*I5}MaXO>sh7M8=cP$8k8-1% zf3bvB^398##lQKA4FbRC%W6N!*mc)+=ZM|U?&rsUT3@moPc#72X&=q^^mVV&``0K= z2fsgOR*o1U_dS3v$IIjxf!h&6`T~;C7g`lqk{5#BO7zuj{^u7@dWPne{0|wcyGF-=1@e!n?QcG4MSlPU zjkd!oUVxMLYhaiJAa`t53$@Zo*6ZAva3?=_IO!e9bfB{?>et@3k z@O6;LWmail2SS?^9@Sv>cQS85*9j#Rgsjd=ZixL?Og--tibc_#2sDx z6KMAXyYd*|fMl^IR5zj!IChyd$pf~8%2GEty}%dwMDd;;ue7qQO!>b|VFBzR+kpTr zxjK8|_idnUn*x%lU0ws1Ikgq)+DDZq^<1QIBETZJoAc(b(=I+O1hg17ag3}tUol<5 ziDT*Q4SJi89F|i*0aOqvIJsVBf@_}6h>*u)8800|0K=K3Wu6x@+WnRdxFdNTYAZIN z;c>o^$ftH}9r*@WI*r3qh0w3z*n5#$!CX^!5{JEPw+JKm z2o&8TE(hbx;0c^3!LrSH?*RZ=W?>$z4Crrm>pe|8RRi;#mqv;6Z`Wg(u^Mgt(lB{2 zBkqOBs$`|Wvy;>cy2_P}^RMawkM1KllrnM_S`5JBhRMPYbq6nQE-Nuj2k5{oqL-rg zaI=3Eqvg7TYEXt^_?#l^4I0z_^;nHsanx@OVT-u|4d|VwVZe`OaE2k+_kGo|X-pO_ zm6Jm|mKtw!xVO<-?q|vfITOdTDSXzAG6QB}_s@6L&zL&3L6DlD8hw*!j*pYC+Jp+r z%7Tve(oAAz<9K{cfd&56j zL!XE9>BOxY3*I+!ZCH8g6d-0Fd1I6`5gPkYd85=9?YbWeA>eJw7BI~Fum!bh%;bX+ zrpV-HvjGBK{};f9l3{3g25ok&EAX4g6|M@s&6tBJ=qP7KFLML|8O2y(Cq#8h)xH0@ z=|(~#D$<)5@NEMO^)xmr0aoJ;a=z&LAvOBSqU{SV3!}G)Q)CeQ#N8LxvJ{chNjYf! z?tnb)2&8Xhc7H3ZOYFdCL!#roMNSi_(tvt!OL8(vLfc}xW{3rG4Z(~_RV1g+7bOC{ zKY_D&sW$74G`y5(A#b2{aj><=qo3(LwnX2W0;p2;kMs8&@QRHm`` z8YO;y6uK2xh5-axOL};A@8AqcxN1Z-=voJIgoCKju))6U8%m`Ul{PTRceMeME znghB~E1dmeMN^YqYpYV5 zku@E)twS}v1NdXl@49aWK%R<=ClU3YWVnDrGDcI&@_W(Eq{hWh5ICX{4hYw$vQ~fH zA$Veu*%9mf^Vu zi&UAPD{Qt>r`wO4@aEre0g4!FqZo9dPjGI`G2qi2&)o=n173zu)$RKPy9ioLCVns$ zlxPR5MlME#Vz|vQyyt4gNx?x-cr?0;RW=MV;FFq;Z$E$$GB)rK23^-B z3##w;fZ)PW?(k+uhmlb%wpL+>Z0!K>Y|MiQWIiRA=H(a3(X zOQBjN*vGEo8=F!> zi!L)Vm7=m~-AT#!&dHGahDvo`%HP-ZmC28qx;VHlRyJ{jbf~w{H3)?h z!2zXSo_iCfREUs<9_E`b4=WNEx_vs#6mo(9T&ZDhM8Sh@k9j2q#3_0~jtabIk;2Ld zUY))mmp|$WAYRmn;DjFG5l8B9^nDs$vTjadf|I$Wa30fOJuYaBp~pNb?%pY%nW;vU z6tM?KaKD8ADF9Z7jf1F9r)@{I;-twq+dNXagy?)Emm3BI$K=k&6hAi}9vd4D5x7}9 zqE7`foY_czwik-P?-hKdOyLQty3ZUB(748|9bnk$C)MK@vY0pQ3Cuai zf-aVXOb4t;p((9*NELH2?JR?4{p440_GHyzt8St{t4!;vwiGkCUub_3qt`2vvKQ>? z6YK#!t!h<)Q|4wUqJHBVNj$Paps%mo)_S&ZW3P1 zzrWI2Klu{DFEEHhm7!^-aU$`E`$WT1Gimn~d5J9ZIC;BF7pjRK|4P8gT-er)P}Wk3 z2YJQpZxqI^N)iq90lvZOqL5J#2|EC|SV$&gS<;j(9{xg5@&^Aea?Uz_i?P z#KKXDvK8u|xz_11E;8~_S2Uzsrn(`;SZcAMXX z@PB2bTT!&Z7k<_7fW*S?Li#r#}`s-1ubRJcI+v)fnvhFnmz__T7cbHiYmLmE8N^^X#(Kl%_u?z)u~*n(omPatQS zvHeP@h8{VZy$esSa|>UO(=_Apl?l_Jh;BSsBJq!6gQQYjqV4T5E)5)vz3wp?%?2X2 z_$^Q`HN`_Qj6VKtNI`scr&f_??z~z`#Tu|XFHr6x6(EjO;f@wIx?#zYNYg*^{Ks z*==7UYPdi9b)*W@__+30`qL*#`P~SVhx0J!Gx5W1 z&dv^0BsV%qs1WqelUt76Iu23iVF-`c%U?IMn43>@GrrP3Aul)4N=~P>Fu= z0!c=_#o!XLFElyhxinw7+O{(8!Y&ssABg6S{Oi4G;fO9e`sc+hQOLvWq4+XfsIKARh$T*`!*HMj$?JGD;hL63@NW z4QP{wT>b%Ez3;gRP?2HO%(fO_f8vNI=<0{N1Y#EjL{a_sOO6TB2H#t&1k zjUt`8@wOv!e+1)u`-HQ!%&x_^w;Bz2gH_*JG3h+*Obf^E2wbgX1mc@nTZ z%ktlReEX`msHh*r6Z|*7H7R|YKyow5Vxb?l>b-4xi-;efm$BVjt0?#{31N$bv68pN z9eL|{E0Sqe+=HHt^z@@70=KjteD8+{Hj}(SY$}IF=11ulDKtlKe(A9*+PrGjauF-c&I18!Wyqw( z5}+v9+5@;q=xcIA^-L3)&q7BPt~LgK=cSR~;v6z8jGT#OW&d(sY{Wl{3Hwf`rQ|+< z>WhJYS|`ll%{xU62NzHX40%`}2W(R17loSygx6VmlKQq(vogxAyuf;Y;5>W_jCw+H zu^1cNPXK0wKEJ2cil563mwR*n%;lD%)$ol8gR)|$S z!7EY2I95+kb>%bfig2)+hiNCoi53xy6YXf~j&IYwg_{fzTDpxiczE^3i~}|zV*8tH zTu!B|TfXBqlvYNQqy{vDet@KUW@W+eJ6JPfWG(c9H-85dHoV@H=0SV2qiiG^y3jpU zh&Omjm<&jWkWJ6)d)e%)0&XT{vq=+lxKw5d`tf`vp1@y9s1R0igxbJ`nVnGPMG~HD zVJqmAtNzmuG*mx&x%vGZB(I~z+FXA&K#!(|3zYw4DuCrsSU<-isPk;ZUdgi>SbHP# zumNmbH16Lk;$*>Ym5iH9^Q>+AJN8yHTX|v^y?I5-MmcKAK}Gg)@FxWNj_S^lW`C=_y zpu&bIxl&^tzvveMw62vVlm{Y#;k^}GvBWL(D_pDvs!^w*1S!E)sXf>rd6J{-CF=f1 zvMFSD*jA|drBeTa?w-S$5;Sxu)XMP&cRM(jEbh+7wK54HfT4<07`<=ZhkH`BHaxFQc}_--CfcG@*p7b?(^Z^@qWMKeo+R);ed1gXYaMv{LQ&C zF1a3)H{>Q0tRHel3%{ugo|yJ@5H0^IjB*=L$@8D$TOM>aeu-D8k`%mI-qnZQ=2zvxw&%)d6OUd%eSqaBru|owX~_??JlIT3kTi7RKzsKHK&0~ z@*-VJRbhLsBORLQ!bmRqqF7xg1ZLm6E8y|&;w-z{3Y8(aQREtyzHgT`y-PfaWby!J zno-$jjO29heLoq6%p5>hiGw98hpXuFVaJ`{6N8<^fUcs$*ID=e;0E^u#w7Q>8NWWA zz!Ii6q+QYZ(^B&O11(^Y%_xVZgg2%#g76v?ojvi}5jce$DfSt-CssUj$C6kImYQ>% z_h;#^Uo;d+V8qaB-5r```Ku*I9Y&(;rbmCM#s;5xM{#2!xGT^TWzR^A)4biQHu{tveFSr|Yb>96T7Z$kyC4)`PO4cM0VxKok15(W9hSY(6}`|`92apF$i2kSl%S|fy@HUl+D@E;}eHHV|Rp)iuM zqz0G)VDctsyNBf%iz^9idg2fnF7t${*B=%Fgi^-IRAFbPm5NH#ZQrGyCzEK~^E#CqIzM+{E3Dv{#fpJ4gg5~y0l@a}rOu#EIOq=1>!Zh_355*oqh%jteD0#ZEY-AHM|W*IVaV!gi}^CB`GtM;~xj%Y@=0e7vyx{vd0~=kkJitkC5To<-?ei z6gA#yu|r{s5i*_4y3T@2Je^)G-Wu|ZMoq+8Qf)mxi54r56LpMUaXxA|g&4ZiMV@Z18k+Y0f0sBY&E(Ix0FotrA2 zFVGm7O2y&MSL!QRpl5(7lfcAt_Gy?=UAi0g$oCA4B^J*-f1;s_GY%NQo+EqO`HQ-X zqkO}<4nw=-PQ3s87i@{5OXGWwvReO4$$EqML7W$U5HjxkoNL{Rm1`AV0p(j@a}*?$3k36^cwFivqf{;pDYD3QQezSe+0>r2 z`rGupsaMQ*E62ZllVu(#+lO*wne|S-f|>ts(8-%6$I=PT=~Q-8*|(?n_R;7*D`tg2 zwTm5PTZZScDe7$Q7E42HU1E$sD8MAjaq^AKVyN*1*%f$N8I>P%YJXos(*ku`ol;#syb6&(j%Lh*rsP=#jn%YdFNdc5b!+|X?MyYO`Xk-cE9 znyG!PKrS*8V<+HuwJ6*meBuL&Q>v3iDH-E+l$g>o-aNXRVcRV@Fcn`X{53B5;_ z(3#$nXqxZE>W?lWS;i%!HW~7BKTd-nPTN1)c(zcXNYCv1-P`hlx2mET>|N*Fg2$uc z;neIug)qS^_j*2CDlGu<{+>+nzsGXFmwd_*&4hH*T+_@&S;b`BeE2C6I|M-o?!^ute5Y(Y z{Sj{C!;yY??EJn6sOrlFx)|2~=E}@MVLuLwytXgA87cknBE-JV)%i)g0?EaMQST{L z^-H1Is44uI!{7V=4DYO4B~dw1>~rL^_x|bUodW0boJ~l=cNEUKC)HOVc#-^_{)&x3 zhy?$xPEAcvaxx;E^MPa?gI$3yyE%ppH#imQ-3KL;y^s3!!EZcEFU@pc9Yu7HoX45A z16EWY6#7~?Q^sw+89#sMqPY_J$z*6K zkR;%H;V-wl@uX0B&UtBL5fMD3#PW~w8m_AyfoZ>FzXseRF)cr|#G4du#Y#z{3p>fo>}VlRAkFkwah8eT z2@&NlL20P+4S&c#47f#V*5c%PMM@-;^Z)r1A)0^Ol>ZmI8zsUVPr-_|8Lz<@E&ldS z&TXHI?q_N@;0Z8)yrFgh+iiDPHPi$}f6?}j{33B_r*euN$uZ>RY+e1_tWKBgi)!_`zH z;sgh2cB0njJf#3hqEXRN_LZxU6?Tyi6td$x+RV@&<`GfO+7~tk7p|eyvlX7QDPi2~ zh@Dx|E&+AXw&9_)pgC$9kxAWtIbh));Q@GEyv#g$3Njp|zJdVKzI3m)s95bls7ArniSkXJ*sFLR#JPdtS@w#IQ7DW(TVSKOWK*S4)S z6@B5BQtXgU6*Ik#_0ux_>K*Z}aw&_8RG7k!t@+3p8cT+>8 zYaw0=WTx)t>XNa4;meX<)INSbK*%9IB=Ay>L!wdHQ+Yd&`10}eCd?N;j0}~%y|6Ep zd4cPK8a-I4XbPjIE&2@IfDJ!ZnnNE6bF*X4X=O`ZE%XvXjjfDkn5|ga+?Vb92Pt9q5yyYlLrC@}&-Vl2rd% zWd5to{ki>xDO+Csj7B~;CTd@y;t0W)PArCU%3{r?nxy#4a3Y*S&0%SefC1Kbv#AM* z>Fp0c-<2$=4_^QPik3c?n0ejucY&W!T#9mqYpItrK0q4Nf0Y*ON z&pvBgm`K2=xu~nSDuz&w{^lwwe(!-nC~~XLsJGPbjixxjiF%-PtkpFP85}$Jkw{ z{CBJL?vs1-t7km&^f$^<#>ydnSWuPoyJ0qDaL&BV{qY8vcI_o}0n(AEIql$;0^eG=Ye+zW>YV+j8X^;^deV(1%i=39*VkW|z*4HM6gqU5u& ztt#!~)M>b$MAk-IR~*x8DCLf6mgz)g(Z;tv6pD?+ECaus9N@(h=ZJv5Cpw#eE&X|r zvTHbrVjHZPp`yk$`}A22M?KCEi5Llf@Ha&#bQGTKMDiQ3pAUKH9ox9>FFB<@;AA*trHAf zZ@657(!*{b&;o#x8p%-P?yk)`Mfp4S>h^x==t$y5h|Jr3-o-Ni#em}2fAl(#peB!= zdKJq#sk!9uek-a2~|Rk4JR`Klh@=+24|70=UM= z0;C>O;lHedo)E=37^Xxv!Gp0289~ReYw51QhAmrmfEtf0X07Z3sMIBtf7qBX{~T!! zv;`h8%9?&Up)*HFKkl~9G(bQq)eh}Ikw&7FBHNg;i%&IcUDS<}p`_FlI!C1+9)v99 zdn>tjGl+@wW}Lh0 zFqw_XU94`oxTLe>HBYqe@$1({VKJ2rnXnmoTxcZ>d!Z`^4)VAS-1NvB)Vth^lp)UB2C!r0$XknI09rD z1WPiO3zQRwT53Hclm$t`bZu~%yWvn`#CZv4EAl^$V=kF^-GHKyP{gMZ3tK1lGym@_ z$3B3vsFH_LDFYAd&!Z0~Ct&~}6UOg#8iJ!^YXX zcuizov2z6^y>IH}l>~rPkFCFv5f|w)C;jtPaU1N~A_u|}!mUe|tqzPlfUnA4_GLF> zj5jw713~&$!j0Ul_AMKi!A4X7P)7Fp6ZqA3vposN3tW31k{K6uDy2pf0Ur?le)cU} z(N?Cu1#+3{ne{DzB-ECEaWHb9NB-Br(u=}CTC)5f7F2mfOL#&gQ?cZ+9FIjmY~{+) zYQ-0Uh_?OK?u7ShS&Nu%%q@Jlj?nLn2DNrAS}f?jeZ=bB`5rHTC228Q+WODV^viEQ z5~GeAQt~)kGYgXn-A8s7i`jF26X&1$wSkHcB2V}q;Y!e_{;FBhn(ftzIrGyW{&-!8 zS37-?UY@(l*4VC3yz-tLP(e%?9&Asoc@mW(ta!FopZ-Qw`yauNNi*HQDxa_zw!;Tw zlp8*C*Nw(SD~lzeso*@C8I~-~;atxZ9xb;_pxf~@lyGp@XjCq@wl@^;4Xp>4K;`)8 z4dG(Fe`r*roPqPxk{wxFsVjAOvE%x$c`CDo0B#^kL+l`ckOPkSr%|j>K&g4KzJob5 zoFI{wGEMweF@X6i9RD4i*4_0e3ttrAdplo8%@2Jps%Thl`pK!|W9@91Hk#+}J^AZK zfLPl(GycJ)jljG|=qxy@7g<1-2St4CD5e~B$GKsObz@|Xw#)=hr_kVgR zA^cp$V+#92&>*ZtY(Jg{g3|&XQm}W+@1YTrOW+#xZ@qQNux2Cj4#Tb6wJw8Qu2zm? zoap^Zs#?4*=OM&@2EqzH-5xiACi2_yg=b&q2n0tGdpJk~7f`dwR^uy>?z+LLE3oYh ztkA%Ee7W2Jk+zrX_eUBdf9_kF-242usMi2c1rV~(@z8|_I%jYb*$z1_<)S@<+iAu2Ht2fjaT4M{p8VvybgzN+9btI87!P8jUX zZgmtroZz6aZy1K81$cpI3D&Oj=IhXhv8>(o4gWcAy#$AfPuKRNqGAAxTi6@X_6I);aEN?KQx!f5hQ+XZ@$LtyVmqKB zS+`14(FIthU5|6z#JjNhW}0V6H3GBGHJNfqOIE^bR(K98h2oFaDP^zzuJK>D#z# zf^>aXQiz`m?AjWcR<8n9+rZ-BS$*NxH{NkTfmF_^Q#BA~UO)py0q z;Jn~7gjxZ3y{z}_@(M6f?ni)4x-^c2#Yn0lDqsckErYO5RF|jc-$7A%!x3oI9NvKV zmJRTwV2 zZEh2Qpptut|6Nvw;E2|g_g)(HV?D^$V_@r55iC{_xh}mMfk@l?;K(6p25^$%F5zYn zFx~RT+vYL8+(3yLd#_qUO!7pwc^b>#6^ly}g-^jtgzmuVKT&3d5_;FGEPTD_2EAI%lVq5K!w#i#0XT}D^XBt5@sIsM zAVFwqZR8q|b{df4zwF~Oiq$M~xuF!d3RK(rq#3_Rx&?7`Uk!j)!WW#LvSy7IAZgJ+ z#Vke{89vTPs4)9_UFayACM4KOAk+d7aevAjhLqG2(| z`uXZQ6_16R>aID*M5{!Kf*ywm!>IYj!Y!qmz9uBtGft3+q?B05gVqfPtuYsA#)1IW`3 zpd99*!l_E5>5Lp=UK5H1Wna1EV}<0|mUiFb@q{OSo5LwS$-@sgMZsdxDJ@)OEb~Dx|9B-zL7JctjWqdtaLaKQ zOJ7Ok91#?hL2G0ThQB{E+x>4b^%Qh6Zr%s9yb|w04vJNwa*6XH)j10(f3ZR6CODUa z9_I@N|0=T7rEiC&% z0K3Q^3Wv50mn5m_ZKfp^ zV-JVimR1_6h9+*yAbC2TI*^jUG`Bcl7SbLG}b*?)J_FO{KB`v*=q58C-8z48t;Cs%Plj z;?QP-U&dGhjpM^I+%jGgqp=rHdT{d~?gtST^(1GUuIwFJ=WvB%sa z{=z4;zn)c$4l<}C)uX$XMTLon6$u{bx}~w>BBZWUCvhDNqyN*Pn(`a}VUhS0p9IHL z7XVHtn4Xp-e<`19Y`dqZuUy9MGBY?Gsnu@!=yx?U6mYTnSxzTL$W^}0U-TkGf0w<* z04%NRL$N&JegWtK6pOq*H7K84h-EdfKCiMH^fPPo zD7EaA9_^PS=(El&HL9%Vuf*4mNp}oc(`H%!gl$Fv_K8AkMA-bc?J8(gpx zM#}*^iC14Tq72ERuiJ->cr8Lg$^$FAydhKE=(kaCC@u>IB+lQ=SZ?fRb8b#s3nfaD zDl#AT4p2xck?heJNS%}`eWu0GNl6tT`d0aSx77Fw$2_U?^p5LMW~0zIP$_G#DT`RZ zL=OqJ*ZmN0u1*5W+X(~rm0$Y-3L9lBUj^04UXriifuwbzz zQR2F0z!|l(7X))U#83u;>|KFVhNIij%kOtv) z1zS%#Jo-_29{myvgll(ahMeni#6wz(vQ=j!|nz0=O`G&y@0aKfc2Ev0glMv;!YoQzr5UB@2ZMe*-dSg=ntdw zAu#=Hs+*+0P7g9e5G|T-x{Gfm1Fw|j9zwV>%~poA`&2LTbr_HH^fr?CVx*DHO%QdU z+!2dCjusOr_JdZtfPZ>DC;Lwj<7FeR-l>nuv%%E8F=~;xFTL5grUkB(L?yU>iJX{F z{=?F)lEF3;;&YXDF1p-hl$3+z906cRRrpHc=EYF~xQWAD_Su8J67#C(%%D`xqMXi- zy*Vf9(>1g&D;-7cZvz!O@dj?ENK$syWa5{~pw}0x0wld~cx9|mcXI?S6ev@ofQ+2I z!44$pSfL;|Dk^!ih>gE^m{9Q8>gdS?OXg7MQc`I4pSLl*rIGkJSgDd$Fs5;oh_!}) zifA(n@QHsXq_D?Wj6hK89vfW%{l z3yU1HI1|PhYf*2;Xgp*}8Ay+0mDQ^%ZLGAvaygoA`6sR~k6vo8nWt}$6y*y~hN7ln z(k*q(HTzhxDbp10-hko68M$uvoYcwOAst`bcI>^jAKiRlOcAl_pqjUv>PG6DGz3p0 z<4HToCy%*nrqbF>znNsDV091KV*0(mZ*E&YOIh=wSK$6Arw%vN{D8~;pAx@JM>n-} z3tVrtJrX?)Hz-A~l9GBBMHq>cX?PZ;uBP>x_5Kq#M3&hS-3f-Bqtjxb#w8W0K}JjcWAI>v5q9QsgJ}h(s^aDLk6`y9gVH*wzx_st# zK+cQI{pp}bKNw^pX4^X64t7U}@|VNiAm^uHP1DVy2>dr7{T4~_<2dZK3uxawC&K=o zy8$OTKSN;tNA{ft;>@?8>F?Db2Vn`dtH9-bGuR6pDxn)t(9LF`*@XLijDYi_KoXtp zH%LvSFG1ED3#jb{5cn0g*{sLpJ5WBZB2lMf_V@HL^wGMo&5Fxn_QxUa7jwB=wH^cg zWe+B7%>>nQjXtLERt?%RKG@2**@Lxa379~^&E2au<=`0ccPm2wB>Yy2C=HInh z$>O5?3Su#C1Budam(jbtbAAw;(D{jfSOH;CZ^O)2#6^N-6KJ* zJ}BSIr6Nr+W~YjP&>J21389({rpj-ZwR)@YqodKh^KifScu-EjWYf?hhE7uXpicS8 zBVO{Ozv>^XylX1`_!w7}Xt5e5LNYXsP`hU}6!4^-rEJV^gDz4R<1Lm*nN3T08iBD} z{{T)HSJXtX2eBNq=k!y<>m!F;@W04DZv_mj^i2cw|9E!*DXfyEhRmJ6jIh3lI8Cz7 z#2huXjGsoY;?Yu;X&5V|Ez+bh!%T+O#5_|qzi?*1deZ#?Uf1PjCnH@sPG-kRs!*B#G3K3S%{|a@V7bX)gF488^|W!a zXHg`Lfj(6>1pu+lsdVYiVasM&Z%X+S*V3E8pY}Iv2DE~M5D>A%O>%Lr+bv)KpN?pF z5z0C39s{-SIUyzwGfC;fo;RST3Yc9eT~rCkAx(w(F#~!@?3}SpHWU}8Kb0>sOrJIG zUdd~J+y{F$*WfQJfuJeh1d|R7>?GnTPOYak$`^<>a+F@+pFo8Fz{Ut2BtPIWyZSzj zJR7#^*LT)!w3z)0wiOJesv?=}1LeQ>7k^49o*8X+iS$B){pl|mwdj2ID!Tcq?xki) z0>6LATLD9@phKHZsN}_9g_#j2H(C_;(gbA|5uLqYZV@pJ(g|vr@A7GZ0oqk?TV-LW zZ;KQt`UL&T<4n|jKoH1@X3#^Ta?btNwZ%YkU1umJbjnOEXl?pHN|yPXsEiibAmAa7 zO-jYgC?5;B;iWjX@ym)R&=ihm5`8o3Ba{{X?TuGPG{uJ4^&pNtf8;wdiDwA|;)wPE4TJ1G zh1J|);Z@bQ7t*v~1oxCV2%uQVg)vHmEq(A>{pNai|c zShpvu4{g-0ftB&fUoVXL9u7Kv)ZvYpZ7XU>v(9Wg@Sv6PtWiHJyo-|5%)R&pQd9`t zg~&&6D|2&Y{{XD?FJxi5L`@0b--}y2Fby0n8<0l(!7;r@)pF~}_XazkbnSR|xtq_l zbL0vsZh%$?mJ$c9@_?YE`8w0c1uGZRADpKUFA=DsTBH>jo9FSq)_Pav1UOvMk5Bzz0f5sW}d8PIeC9Ko=_Vsd3uQ85@m*)1%X@Bq^yZ%9t(_yg-*$C5Fy9TrJ_G1303Pdb17yJ%XzaAr^z z5sRnUti$ka{&nv0 zwa(O-jAv($YY#GY7xA?K12AnW=sh1a+L{wPDWW860^R)-pK;1oZDmxwL8x2E2pkO6 z@)MdSVU?oB9hR{ZR5w^}v+gQfn_s)0h+ZI3Uz${S!@IV5?y~uW;n$#Dg6lT>_mpNxOwQ;83B+6R8^+ZnSE8CQ|17u7#kpaM<0`Z5(-u8J%67*X~}Oe9rvQaTl!a| zEZ)Z}_o9%|=?zTJ3XLLNQOKS}CwAP%6@t=R%vgycH>0$DUx_37P(ApZ2M@)gTB2~* zSkpi)uDqJMbXgdLtXb5+jX$2w5guEHz^DH*@^#>3y!TSD=UFS&%Grc$mUe+KT#p|~ z5)~}Bk(+k3{euTTaE=qd)k#E;i3WqR?yGEH{5#@e?(L^^;S4pK zUzBZi5|odUn8$qyGGij@v= zN8d5mnpX_;^KxH<=kpTK^Cod@>Dhaj;$@o_t5DZDrNLIKfb(!N03PL53L$e`N_sH6n9W3PlkmEv-*NBT8;{YO3dVxt(P3*Y^XO(J^5K0<8!xXjkp%WC@BWbuS*&lXI zX6vJuulXg!M|31UrT6+Qm5<>%&__03;oZ=ypk(RKDXMtAEfW_w2DEF+FeZz?&c{&S z(H;P`!44Lo`Q7v;JAQz_uJxwVCt3492)_?@0)oH8S$#HpZCTc>8A0V5AVosK&F|QX zb!loA0)G(W|AQTpU2hP}--OX{RS=JoRxo%n%{S2?skK~6ZNdIC3mR@uQ-#TM^j)2# zXn^uiRbi7Z!GA)y0_$KH-GOKag z_eblbow+~BjPrGx+t}@`8Z_0&)sf~1SNUm_#v~B&AnXq`+<41ZSim-Gr!-=T^r?3A zQF&1mcwr`p0E4gPe?RmeX+oR=1u)>UvJtj~noZeSW+Z`o`>hXN+0>zsRWBI4jHANh zvX0h1rF&ZsV_pA=UxCFK{!77!v*l(6!Ui=8(*h#ADtnN%E|~TdcoSx;k3J@TU4s$5 zAsZQS`eWs;r-~H9m+C$cjvOr_MnspBjOigx`Lhu4Dm}(=sA(eV?P`d=rQMCad$BAQ zscRr=C~^+7dnFPLih=EG(ac;nuVV$?2mi)Q8#4UKm@D@Ub2y2IDEqTDAm8s|@3}53 z)^0Qd(7E_Dv@!XpG&nc8Fo`eMr!N`oH>t^69;5BSOkK!Tk@E&xnCUv)#~EdiL>2yY zdk8G?<3AQszXBPLi&@k9{h!a%Da+2Eqt2_;GK*9GtbcY-`TFrT4|NHHvGq_ouS(jF}Xs&&9dT*Rk6sv{jra&d7ieh$Y^ ze=ifLa$BgBC;vD{Ef?f8T>wu#CFXunM(D1pNDF9LRU?L`Td4Bs@vs5jrt^6Y-$(=m zvUtbY>JO~_b0N{`;+)mEsI#7>h4$6Ef5{})*wXyZn5z}9!lv$M z6aNLcKa(p{LR308Is-sFv=2P*vdNan);VTeXZZYSk9CCtXL7LB9-8<3rBPGoo=3I0 z#3-MylFA*Qi&g8gmdXp>$lZ8E=kGlh(jrTPlHc|@(@dJ#!?0c#4#*vaPZ-Jw}POmbIp&2AeyV;^?*Ul-g>qk5}yU~2E4n~3x~*8 zohP%ooO{M)ctoGBen1kcujxm;I~-#hkoknd7I(K*S7k0CnH5i{v-|g?d@{N#0f3zp z648Cko9s)}J@I;>1OmNN+DF-ySKt9>idX_UkPeZBz^5yDhu3(v zP^Ie3 zy#aCtiBNzj;eR3iYtMymj(zS6l^Q4S7$fvVj%~W$bFXf|z*%^0-FzFq-T3fR=855p zr>0QkSHmZ;M@8WZmFgcPSr&}!RNkZOaYparLLzoG90#CN!M+w%_gL_zet-B^06_;{ zp8u`aDP^&f-HibYx~#;&!BUV1sB8%vx`U5aeCR%PpV9W3s0p2#zCLCtvx1xskb9UV zNc+!_B!T?h+A-}I3341gN|f^uy=tBy=-X`)^lq|lpnQSi1ZWecE6AdRo8KHR7TyS~ zYslugzaPGVX+20#ffRcn7onk35kmm>>GkFJtINCC6(E=+`4fMa=30eBT!0!Pg$ZQP z==~u;Q%!7@eggC}8O#dEv_c;SCopAtm{RKcYNZ`>m=+&VWE^63iZs%ciXP?mg*^=nGPIj*X21pY|ybmmvGtK!^&u2Z_PIm8KG+9pchD$RRLf0b10;Xz=NF{FlafY|*yXp0V;@;L)f;jJI31kJ zjY_SnQ9=AIHa7HIPvF(#u+5c~yaN1@P%(rjTI>gJOmMMfg|Zv07(BpqA(3Mv7VFc69C)V69fhZsk&Mp;MQwHtrV?;t;0H53D#Q4KctAR_fVf{L?r z5={QF8%A$}KB;}{A0h&`to@&t#~A;Zk80m0iX9;*Q-BXh$oUDK2;C}!L;n<=|{na~wCqV@7pQh?OTZ~3 zX@(HmhQQ;yQU8ZMyQ=sbl9EAZ(5;T%z8Fy8z}glLf940QdZ zI(YwqV3f005MYGKJW1e9v(fDA5AVki=*LH1LFjVn9*C;4h=Sx))8kDYHlYb(IzWPq@5H6EGFS%_C_+hK zcxp_TanYrsFv>jq)6KAdLeF-XLCRDNK!|m6FylRA?0us$KB#t+cuF{CaLtzDz+`rX zkkTTx&dH;9AP){MwDg_5IqWT1nZV_ok|V;ZG~X&1i}H@)@|VsRXX+d>E&Eh$W+u1Y z2m=1N_e^6HhLlkl^~PSonMq_tg{Ckh<}Bha3J(>xZ|;v7xaSNZGO=Z%?;UPXdXCrGj% zpedi&&iP$71dZh%Cy1wJd^%_loNigza6PEF2UF36!42zP=U*!0b_&AH4p|gu^PPK2 z6Q}77gn_yJ0{h!>>d`d&av|5|DriNjhcHJanq^6D#8P@0V|5dgLh-Gb?E6eSSa%eS z`@TuHHNoB_Y+bTJWg6HJMI|Ko!~27uF#9PVoQmzNVDX=02Z6OjJh3l{Jn_fP*{NHd zhvs7dG{y&)or29Iyuhe3&`(!#w~t}VWo4n6Jjll%k%<|*Ny&_ik>`a2&D1PIMj?C; z9)QRIF3;WRFDP!{^jjG4`O+C}2y)B5)I21gU`&Nfd?luHCth;Ay|E_$;erqy>G<5H z?N^r&OMy!6IU~XRQdLT$E(LA$I z{k#9bO-+KtBD4FJTi+^0hV}sb6WaxA);4?!@N|{tfmhAzMlNo@WDeX!KN2OC^5EZ= zUwBLHGA*D%B$A!qpd#%P^2WhGykty|SOCVf)WuN3ayu&1{zN#3DHTS`W|6ljGwA#) zP$Q)VNLR}-sgj7!7P$;-GU| zu&LK(O6Z92_rJty1D#vNHj)#DBizOt@3dULfbgUAv=}3h0UDtF?fQMN&j2nmGE=kj zfbOj+GD{gZH_SM=LNf&v549|qefZR?{AIBUKcki+xoL@DLf;|&?fC?1kHfawVJ;ZT zPd5z~bKx+$c^Tu&D!v?<)9K^Z0_jLzEO&$PNNWD`#;_b755REtgOsbt00s(%S0J4d z=AdUG^S8uPIf)yM2TsDx;V78o(n9z1sxaL@bf@00Hk$u{L$?3Cj`2?U7FbWUtkqQJ z9v{kn3#I+xU-~i2iiFedp)`8<-vv>c9~3;RrQ%6CCXwiCBkbrdq;gln@E2J2k!> z4F+j#WlFSI{%<(`P{V5?qkQmJkL7bhCDp$*3)VG#N=C|Xb5%jQKg=?en_8l0pFep3 zCz#IV7%T$Ik&<;ljC%YdSlog=%yYPTHkL~ns9_y-ZcLB!j*zSFM=>va+OsW6tcm*& z9_}ok1&DJ7dAMxi7BYUN8vBpvyq8cvAwWi+nnnIZlThZVv-f7-MI*ygnVWA9 z-05GUDW*Q-IS;d@R)%s2$~rMUj$Ig|M#nOz*0^Kwnj{5_VmCY3Rttx#Ms=*tpQ}Sy z%*>`TkBr(Hh$ilDZR-YnWmna?TnBC9Q57bgo-qlK6;Ji2*^h+Hu;al(F^cA;e^kK= z;n-;~!RE`Dy2Tm;?QPBj8?wvfXd4 zr~2$p2On{XDfn4Th0cwD3ao*{QS&w_ewUEd_QOfof^O38!m^U3R&9vA8q+6v0C^GU?dPC5`$gCzhi!+67txEJS}7{A%o8svRXmv2SFbq{Zp?KH9nKGgn}TRKCQ0D7H8Up?nk5 z9y$|PVq=wjo3cI%jpKy?%~)L_W5G>wE0fMR(RdsAumYAhZ&1@BcTMrH57LQY&xZ(7 z^}x(FQddlWl{BzT*BLNc8_pDbX75E}-5)A}Zqxp}M`dA=6x~>gi?}8*kr1WOJA=lVui`6moUS<+hU|H|ztoQzd9Sf1yN^JuXiT^~bmmtU` z(eEV?^JSGv4NH?owqP|P6s-9$nW~Iw-m?ihAxzo&@`VDh3 z=2%NZ>G1@v-)L5RiCL=c(U?DmG9CNSGiQ5+YpMYS;n9K0ekw==H`5E2)pe?5T~)T1 z65?)NGb$l(9AMGKdX*r=4}CV(2pq zVeSA(5zc}Fd%WP`+^SEl=`TtOD#_-nqjl>H-PZzD$z+32=XgS z7c(H}$F)S$s-Jyx$A}!^jowr`{J_&rN{oVxb*$fmSAUW|*4t8*2^D%Z>N42wW`F^+ z=j0#j%iT1#sNAaTKQ3XO_r;*7atevT-;5e2S0$5nYV*y&0@Wuv7V8o4s?_}Qil(R< zrSZ34vXDqRDC2lm#3iz%yUrTVs6Q7^JK$!g9sI0wokaFl_j^r2VFAO?pN61k$0%7b zu=|>zZ_e0dTdg;%OQtwB2$h1fCa*Qv1U2$X+@S-9RPHV7^$93rD% zhPwd&A1+kkXg&`75HDgbkMKL~Q*Bw3!w9re_E^#dGrrG8u=NrtRQWRdyWL0`9<1SrOxf%JyYsJwB7GtrAw+OY|ea&jo;Q?XA zx(=gOOuwQ|HsUkAK3h$bYiv{$yu}nuo^!8KD6MvRR;0n0Y7$NhMBv_ zR`!}>e-fmu{Ov(V0dXcHDHl(#S)Se6Z(!FD^_R3zD(4JWRvb2jFezd!WnnSE>&mnLD-$l4jq0|@oxSxSOSR|P9V z&QEGG$>NkiP9}6rUK?gyXm~+C`woo6xL`J=-BgzTct|jJ-23ynvN&YPryabSMWID8 z>v7y2dJ*N~94|__S#-CkNaS|ur%+uxje5ddddw(~`RU>bSCWQ%^nR$4o@O$~J#v}o z{9Z`@tX+xpd?6e`0r(sajl8I-=+M1%O&t9yg>{3PNU{D@v%p_`P6V@=Xmmr}7{NZ8 z8jykk7oHClB`6^y1D$YR^one{Jv;((a>fgH6mVmqil$fXd-rzrvk#ADspjX$!hlj^ zB%AHx8GS#0BJ1xeoo9*LY{a|NaBuzH69XDI^3$06YQ=35>O5&gs=IWR|3D-RluI;4 zeeoN2nYo;XgECE`nxY&*g$V-j8bYlv6+F$|A)g1nyBAdKCRa=1UiMQ2J)_Lt<2|D! zr=%weDR%y9yq%w7)llK{_~{U~1b0o+SfzrR(tPzvV^tHG{1+qU&v?D3ZW{JorAvO5 zG%7zYeSu`^pSgkWae~~9G)~EHi--=ZubO+cTi!))Z&#oFPSt2l%pX_u>dqIG_UGM7 z_Mr_WDqf=N9@Cwx!rbb8JQPZEuE|0{YWLu}4$C_EN_ks)yq)KRdSsD}$yGibci`-HBz5 zp<8=QPPF}L7ThoR?K(1bF(oT`a z*vh`+dMK*}v8lU^l%TtqTM)YoN{ihR=@!zdhfmeqM5w4*mYqzs|K1HT<%nq^nD(4i zfah!VWG*~;OC-%T6dER0f&#Q%@1a?9rP4?(fS9r@>6pOTu{xSQus;-jfOVs? z#a}PuHp6CX!~E&IZi`X>VI{FvljK%qm%Iqf)_QhuFYbZSr#LX!Oh>HBT2z#{Ej$Iy zg07BU=gCvF&yr0Pk-G#sz0`ZYf-mN(DU~E765p8IQ?)gG#j9Qp7WhT|bapcG+Kc#w z?L?>L9oXmNP?%Swbl8O!((EoMgk<$&59}#Yp0W$tmFvH_tPQ;a5*bA#(>s6Cv75zH&tv%O46<>AZC9F9cXefD^g4y{(JdeB}S>l^c(R`ld5Lzv7 zPeIfex_d)%wB52$B4311j(L1@bT@2h2)&t_p;;tJHyyMjKJBcm(0Dd9Ur@iPr%5k! zqAP`-jf`D3hqvC7jo`Zai|^Gs{-E94?JSEw1s_}fZb`5vl(>~FnLiNL$g1r2BXe}7 z6@KWoT($D({)J)sQ$s=vKa|4g9gh*31Uo#(@N0fzd@-$5T3NJvH2k{r;#b>$Hf>l9 zKD0V6vcFwYVRnYw0QMZY6NGu%w=;+&w1%~NI_^#a$_@#Y>^taSTbe?;&@QdMCs3}Q zSDqs5@&lG7z^=_!fpe2`N4}8ejo3w2F#)jIN5H|Q(QZ9iBrNw0jhDuUI+hCv%6+K2 z`W^E7o3Ib}*<{hw=VUI1FB#!N1b^GG8{=wdz_c%}S72U1dX$koV##aVtN%8n>b#T{ zeOKYVl-LFI*rjF%1T7eJt+?eTv!y8^y& z44$PY>15pa@kyP9Hs{bCUkcsx3#k|Rl~HVhZeOS(;-r&?$6o?z8ZTi7pi9J`g7vz* zcNJE8_T29>ty<^k04Udi3tRJ4vP;Y2JNJw7qNu7pQb{JXiFYF6_awWC6^jGuSPijp_yn)gf={$`99v(e^FP3D32ROpwdiBf&0oi7CsJpZg}Q z7&tI9`@jaG7B@B{8#p?9a6`*hSx$=~KsQ3Nw^)4}(dtc%$gFgx#0uv!hl~?0V|PxQ z+}al`1>(5n!SmKUBYrW$aP;ykpEKz2QE6Y6(tdMa&5J47N_rwKUney5Aga={lOfb7 zWt^6vgijeHw#ssxUE3c5ImUi$KX=D*JP>#)h~U`5W1jtk4Yz+4>fC9Q?F+}g)h*wT zMb_W^3+7yEd!kfmWo4U&;v7S;QLnr&1cIx>!SOa&jZhfG8yao<{4*#6!{z|hz|BG_a?+dyWNSCQy)?ld#y(P0#_Ur>kIb3GP@M^UAUWj5H z9+TV~=_jxyp~G~4`LlL!0gf4PJu+@URE%_A$Niar@jT9%Oo=RGy&yrDDek+?MUm{e zc8F&s-3TC63m(zSuhUM&tV(9H<5?#PCAO9cuHsd=r)i=a{nDew;3rK#rAx0-k)zA| zcpEln3A&Yww8-nUv0*NBTfUHE4kn^kHC^fz_h~sq;%|uuhyC(Rxd_ALV~ev#1TlUV z9kbKKXSAS6e2&6P6%!6!29B_GrIw^5+!O>3A|qOKMGC#H!5+Qdh@V5PuEv`~E)I~3 z19eIouVUkX#Os@IS@8&k7b_>Qa#VcwY_|PrYSWm83sykb^(|S`fsHfHOy;R&Nvo+0FThXK^GAd`8Mdp3Xd7y2RgUKJgxyAO~gh#WS} zf;&huvnTF7G+)suNA#n5q{!+c3?}ct@zbM>DpGr#HXGMe%%V^=fzv#?^`A>wPjmw0 zh1{SC%%iPh%|J_ow3JwsW*gk&4c zEnFn#$st>vTc~^Kvi2o`r3#l|LGkk=GKyMe3$38xxo&>{x;y)<(S8Yq?VE#&>jgYj z6#Vw(cclsi7t)!Wpb3=t^$U!s)CtfA`ByoZeXy*zQWkpM`2%Q6mgGzqa)4c%wmO$> znytZ6oj{5uwhZit2;>)-zLaJ)@v9`-3%t|rWFN@&ai-cimWnzaUm5jFJ5$kbW2mTOYu!>Rv&=}6TAx=-|j&WVC|&i-o3$K)CsYD&Hq z8DUyhm3rs6>$TrFd*D&?ZF5IDF~iA`+NvfWSQUJwn;bf})0v{oV66sC_Lkhes4w$@P-Q>9IFKX#?W}-A2tp>rSX{M;pXbAMMO-DUYx` z6PDTgy$e*g$%AsQs)ZrOrkrClDBVwp?bJR zUE6)W=KSsG^xxdzNa|J9g<%Flgl=Rgu;9}?Bl0U(rkLQcG}v+lDt;YByx%g?It9<> zj?!*GyBNdgqST_YC!7zyVO2!+7ij=ce}WoB5s2p-^b?J-&<^DDsw6~$ndN;(F}>v zm%k;&iD&SkHq3rbM3ayUDwQ48 zxI$tGIgEqgMFIPaLq19h7)Dav6(l2(Jr4L*PZnV_4 z;bM-)dqH%OQEE;~&j<4rUU~yU){JqZ%|qs~v!=T2(eN=|08Utv4}1uFOHBskxB?O@ z*e$Y`c6Dj8eoEN!dXD#gv{6@vUE#iD0(NRIJzJOly@eJ~hESX{9;~q138qdxhT_rS z#ed3baaXjnr5UU8ve_Zy(1qDtzp7$}8ZdZMpyo9=vfGtKH^{B-FV{?2Jh9^XTNT&RY0*+AA}FO1i2 z+@&@)a+)?;|9Km~{J*@cLtRbBui;uO=xi4J1m?dpTgd321~BrjZ+OnF=7U-arblls zL)@rf$r*UC7|6(#2LTYyQvbF)GZr`Z`|)1hY3MB`h{PEP^tb_1(gbp$!=#{xZSkX8 z0+Gk5s}Elr#g;I(c)-5^L?ex2BmZB2j&0kF(H;~S#K>baK$^?9kowE{td>OTcB*?A z)bwo~YpX##@_773kgL--uVN0G$b5;ev*MxfMN`hcez_qw76MoR!F zl1CU!1iU7GVNwqO4iN}K-~2dC9^He$diF%?I)XAo*ynHo2G{zRI>~$j!-0ZVZTnH$ z=Yv%l5cj~Mj9`)-ox%9BB!TQM*f)H<{JPNG-2TF3(QiDV^@*e49h7n(C=$$o!|2cF z_hwON9*SC3>}W%A%XW>IfL;>DiTm-q@!mw^%g^5+m~5jgJ*U&1rcTHy_Js3{HmvsQ z64-+rQU2jJ#K*D>B~glbg0eL4+wU^epCYdMAtG7kToxTLInr1LN7G-j1gWt1i+70-vfC!&d`p$2g-e~6&?V!S~|IbMG z4wR7(yF5XBzy2r&%0YQ>hU3YsBb#|DVo44TX;^>94Vn8dhXTm+BEX)^f@bmfBNhmD zedT{)W9|ZoTCiv!PpKS12c6_(YP%$&+S1Qgq21tw!J(1tId8`#{|}hbtIvUGi05y8 zR&|&QFAex6zF?PJ3rvTArFIW$wjNOKfH>3M6dFk|V*&s0A2?clfl_243ln_QV-QiG z1PTw);>>55>=BPaQ3-Cu2mGzMH4PGfnA^00MK^)XN$@f-n(V=V9wyz7mxa$gU<~&< zfqb!84mDv<)}ZSbSeJwU-t7iCY*J_zh77SWht7@23v&1~Mx58T&Z&UE^PnHF1gXI_ zG-SmOkN*57V>_-urIAs0E+(n*@*Jdegeu65+$0QlXoN5L?>Ys9#lW!RIBp=K11M>S z<6lNRfsb5*>E+hJEM4k`;FqQ@?11aVkx+Vnee@SB^iN?cV3$_yy8mgwU_H~>f^gL2yeAAt~2p|pwS!+xzB*f(r#gHQj4uu?%0JvKhDcSgX>lxc~SIEX@Fs#&0;0>OHvBOrp<$@wAsxD3KyJAWCtJ7=ms{9(Ij&AE2NGn1N<;{GP@%eu# zN&)t3OjH2HC(L(*f{=?E7H#bwc;)Z_K;WTw2G2a3e*YDi388DY13b=ta5zZ7+Ac0b zBgUo4JGT z+6Tr>ecy6sIBl{Jw}^s*acI0;3|{b4)0$2^!mP=CE3Ds(8{tzCY}%gB(;5|bcHZ^$ z^ccXXIv-R(hT`poO*D1lrX9@2m)?Q+{(-$l8= z_H-5Wan@i_D3K`L2Q*7?<(#19(*?;6plz^9M8VB9VU;7SLd~pRr5e*3H zjW+0T|Ho}Ic~LzMdu-g1(gBQ#F(tWI9N?(bYDPr*{>aAvemnZ{8#2iPTfQE%P4Wjh z7R%c7i6shBv=RH*hFfz<3|=8=TM2i~uAKD#S5%@v#dswje^*=-fm6=&CRC1h_3O!( zHG`5$M30}56t1NB=9s{F5Z?zZtm>y7ZNYJ_MPgT|NhNF5)_XKlG9fT6q`NGn&QBC5 z*gRNp879SgQfTJ5KXDv}zju}q1UMuVEcgPy*oT4UE~=2>w;wb%47qIY_JFiZ_P2$p z*+2V3uh;RZRQAE@&v7m-aC{5*TP~n4OA5cvqWQ#B(P|yniCxaZ1M@{76B}&;=BM)v za8nZW)k~;h|0`1g)zG}#pg5}-0KkyX-j1pp6@vo!&jEnN-hsD2fzk|3h@ZY&YO5*e zLy#~D?rdVc4d07*AI^x6sQA3Nb}YvliIgVx1} zO*;!_wg(&pHae-9eE<_y`f!1h0IcIAr#f#slBLih|=*DRSy_!G)OBQz;;^{Sf$@~+?gH%a>Qtw{A zAbTwHYm=EQ{cQL+qZBv%YEQ17HkW|0>F<5J2k>O`$K2O`R}mEFInR{_ct>1!SOB z?K?<`V}Gi$S-jLkVhfAhmZWWFK$PL{{WFs1-CkJyyqkKg*{Cf&52;}Qf=gL7wnY6g z?Y}J>M#D=);tJZ7D`3@Oj@1cUh-pprfE51XQVoQ6HAeZ?9F?ghD+0L$-W$e1+?Q$u zhN}b=ku&XX=9U{3nl##s+w!%)i_ZMoG)Wtgkwb_)yi=5qloZqdMA;{K>N8f-=;X6f zq`ztFsp!S8#}{+qbL`P)O9v&i53O5|-Hf>|Tgxdp@pZ^Lrho!OWsfE4K)=SI?$A&R zPMs~a?pUA1Gv}RmbLy=^L$0nNr00NPY5~1`$XQkjJ~JPMx0rRWl5*ixCnLM)utP&h z$^VkNS_$)Y!wcm))lm@!(id|+1VdXC^UT#{;a&QgHQ7?Ses(FC0#s9RPc zf=dM6*rpFj)L6pbJ}l8=PmujqOj$fYL^4FqRh8!Ka49YV!d1JN5CLzt_C7|E+-5=h zH#C%JH7OzXIw&Z#hr!tdL4pnRVQ1m;o}}UZp^w%(RRogk3eZ{{jW|aRj`@AE7w<+z2=D@J)NzbEJ zH{A}NSi=@8Hnl7$${$`qT?U!x7Zp{vuFgs5eT^s|H_opg2@-^BMvO19l;g-TFUg0 zVM!(&Zdra4vDxSpll@haKBss56NBLl9*MEP8rQCSsPOyL+Fpq2@|gPYm^M#Xi;fz4 zjd5cyz@ZKK($fBcXTZS8iuJ`Ru7ar%A8up(lFQEMBGju)ap3Zg#o#VE=G2^S)?+9| zjA22#h!Nodpd7=>M}jx*Vee~xL?U!ImxXZQ7pi_!-3px2=7D(Tr$z9sjDBILN=Xa2 z%0G7ZPB(sb`HM}5DM(FYSz5Gs*CF|t(;I7P&s~~@ZQ>_zO6+rJ^&4i$q%IY0ff{7JnC@CPDu>1~3G6m(9<}@G8Z!J3*VaF%TcGzIWVz*Cu4lY+?dL z_3t=f*N#{LX~xD)NIc!sLe|6B9AfBOU_95|5VXjYzYC>N&oI$#hMeq2RpPN`FlrC; zw&KrU*@#ekj?n2)ZKRLwsi{_~9z2&bZ;cU@{>VSD2Ibgh#;lj}wnp+lK7*+fte_(dupQ5U z;#m4iz8}CXME`QU_!_Y+VpqEBev{@~us4ykeN{>};mL*hp`FNK(qRINs;wST6Z{*< z1^Op#y(301B*fP;pJXK!*q*}*)~g72=r)y`T9FxTLEK6?998J|2sE)&8cx}>G2kK$ zD`P9x>Gb4Z?pJL+lcL8vYZ9*feZ(|8{)lt~l8~EzEa}Xwn#C#q5i4(q~((||70i$FkVOz}03EHuAJViQ? zbN?djx)0y{Rewk*Wsz9^>~G;5OlvP_1CB@*SGRVMv&i3r-s ze@8iEp16O2nf4h^>OTN8GDThib+?{Gs%*IR(b!X(JdjAA@6VQct?`L(?M?6aM@5c$ zkmngOB8MkDDUg14JZF3SBoSe>uAYUJ=gZN1M3r* zjT*WbW5}>NP{w`Hd;8D`s`e@kM*ZC<1ccvYs*6h?#FL88Qhb|XF%o$&|Mn)s*e&%| zJ>l0-QE>E(Ax5yz0UoAq8`~w_4^ylJNvNEn3IQpGI0mtE|P#!bfH`CorC>3*4vh`$~*8TP^Iw zdO#NnkLpS5szdwXf#YddtP}xs?lc4eFy%%CNYY* z&3=xlMm&s~G-yR%6U(pE1$2yr62Pqjv~$J*dC}9^Cd%_=aNpb3hx;-{vp?1d$!w$4gPq}TBpG9rZg7ZE~KyTRRM?iCoxsSbD#adnnA`o zv&qCHv~=%+i7rOD`1hfy0q9vzzICreC-HwSFd(}$TWlMZac+w)EYC77=aD?j*xd2W zM-XS{c*>VyJog0#roo)N7y_0O(k7%mI%U%@44t%fiZDzWn~V z1qiNE7~yqPl*U0C_G`Y+41r-~lPBx76dKj|QsQOQJG{%PJplE_@p&!Ww1{0KMaH6E z_9PL(N3Lj?j2*8EBgSWeIkIn#{!L8C7fSCOGXuRFg6?eDYWBA*OMJFzN#%_7 zV|#(2m=UU6TUjrMO4`r0;fkey1rOk_7#$MyJ!(q|$0kYJzyhNFK1f4idWz+u?lTFa zFXz;rt=|cK*d5^JQgU8#Tkv^@8FH5G+!}`3tfRsLC^MW$6Lp zYWx1q8bDAh-5QNE=%L_Hn?CFHZF<`WMk9M@#S3Px#42GY5oCbQCn{ch)jcq@Z}ZP*Wfvq4CtbmE$jGNW zPa_8UeAJRJ+accUp#m>Zy~`!YMdw$prMNfjI}g>%u*H22^(NA95$Rc3EzN72%isS6 zK);Y#Fn0<3u3xfTRHoc=I=~+$i-29m#r$@%!WfC>EWKBUXtaab3GXwbe+s0q4@}p! zn=-~8!adTg;Uf?|96p5~pzIcTY6Zy~!UTdfrh{)x?_*l3hByM7IaX@$rOwn@e45Lp zczLOmh&Rh<0|UPQh47ybm*u74D)+|rSNeDku6$$T+)_TrMWE--hZj_$=iJ3q4wzGB z5t4mqHZmwds)8DN%HwQv*i;>lp5spMzfq!m9+%OkBFR(TJ(9qON(q95k#FRY`~hmq zvy?|*ajgq)uiIY0BB6RgJL-g@-|VMti{Av!-; zmELT+xKcV*T@QPUS5R8U-0=myhtE!&eDX*Jmz=5q6I(jdCajm+^;fpstA?7htEz3f zDPlqC%6KDv(mBt)@RZeg4tbT3yi?x;&zpNBH#~o5jj*~20o2VPo@;6iO`QPo)3)N7 z=whKBZzKU(Y%y8Gt=KEp`4ROPXH=teqUy*VezB9FNsRauuYFLMXewm$HJ{9=7?= zar~fN^0%D(?gym>n0fLK7?^peWgdrCUi(n8^u?OL9PFo=y*nRlCf$_yz+KXbk0bj8_`DpgSc>_XL}EXkq-g%wqziEs}Wi zlpzL;=aSIbPqNLs$+{Z=c$K?JW!+vL`M`P`ilY#N(%2u88ZDj_SD|JyYh!$Ez`jvJ z{2rAQ;aMvmj=gZU6)?PrKQQ z{5ZD%yWoZ5Y{CBsgQY!-D9`s4@4-MhyU4kjmVq%Yy^iH}LJPoj4yEAe-qEL;doJGs3-66L1=crP zJyv16x5D*+Z6$^kVUHavF$ruRLj{3XA}8(umN^z8ICs|Jz}uiw=-n>jyqLCLH=6xs z?3*dFu5Wh|Zr{|{C79|{f2z=r)t^*SI0RG5*8+pp7RHQ-PF$y;G_JdhS(v0Z%s)kW zMJN9$Ugo@b&H!6?zKP{Pk;Rtfvw(|?#wwHbg@J`fdf}x`{Z^K46zBendORtJJJX;z*cN?+agpDCMOL^iaBu0u7xgq+bm5_2&d54(iR2NRB zb-(4Thyj)#TRKx782iSHaGC&oIq6Ota6C@ z;2*dpBdoe9m;Iq@(3Qp2i^u(wrr9zDzSwz%-$v_(akpSgAVEzqG{?SHYpOcVza?*x zeC1#2P=s}L}UL?7oYF3QQ8(RJ>?hC*!vLr z)`&O5#gqXC64ExT!`x}Zns5-{ zLc@4B>L`ivHwUq`E?(&aLi@R&#;+l!hsvKYz2=kczo4*(#ReO@TKfQiH{Pnp84KoC zJ<CUJpib z?-rzn9O!?1sdcwP8QRaPwgo2JZ2*-{8+i;d4~Zb%FZ1SW&_fZ8ce3yL{ic3O5DAP)naTwHvJuvJ`4vOF zF@MA}@0UfSzbSk|gXf^ZoQ+l%w>7tti4G?Ou$8OUWG<|@`8MUV!4f5#B!(B}BEj)N zTA>BH_`SOjZ#Sc=TD)yMD#*o8?g55OGhwkXoA6-DmwvnnOtzlfkmOGpulDrVEvNPoga4?B|cNdWt~?hVH96Y2tMz7HD=|9J~Z>3qN_Ya4efi*JXO)6)4qb!M3ggzi zXv`oP;V4y+64b+u`f88l@-@wE^v`cvoC%TH^wZH= z*eFb*I!3y1fdvJ`xHn+NJ@Ts>r`YMj?6M! z2o4hk@g-mjgmKaOtT$)h(AjRKkgmr$5C#DgHTbb(S^IVWZ&_l`mdAS-BqvYF;_pBm0JXvB@cU3Q9i8^R#(5YM}K2Owa-{{;CQ{Pe>E)7bd z{@JnC-&V813JrhVqG8Rb23se~Xmzz1(%1x4Q+>BdsD4#ft*wb!F%~5dsr|9M;GPga zMgckp@Yj030JejO5#JJ+?589<$~A1rN$Tl84;J4}7xV4Uua)r)yN$e3tHz)vHolq%$J=e9CdvzgVksy?SX(NmeTkcVq-c< z&vC>TSf{H0m3fVFG|D#RBKG0eUQxYrl`NUIn@Xqj-$`NCas2iOVqXTOWx4CR4y)nx z+~yU`$%s^WJ-;_xk_K&Q@G~}!ka-JFijTS-E)S8s+)CQVf}5=8Qh5(Cd?ebU%fJoV zP2*`J$XaBORKlQVbKEyUOz%R9{pmzzQ2JLNB_kEB{Q!N6IcBRIWKn;a ziV4`K`8x_@YOqpHvdVzU?IK09=KoX?5a`xKwj8#w#n^$qKV?ENBg zCtj(_iO;Wlc#`J706}2K!na1ZMma}&_9*9QSfgm0JBDfQUqCfC&$rH@RU^p&Nfg8F zlvc`7(OJYRUInZWPQ4OmG~HH9(HI6cdE`GgE-$~;I&x}%R5B!VNaJWW$0OS}zoP#M z_~ggqDqe2{jkT@Jb&}p*7QV06csC^((ic{SK5A$VNWc; zZ4D%qjKa}D_Yupt{Gk!YAfS_N3dgpUqp1^(O(U6~oBm|nVSjnu-<5~j4L$xUu3?2P_ zXdexIR{gki$BS>qI0iR0jzes9*oeDieNg8@?7kX8sLw0JK7vi2vW9)e*WtI3&{dSJ z<$}&}4IfVZhjUWdYO;B#6{Py_V8+-z;V<~dV+4d_R!jWzJ?0Enm<~*l!eyrvcklHx z8bUF{G_Z!d>g{WRA`FYEL7*{%@J;5%a0qF>61JtB)){VLrEj0VdB+GZ$HD8g< z!pIzBVikJ56Ux+<-9}vbKA#VSZMQ`0Mh7;^IqT5r1s%|=xLrq>)tGFA8whi4$fo0P zD=jxY*1XgHTZ|?Q9SCG?Kzhe{-OvgOH6w^^nejxfs0aN)DRKyK?FC1|DBYy!+kVms zjais*gSDeJObXQ>hvLZyrtwGXez$+_j(Z*ViIb!DJ0#)Oa z|MOgAwuw8PRd(4tKCWPGIwaib;S{V@d#Uwdr09?ri7kiwMYxPhlMMFLvn@x)w3c{g z;es*oix6}nas?9*F81mlIp#qva)}HnX`-;9k!6I*Uu-2xzRWtgod|nDk4?UxYK2o`sOxs29PWQmIu~(D$g&<}_~?a$teGhqy4Mn{wITW&T+MRr zldoPRV&Vp^&*cl08f3INE~@-EoCY>-71>4eK7=6$Z+aa~QL%sdUCdm>^*O8SH%1QJ z2&I8>6%QJKKZ7B7)Vr>@F-4+@KlSPbgN2A$^5QMs8@t&MojZKFFsZ6*v#8^n{pV-) zH!b&FApU!D>c-T6Ze;kRQqS9^&$=U5(Y zyx26MqLzKYCeYF)NI;R_Njo1JT^IHM-w3(LsW28kQ19Znt}`Z>MUYzVb5Fj>5&9-J zUw=+wVAN7O$hM52d+&Yn!v`QzM1dC~@1M%p0LH&g7h=q!fu~7MTJJxOy|qM8bMW8- zU8kj2^8d%5A0=>~YyB19Of^qe-rZ5RoT;{u(Ku{R!#^OKY~wKBE4)%YHJ>8C`qih! zIhkHR)bg08)}NCY)p?NZwRyU+Vuy1+ydANfb8@a(byIp>^8+xbfTey6@RuuqG8Py) z4OjOr0>KCfCJZB2?mSNW0t;6Kw!Q9Aa~Q4!7ELh!FO-6h?Fveu=?uQuvU!3cFb-n; z=3yKrz+Q5yZBq38*z$*CHRy3U=n?dIpttxBCfozEvHYN?JN@@g=V8;J#i#+XWJiDd zo&)}#{#^Uw(hdFxLMs;7+)gJ_R?uib%7KY1M!y;`ek~DiI~!q0il>q41*Oz#`?X$M z(9>n%hi>q#D@5K7&Z-J*-wpSrU!IF;v<9F4m;p^6J!nw@_Wnl~i3=jgr58J(8 z5(mE43DkCwC2jUj7_jK_J4}w18KqFw*Jjp}*TU>Y7x4(V0W;P5HR27IQ$imBKv-_pxKsZpfXE`2Wts?#>ac zrn9`AWVu<1XjII8rU;Dj@sMbO9?q}L?Jj{r@$dm`wekaAsipZ|jI!{6U8g_|h_U_dLe@ks|18vacji%w!mt#6Xq*yX4L=CldGGpHUb2*$Rw@34bw0&*6qa zc3E#nA6QDCFD0+Ls?X_97&7(e^aeiOi-nt=00j|w%<`{yOm+}4)0bWnZ3fq05x>zS z0kI!I{EiYC-x5!EYOmY@r42p>(1@=Ap4Ac7Sb=W2n#@C}Ke$mKD6wDk!WE>p_0`VV z7j^Ew9q?sBvdr#D%m@rWlZ011!(wmg#en1HBS^w}ng2Np=#Dl4u3|uN1zRZAmsjUV z8hmuV*)ISOHGHH7q@S-hY4zMKcc*}wjvvVgl;Wt^lq)-k#e7>Z6k^dakk>g_pSID$ zr25P$3l|SbU=P>EvRClB64J;7QK0&gGYD+y$2f+cQkH^Y2j!&KcgvS;^=V_+Ys{8}`K zS|_MK9`g|)Rwx8sly%84k-K$IpHMQ!#>-JcDGIk1x7R=3{*Hp_4Z#C!`hx~H>@DZW zn$JBPKSJb|ZTEd6nAv~tmBSW8GI|C;TwM;mfR^=SI=SFBNu0?N2`GT_GlEKu*gazY;YLOV*;BB5p z$;d|2MC>f&l>@wO1Pc~Bd@FFtt=cNfcn$#HKxWz!yEP$E#2YZA)<&7Fitier@Ba+=G5pTV=N$b4#iv ze+?$d^g=61kSt%5Z(yxn`~x}x7UZiXsE5RbYNx^I%+T)s4bp2M!FzMM2A+APehJeK z`d=|DoV!JSz2J%3{uw6w7dZPN33^oLCBoWQ;IQKa08U>6Nr$rL!oaoOfR7XE4gbc8 z2=(h^fGY1Dh zS_&FigslA9wj}C-Q`#qBal42Yn4-liS=*;cEdZFV&O&?LLzRnLB~Dm+K*+U^T9XeD zZuA26?D_dPPhS}qf-;9oe=t10Q94Xq3>^l>?4oL?#`q`j;tOwl^1@x(jDhAjN$=G+ z>jxsMgAeesclQve;4A=oank`@s=UaWmzLO^XIp?(6I^^mc?yJ~sPxQ<0_x$${ljM| z@xg5FDlu9aw?c{Sq4KJ`yfdLC>cuFxvJ5|9`IB{hxLyN%|c09>TmynBMSJ$ExHo5*!zxd z=2Urn01EX-oQ)|^YOB}^woZc;YmT1@jVn0iD@U&V_h*Vhq)i{`4UuK>_toY0VKO|I z64pRDls^z4+XGVHsQ$Qs!}Q=Tm+XYT`uDzM0~Er}qz&{YcuK@^;_2HQzZB0HJ;|9@ z<;N&~9M&`>zIKs$)`_9Glebt9OWxmglu1qOo>ioP&peidW@<%IALwXQ{st*|ea$jo ziJZ^pydPn#z%wh;Pn;Q=N~~Bg3^O*BI5ZOmyaNX(UP+=(j9)(7s#;S_W&rH=bv>!2 zidVG^Ux`qqPe48P2U|wm^H(3Pv=&>PmZzpT>RRUj)-T8D4v4AU zA9SO~lEaC+=(xZ%R^}MM@gp4bQ^R~TK6}gtM}3E^av3*Cx)t}^pj05mZ7p7y zp`%HMjM?7#_QRv<6%a33`t*ZYP{>;g0z}sI`Q~x%ai7k|ZT@Pqm@ysw@N5>f?BEA2 zhJE;NvBk%lT7E!w*<@%s@Zhs*7Iw@Sd!L#Wr|FRYftx zW^oUBAJ<_)->9FW`Y8W_nOHI>F!a-_Ls7_!KF+b}{?kSD=)&~%Vnf&-((zY^!%Jfd zWM;rOi<(udsclyAMavErMH~jV-Kbw;%tWLM?aYY*ffx~N8A!M>-p7XM#zB6fJL()|JM}vneeJj8s)j_4yZ8xjTbg4 zaKpjl7dNXn>+s{#S6v3e(p&G$9SNYG^LPphrZ3ik4P-=A&#~Tmu7x>lL?Y_nHqA3@ z(hU1hgi?_rv(5^gH*K(1mMH!SxKQ~If$v@gl|J~wy>?8%eH{%WRXPZ0#Wlrt3D1nK z!=?5J_R(|2-=9vb`4YEB(FAtLq4jM%-LxaUPXC9!H$&)H+e9iA*b~j6^DmB&CP{SJt<#Z3+JszGeYKUJAqOSkfQFZAevyLbMM0I5;aI9bP} zI^TOv`A3uX0zx#fJt{2;t-gYwIB-^3G2ziq6Nk>>L#2K1-vjj3$kU9rdsy!*(~GVx zP+pXf+D9w;q7XD|M}ksvz43cAT#gkswM?PId^wq0e*XkH3If?2Q8!$i&K+Z8kh@MA zi6k67p4Zde-te`@HV?OvaAOaPBo^oE6uhMnS-%|DP;{(@sP#dNXq<=}=W^VEtB zV$xQ=_2k)~rcQzE1iH3K1Q$V2EZ;-jPW3Q7<&_hfN@VbQLD(i>r?R!T{OrK4wwMPu zp@D6QX#J1cSL#jK@ktLnJusQ&V}+8pqT>oRi51}Tk;2O*AxJlAD?b<$$RZ#TXN=jy zJRHHyjJa=B=uMDJVvVAPSyfS83OZ?a+&UVve&<6Jhi!S;szhQOVALc4=Cc% z+=cj7d_iFT`hk|x>H`)s&#GSl3YY)Tu5XSHEwK{DW~}~Y!}b)c3-KIuK+S#Si1`IrE~woqVz}C}CB@0DExcN3pFw56kn|(kI%W!>T|NTe z&-V@eW!ZVM@ba5~fB(aooJ3Ii+2S0NOl;<7IsXD-R1Kwy~Tp?~0E$QmQEtg5vL{5^i}X}875 z$r3Gy7|-Mr>JH{$nnXd_N<*yRge&|c_pSnP`Idd&y? zAV4e7QATytruJr;%IwqgBV3Y&wS7q3&#WB@gJ+L3q%O-|a^q&P>>1;XCQ-R`W7}nR z`f=k8&DKC71hEEjzgD8bN1*5x!2>^TVLnmjLW{TWy10mL+1))!SBwL8ld;M}_!*GR z7a`HDMWh60gRT*tZ}zhWA)-}=ZKCmGY;C4kM~mJN+UO0aR%UP;CEorARZc~ccSJoH zGT}W#96nPdF zix5nF&8Ax(-01Bu^j0Y`&1aM`BUQF(D@X%Qs z>2=%*z-lAcl?0+os#)~wS84s zm21@P20=OnrMm=?ZlqJBTahjS0cns9=~B8&x&n>k zdgzLCWLEm1>jrFrJcm;*n6_-#(VH08@B>ska+r)&zFLYC1^*OQ2hql8mc}#E4oRhx zb7dbcqv!WhqYeH7$=HCfdVi~dFgaSVdcQ7{pV*hv#%U%7i`B-&c@xy8QnW5Qt5zv`-jIoV}58f*@$h{x(S zjt`#|6DQ)isY@-%^K*TI-ptK|%kVP|!x;LMtiKnoRWrF=lm81rZaWHRNGq5D-^0h zl%w-fC>E)X(KhuRR_R|0lRjZ$dC70ENiL!(b!NRs737=?_3Lv5K14*^fJ-#@r5>n4 zk7A`#HA>lC_B@qK@t?%bik4{qkB{Be^Pb|PNKx4CyPO_ZeISKTwn6`LBdSw2)(ff; zTI^b(&lN8>XdR)xZNelN;nxj~b(qZPh#EO-G0DWEOyUa3Fk!b%;#jv^g=&S3%>t9p zE+b_cTJhZHCS4g7;+vZ(1TO-{Ojcc1Ot=2wbVcj3l}eBb7>rweb{dw^(S#xF3wnAR z4x4SB%|ZS%)+bi|a@9xyW%R~rp{sge{i$g-vWv-JL~DKy|93ByXZacZ5kfY?IEpBD zIZ1TN8r#p2O#2=hNA><#k=(G%2?y_(Fp1fw#Z3#Q82`;6G1g)$yWi!4;IbvS)cacw zGAnBH?5^;2pPzn)@#ge(w{7w8hW_P*6kVha*U`iqz7!9XaHaJ#vXjQF*O1pQ;qXU| zLx%cj{6JQZ<-KicSn_YnfQ6P9W33L{6iVH&@p1a>xop7TkF%H#sAboU&- z2<1>sNnK9>JF?bt@7DTNnhBFkb4VI8F$c~Un&q68aRZP*KIqgekL(^jDE#UKu(QTx z5;oY#+gzlj|4e0Z@DEM7vb<}s^Vac+etbqj4#PxTuY!ei=dkSxme<%Bpz}47cXHps z(%nxYd=e85VjSNK+5IxzOAAo5-vuCHH17dO8F=k1m=;lVfH8@w?>hOeiau(`HWNxF z56xulDnr2#PVPN+=QK}fG9mK;3HtZw@>GWIX}|*7eh?<>qY@{T%p{>tmk@DogS)`4 z`Uei(KL$_Fd#AMc+Zm$DQ37)zxxT7u1=Jow|CT(ysY`h7tVMEOEuafB-E;n`@leGj zRpRpeZ=@w?VBgF_2@;v)o|2y!u3vyC{M2{o;LU@{dJmR+hG}PUIpeDYmMN#+f0DI0 zjk&9pK5I#4lKjMP#gK+Hg+AntW-b$zGjOrQ4THYP1hWao&7VEOde#VgC|}~w`}Le& zT>F8Ec9D#T(BazKhul#g(u^#lA-!aivH3-nP-Nw<;=jv``6kfzoS6Wj*m?0~YC)~& zH>fQbE3DkF#k+d|TWr}&O-W3b4v-F*k1h;+5DqO5SI=N;mE>37q(JB?toTJu(LMVB z0E&Git(PmJsi{Ww8*Ap$pp-&}vgY%iY-b6?oWnmN@yYvc zaj)I-xUYFeBXb}+SC?1i{;;4jg!=BuyN9bjIyJHM}J-22Pl)vm7DS&73REnD1+Ra>SifZvjDAMinEN>TDBQWr;SY z_!dKR0Az}HI(`_3ZNR?KFYtVbs$FsJ7vI!_MO1A|rak@{%HY9e|BOK`n%gr}$W2ti zh#sY!ykm5@kcTp9fI9XmL?9gWck(nDxwhoK@5U{S9i6RmHz|4pZtX<+uxLoWZIIO! zcmJuY`5^U2xzo>4sepfLUbUVYgc0(*sl6za_34+!?8kOBdPAi~GD|bSKM`TG;Q+{TIE00Du*5gfq}%n%)2zqhOASt88!BZww_MH zYZt;b%3t6(Iwt>9TDgZzZm6jvY2($K0QZ~O!FsE#ii4;%dmRth0E=;C@(-Q=?;9BU zSUs0M>dK9meiCL!D85y&fNT1tk16&ZsrSj5be{H(>yBHhb8cTKV5<#~pgQ*MeuJfY z0rx&Bhe-}Ze~G^DEo`PILrbf#o|>lGX5?rZZRuCgZ1$4dd0R!oU}Zo3`rwnbQT#2G*g*A0F;%X| zJTz+#KUN$k0fZ&>oT<{;`4>6KuHgpHG+!9#hx zz@ay|WloHnFUzzf1uPl>UtPHmV~{w`K1ROMdKR66*~17;6O{clMq9b|8)`6xi#fMOs(J9$-NAxlCmpV^QTp=jc7% zzbI`1BV&?3kXUyC^%3|G&@99u3Cqx&^ncO?LW{vR8Y0!pOFNy24(OFRSYGyY)7Y!b zq%dA7w7Dg%RC`v)@v`^N;Pu7e{IX*ovga}8P0~8Gg%zsce0ht9GEgBW?YvxP?>8~;V%A8&vXEn zblD;&8l0cqE3deQTR6g?$^32hOKL*wn=SjHM3Z^U&O00F>rSh$2;=xra};ks$@@Zp3Dypf!UDz@* zt>fTesrT`L&&=9vTE|~6198c8o_KFj*T(+9_d_@0kvT_WK5zK{&Np5j8NMMi$m&2W ztr*so=8q~o%Ktnvgd_ZJ@i-Se|B&uOR@JMqwsz+)pV|F8AIBRszF%bP?d{;j-%+=} zi5JT3jb^`~2i<-ch&bdLDi3*7o%-+Jq`&hI*kG_WvIlLg+n*nD%})PL zwht*ZuySF4i2B(z921oBY=Y=Y6s^~6VPIY9qs$^|P;wXt#L%R37>>dkAY=odHrrKS zLSku$y&Tv?2Eg0()k5wI7r&M5M<3vVB=z|e!>H^nRpC|s^;!Pm;{5HVAozM|nE%a* zNX<0DiPaSGc?n#vD>0?V|7RYYh+JLQv$uj`km$k57?i+(x*ww^qacAmIf4W*9X0-h zMNO1|1}ccZS<~)=Gbj$4=)j7yfn`1%@gQiH4WS+Z_nuRipz|kF`Jx=IDE$YNUC7eq zo;TRDT);D+H$%xQ6f4Dtjz=HVZ$K~5zEfFs1tvUoPPmGcgD_}ZFStGrx^_9o__t|N zC}g$2)G1whF=%$BGdBW{Ny1}GOD;U!QY|;qmZt$h3P7CEl*ojw@g|6L{LDlRZBd#s zFe3fA-}LNT6MfxuO;6~?Ih z(6LqbDn4?3i!1x=_8v?Zq3l8_i3|sPh`D>4{gmAXr7N%ui$n&OY5$(h)c$a&s$nzV zq2XAR(669g*|c7g!{gSg}w(2!RGrnr;LjyRpA#PhcF=RsD>N0jdAMJmk_xuBo<@;}7>wSmu`MY)tLMyC3)QG(1{@s}txewo-yi#Q%rqQ@c zyhbKMKlmEs^Agle4HF+>OrbvyllPZVd7$+T;QvFPk$W7MD4p8e63GjCmxO%KZ2`*t zr>lRC1S=}8buK$jW*smQFEJ8#v>X5ymE851zP}m{$`1>5YS6G~T;bzt3Cc%uD=B;h zjU`0R<4LwSrHeeO2z`07r7bo{!v1HbXMrnj)f%5qPfUqBA7)G*_-|7~wf>S#gN{xo z485v8^(S*0dUbVuYe%5qEwzUOEy+*Sq|2#^P2G(Ku?AtNDV8nu={-H!q{4Ze2qgMoG5vU2? zF7wDu|N2McH&1z&P%|$i<0)!p4p;$dGRvOhDp%q4085bMrqR%IB9BtKgLTw^o|+HM zuZJFH|90Qs2!7T<`F>r7Y-OP1{q0khM5`bX5EQ{}No>;#43B6y0qZ~qW|<`!vVuU% zxQ{4t9)O^}X?ElAJ#z0OKb+Q(D29XB`2*tt1cgeSc8ilqHXVh)@)eK(QJ^k$0wxM? zFRTXQgYL|S9v28ZJfqAwZ)=>7JFg|Y_o_7>Kx{ab9=DqoRFlk%g=8F)CWskH;}(^K zJYTvtJ-ZdqtC^D@FuGq9d*2W41WHAOWitQjq-?kWd;*oIQ%lCWeh$3@3 z47*xS>~nJJ6C3Bl#qD?h0NVj2in4`*5*xLV(W6nf=d44wX4YtyNF7MSFN&mxeiqrt zU#K2U;|3-?b*yQ|SOk$rV@|lm8$RF%kZMq=v~Y`lzh#w>*cYyB9Z*JNx)<^&F!7tK z=^aQ+THtB)DeK>3klHCPhM9A^jO(Kq#)kTO4XPq(5l%szqJ=UhBzAU?sC+WN{+`LbyFI-gNpKv40~&FQOdOKRGG z5W9-w$?RH-&B-32{G?}(QK~TeC>989KE+o6S4#e&+Wzq!hyzO0Hr`#&W5lwCq+$Bq z$TX{hDkCG9uX>Y#=kD>{_-^$Pos_@N9>>41QPRV6?x39=7<2w!gc@6xy(mv_e zo5FR2yjf1ey&o(Q~1pwv}eqX+kX5r(*XS0ZEs=guf(snfcrR|3ACqa8$8o#thM{I$bPaqg(qs+%h zYJo&GOXI9g+=+h2wQ7Ea`4xqbLrPH6{nrMWZy%(p58OfOG;0kS`+0g)d<=XJ%0`u% z!4W^(J+?_VCC6t$-RK>>-SxnB064e8Iyot%5rSeXWqM=_yd*@7YRaGcVg^AEU;_e1 z^>_LRGB)AzT_ujhwUpp1dI_(43SJ0g%=h4{wl)YB$Sv2H_fXlQvg%)w6-NSTnt(r8&t<=o%|xI)|7zz zaxC7}0D{8ii+SRnoK(6pRcyBoi<{t{hE2wL;&Z$QYb&3WM|}6&p~r(NV(j-_XF+ShUpxihN z@?xa3sC)yULqZ~IfKXBRAO2WNxTDE0zL?!PLiaL`89o1MmcXZ}FZ{DzoVYGGI3@I6GiQHz2PG4Ch1(DnWckFxH+-~6o`4zju+ zqVM5KItirUH_76b)%Xl{cUK{iB+<^D2AJH@sdiW#{z)K;x`Le{@CtbqN%9Xk967&$ zOb4NVpYlPOT(dhfUKDz;Df}=fw_jIknJ_VS#c=Xc-o#7*yL2?rW#8|Bpk;oktxT&( zQ{ZJJ36W(tqY4>P5KtgIq!_Xz$xCp^u8~8L@nkOlF=GG28+OfCGeBN@u;Pu_{m?d3 zXD01hr$Mkm=zyA-u)~;JhH_5Y#dPC?5jO4VR;r<;jR_=KrvHEkM z{WkP=j#xnrJZ)5PkrPp66Ql0I3$IP1x&*P5D+&&ZWUcyn=mM$Jiw+5<8ox5dmhX}b zfhZazqpWg!f@4r%t2UW(!5sl7Y~5Da$I^0>oNKV^(|YO|B|QfW4ApN=5Yi5Bef$!l zY6^~NM7^O?O>d|_9g=daVY{$ztUjtWb*Ol|BBxm~Q~`nTJ<0mc5BNS~Sfx}Y*y@G3 zR`3<(F%;7rk1fxkg2pBk2kK8Xw~C?t7fU>MWjiDzrWH2I9CG^rAj?B;94`DJp-A`Y zd_XF7x?GA!fk{)Rq4OB7C_R1JKnx2>MQnZUN9z zzj6I+|6^EH`9G<^d|xF63=G+a!NIt3A!9EIa#c8#Dx!66CJ}P7l5I0g5MV1j)_cvs zs=~vsV(4dIm`*H?jiHq_bp9!SZb?$&e3!em0C{t7|6F-vvBOUDEceavWuW(Hp3TG~ zRaJ{N>sO)3~Ol&rm36uaFEG8QnoAUB!O0@3^4HHZQbrtVm|rctk{xaX7LXU zb(nRvG|E|DRrUC61v8)I)-X;8k_`b65lKW(cju1b+lS<$rq0ie2*kPF&Llaf&ePG( zsAy@`*<@v9u?>3VKZjycs!h^Qr(<&AMs)WjJN+IS9VruqSfZ>EpF5{0ZXfqNnA|q43d9;D%Tx% zR@?8H$o_mvnin#x%hIox!!kvdAJ4IO-Nd!rVAcF3tDzwB^OUytt*sL!9o3@HE!TRJ zRyW=~pr;Il5$nIR9Trui3twpTV7cC4#eJK6!ufk(`ESB()Cs?eIUSZ4bKu!c`*8Gbt;!( zw;&%MA7PjrQjO39YXGOTk0aYN?1L8dw8Ve`Lof%nEkAvUhmZ0F10NsCQ5>IfmT-IZ zs5dg*2YJBwyYcCmtybpDZ?u#k=$5b-g$>4IiQh%)U*Zc3(u5IUzH(ADEuc>0e)8%l zHa@<2QJH}%PUKY;rObs0ngV_Hod#r3bX;8Z)Ask(WG^T*O~2;e!MNWzp>(krhE1#_ z9vVb{^@8{lO(B0{%cx(2Y@rsCL5DGrg6z5ttRbo@NSj~xU0u{7&RtJBDa}VhGhLlne%>f?%zanz#OY+^ODu?|2B#9E79IFrUd)Ia(tqOaqc*G1=@cjuPK6)Dh=y2q(p_UCNPYZ%zshMWq+}_w@_vL zj_qIX!hRI<{0A2iD>vkU#e#HO8BmKG)94CiWRuXiSzp83Zalh;(7fJ*FB;Ag+Bn5m z!D~2G;OcoED_=9*bUSjUZ<@!r5s{_zenGZWi;^<%{iC%N;T4?a6=!7(E_*_qR|dOF zolE|K2;8<+poZ4Bx6_mh7YnkmVEmYFv{6G(=(Zvrh{qZA9wTW!J6e}``KLO{u;j*S z{AcD^;i2FHqO})Ng2c>8_&g>p!Mp<*e8uh<93;u%1~ME;L#GU#=zV)e&)QP;C^_ z@UHee>?SV)P@Z26XmL^>2?@IXZG6Gu-&BaAuZw#Sp_{3b%Afg-_9?w|Dm9Q*iKqoJ1YN`O=-1Ut*@!hTS}8cIM5C!OQTwFs+->w00Yp z&EiL2c-^^tR%=&O!DJ}V$6mj3MhNnhbTup=4Jo6z%m=-JuXR|B+P z(#W12l7E?l*1~OlfW#CLx!~R)6z?!L=z;5(taGrWMSHiVT8Td+k%^)g`>t`*7U>CX zz>eDu`d^|Y5(zY7-R7pSDK_%i$ zvy*1O@F`$EvxaiQRZP}-y4pDX{!>y?(n^CGzs(U^9m~IzZ$S6A@a*V6P7-W9Jom*& zdAK!XAHP=xL5Mr>Q&2!a_RbK`RA4YXmUS3neIr_Z?Qw@Ff&uo-+kx}JtH~Fp%WCUB zdx!4Jy|#Am`lP&EiSUK`)5ayj>F03NK-@O%2mbR90!~|t9TJ{itv+%x z>bPVa!BXZc8v^P{HBWDIKb{16%U=e^ftafmH zkr{N*Qc8Fyun~1e(}^|356Iqkjwdv27^^hg9C+-8HIE~V6sQX|w8(`Vr%U7?SdRp$ z!%p0v-8p%7KRRl{RYDRR6H~;|fB%w&Z{IW0`oo*l#T16k7P7uHU}E}n{Us|I?iV~9 z7qf{lz!~bFGNz}mo4@95(QNZ>BcSk5!ITp^w&?C&_nB?{yVn0^=oIpxOR+D;N@7mMthLd6vrmuN|D~jmeSPF*sY$M_tv#y%)KVLn+KWLF`@3ps_ndB8O^_RvZ)V7`;ZnCW*q)({^*?rxk?Cbe^A(npm?OBPCPB!FGG%?b@~* zW2Ic7)`g;EUEO*!|NQ}GAb94L{b<4g!iu!S*Le&$^{191$JZa;YnJfj*SX#$i`gU` zpjmUJPf8fci5PJT~9<6)wZt z9I1e;tWMCYsvunhugHlqO_xt0+tEoov5OV`Ut;e-bUM7VwEL5^zrP=@9j9?4%jpN< zV<@+Y=p^es_ilBV7{RY?%JMM-vEM;$+F7>ypyl@I|Ezi&Rl975z-~n6?L$^pRz+oHvrqo5kn4`< z{HQlZ^E>Uwi-4LnRr~Z@wYUL(7$`KOU=|n*in*;Ng=t*@SuZ;yBZF1#HsuaJ{^Jma z*q9hOrirHw+Q5hR1nvTzq+-CCmt^i{4*8HzhRrbDS*Ge8SJ z69?00ktP3c>)B7rKxq8nr>sBs+b+{$<;1jAa!$Q2hbK#2*-1(Dey2N#9f=3P+sRNbqv%OLCf8kEyS+~ zad2e0lH4CX8Ul>=Y&gk*{7A@j|XLDOMtId>@WChhaBp*sZdE@@rA|Wq$c*SIqZ_MeyhFHX0h*LE2!x^U|mI8%i8qN}@l0{xr7_>x_<$J|G@)DE;WY zPbbMZ6aJ1Gn}{eeE^e(XDhgZjt-#@Ej+lVBIMqOUUA;@q<7Qyde6hoBE=0>9B4JQk zTJJc3KM`_Sya2e*t@h%Yiuet|;KoSq{I00K@cs8t*c>%Oc|bf5wf(d9uOUP8UzdpgqJ%i-PuV==jI_Ai9?aU)`Z(+VgD zF+RRnRT`j@4wOvjbeO7~rm^>dn@((ZL@w*~Ynpq+b7p+&Cc06%7GqmBn|m8g-P3mA zfqs@izntWEUcVo&$k&9QN5^$`2Ephf&o&sI+86hPpcLef8fuYkj1`F9c-H<~V~h(H zZ`jlsqCr0m>*h^(Xb+^M=!#zJzIU4Acberj!nnb1xZSXk6S#ti9!%$XQukjw0wur# zzclLp#7P{&lM;es zB)#AT)Vjyy?Qz<8I5^4eGsHpAwrW)bN7IGoL#Tu6DLP|e^5xW4o!*N+D;y{0Hur!b z2mSltw-D%#0mPb}ehGVMgS=I~@@*)QMl`e$gk~1xk>hk4SDDP1wftMgu?prP?)St#pO&+Yf{%pz2F`{E6#HZy%IBtBp0^ahZM)IneNl97|#|SNz*0JqA$FnUg3V&DEK80*T;fVU5Tt0L$)M3sg+rh<#pzj(AFeQtSTL zMvvTz$;7Teo9^>)%9cN_cq#PPMw->XArAFhKp|y&zYvKP z2`3S_8Qn&4E;|TOl6X6MPgf;1J4^&r`v`2(SKO)m4BA9j9Xr&SkspFqO7dh7TFz z*;gxUwnOQ_i;Se#?vP($ftERuS_{MY@K!#~Ae22E=s0qPqyAe^iYb2Yl2*Uq6*=j0 z;#!xR82ajZV=t)=`i0M@{3NTR1)2*2?t)l_nb7;1|GRVF#NPIcLgGUTKFe_H2q9}> z%}0+E2+TK}*0Tap)wXNmLj4_?H^j#s~pxg z^j+)_Q+({j0?&?YEK|kYZD;QXU0q-p_&*0#=%1dg42&7P7To}0Ai2y6{dKzc_M(qAzneL@2M_*+W>+mU#k|IjIdVm^MsE+(TR+EX#-9I253xa8bys2L4Nk z4-?xK<3j~O2BED`yN0@8C{#<-OKQFZ0K1U-xUsWSI*-T>hX_!0LOM&+-s{hw4OS%G z*02|bNNf*a#@`0+7zgx!a&LWkkwrY+8F239;UO3VSi(-d35BRXlD7mKD|>tYM|arqBGKf~fi!Nsc+b6sxgRT1Zt^KV^B@-FK&`ebiXj z1^)k#$V>#W_5|Lb3CO=|C}$1)!j%8uW!hsBf{eIcH{$GskD$o&YHHvKA3SWBj>-B= zmKZfyPUjQSh>ij1OaXvwDO4l~8J;Ka@dr*GT|{x0=)g3l&3j)%s5g;55reTCEGSal zE#*XDG}F~3BNutDe0&&^MNIHZ93Oq8uIcMx{<$o|0)QEhs`f&;GJsY#z?$hRy0JN9 zJ@?+56pVQMhVv#qVc|3{Z3So&^MBhLaFE3aMmH&5ghE_^=Q+=YIZ$KcjbOvZ!7*-j zNIk`#`0O`KW1A)E+qhuhdhz%EOJeDS3&_5&kAPgIMYvtFLH)ibJqXspiKT^S-tt6B z@C_eubV3CFHahBZyfK`C1a#1S0H^>F=mjRv2rbI|VCf9O$MdvJ5E8WxYYvBGi26D$&SI$oK);0V~w$rnO9EBYwQI#l0dT>pEfqC6o7! zFK!|dU4-|S=End~#x8|BKxiej0$|-DFhY<>P`erNgHDH+RqP|E6SM?P;^-?9e|;qh zHlf@mEv{D=XN?DAxZaL;3YKxnIgO~fD1hp$;obk5^(gfxgJ{l&$`0RSHj_N*pg>>5 zk_EA}0riTvHyTa4=DLNS57~Wo6TL^ZP3;)3V;vayX?h=Guc=sDm+1F@9tOG&r(rG4 zl#I`Kn8*E&dx=jaNf@rm%Q@!X2g53djGD0sPa`*x9(0XMpN~Z@Wq&7y!*!E7g?!x| zK@%=CEP+7ozGhX+TG&2270_~N_xcS7`saaV-4Z}Fx9{p8{GQKYq{AMx%2Hd6cGDnVz=n%Oq(6_Hx(1$ zY?h&qkB=XvUfiX9m+kOsG6}cu%a_(z3bA6GY9d0>IIbO(sE6stmSbby2UPapV@cSv z;Jr15X2JNEmgQ$oEU&}&rfu+c<}v$pFZ4#d+r|*3`1ctTs{Ermhc z{OIFzKl*wfvnl+?hZ-!8$dVG4+3sGb68FYZDSkogy+7M4BHZ~|?8&PoH?`uh{HQ-O(ze8!nXn1$1?)o25&J8Bkf%9+%+o2DG`0F?? z1+c`DqkJolF+6ONnG~J2*EvHaS(wh$ln?Z0jv+;wg^^z0`dMe>wVD3sszd)sNq_cF zr@Nu1YLe2T>%MyK1LdBl@;U+0^{C%E>HihY_`hM1gCGsr1e!4O6w3eLKUGByg<3iD G(EkDO=Wf0L literal 0 HcmV?d00001 diff --git a/GAN/6.png b/GAN/6.png new file mode 100644 index 0000000000000000000000000000000000000000..5ecaa84d3916c088d3e7310198fd3b812ea87a16 GIT binary patch literal 118407 zcmagGWmHt*8U{Kv(kb2Dh=6oScc`EujesB$(%s!H-B_g3(jB6RgdjPTbc-O~mvhd| zKbN&!OR1T?_Zv@rM(Jv+;Nwu^AP@+AHC07@1Ojyzfj~LJMupGpFAypr5dZ$EDazmT z{IQ*jy_oboH2(`;eXFg3mA8GCLf$|9+Gj8oW}V`al0}h-01l z-wzXWu2en!|9p6dmFg<1{pVwoJpKRvW~2YdH-D<d)_*5Kn5s!oVoi%n};Vp8K=$wYdH7DGg@2 zw9l#U`JwedB9pp$N2_6_ah8PJv!x!2eN+|!y`r9Pr8}Qs?mnr)EhjEh&Ij1h;tHK{G9(w}qmkL(5Z9Z!@ zEx(+4!64(ivA3r~?A_*!w-EdC>hj!eYmzvI_hBt^EMHb7o;IlvZ{4KP$^2~hXO@ul zvYE@=UGYNI-{i`F)!B?K2OG8dhSy?o zE~!!HK0D}*p|JU!Gf3KM^2u8&SDL|h=f}remVH*EuReMmt<{!om7!^SN%r2(Rq-8t zC30irV5Q&rm`x-7@@P!bv7`qTmnrogYarYqO#|)Ld4gjroMeQYfU{ zeogGP|I;=`MMEps%+mkleKJtwyYYo7nIM{ZlEHUh{pW4A7@ zTQM)gf@SEP$tUXe9+6JmH=m{SS4q>c?o8{|TB*(S5t-bJk078^Uv2ceIL)KM@=WE$ry-jx6$R{!ZTXt&Qji6=O@{ z_xp2v|IIz;7V4VEH5M3!CnqOiXktp^h!1*gzUR$uTSH>*d-HVc2(O=y%2|DgogJw+ z?k%+W@nHuV|2u2{rQ zj-c6w7kf~zZ|=Qrq?1fx*HWj9q*K*;1-GAN$fdHRq=bwmI*!wIb%l`Q&8Ev_<@bjrm{*CO-A;r+95VXN##EI(bO( z`1=FlINSL)5}F|`i){DIeNKLT^f_~+jMUk@m2|_B5}sTj3ffQ_&mD`N$jkF16)ILu z438xf`>D#+Wu<7cCF8d@OimHOaComcusvTm>Z@x1M*xSA(y-0FEN{o$K? zTt&tex=d3Bk-Rp~XKKUhRBZwgjx25HZ2|wTe20=IkOUkqnQ0c4$(=k#)r>RdCv!{3 zbGsLN?E!F8i&MDdSnZT>7T+cF74Q_C_QlZ{NoLMgnaW18`Z6%@W1$YACc=nwNub=2_AjlBtUDIv<0))d%3%XMDH(ZPKXZC zjgG9WEN@nfQ%C*tS+g+c`(-EkzWQ_=da*V1K_6=`F4(zI(Z`i<#uj3Bh}FA`6utIhYX zr|uDQusc5}C`gXGkh!=Jt4LFn7~x_rB;oQIcd$!=o zs`BVLjpOZ(Dw9vqRR-Dcd`}}7{39h@aA+6z_VT5D+~<<^Blegq{tc#ZpkTaZh+M)csIP>qa`_^^|Yoc#N~K zHQ~Eh?ot($d+g1_tZ|rcZTd)B(G@kbP^^+rp7)^c=_s`rJ1iJQDT6XiJ^FyXdFk;T zxDIqKPR>Ytp?I;byBYjXP;apf5#`!_D+>~E@#HNfz(zP(7h`j{jKI)p4EX0iWM#!! z=XqeUPpx}27qsCuPKC0@Oh!^PXwFDh$h?=%`|xn`@e6WZqr_@?JHbkUl?`b7U_$@#`Hv53*`hm<#4HstG5y8ts|{i)+kD9(h-&>d>+;pt z1!xuWqi(hultgNi?Qit)B zh=pajiS4b)_qgsx-PG}PlI&P=Ig%a(1t^7!9EO1%O3-yePe&;22@SWtm5%`$LVYVw z@>QN{mq#ly1n#=u-#>16v1Hx6YWGh`{TLYXp>-d;Ga^<^E*mhH{d-J$9R7NksX6f` zN}hxpH|E23f4|M15;UfScOjdHtHb*^6rI$=X*?>--8wLqnWvt9&e@zSCD)Pky}9&D7~>H*z9~G0{7bCbVhOeKe{?;u ztM9uYb+5bdex>nwRr^(NpV=$rIO?$WpYRVH(N7n2wtB7US&dGfKY#gw} zq7Ls;+?{!`fGgjF<=)pnhe8hUw0lCD3fw4is$dJj?_W!aS;V5m3m3NeOgre(>Lf>*FX`B!TYpQ9=pa;d5=76EPAg@(`~7ZdmAR{`A;^> z^WmP5-qC`RPUXC-3yTjs105ZGuFa3;VkC(L%e?Q?^j$KsK(c~U!Y@wN_F^2u^}gpW za;zS^bCmQq=><%rI3qM_BJlO;1*Du75hj#WLyV3=UlpV}*mj3EjiYfDM0INN@b3u& z7*e3Q<7ix+5D6VfJ$>keL-phR;|5X=?N-&zDKc~XLoQ7AquGc-^Drwuff<+ z#VX2@4Y)$Zz%erYdv&pgh(l+YD&m~|&Trf(=hc0p_I!DOT#h-Jf|v2aOob%K$kS1X zweHX9jz+V*SqUY@dP=0heqTJDM$fAG7fPd*Xdwy#lhAvSA`gv+Uhh-1yKUX<_34c! zza*0Rv%#WvSxGztJI*kYLAH%nj-}iLOHyePt*Wx_%lDz6>-DBm#X7`DKWD@;|D{L? z_o}A}*wn%gE-wUsu;n#2O6WW<)5+&QFV-zo5W8jb{j~wsaT1oLRIzg0pI)xbBv#zS z&L@K8!_`bTMjU=kyw3UTN-NNxjgs3i?~R+^!Bs<>WA?Mz%{Va|e$9M{>k3hh($A^) zI_3A@UQajFlA#O%fwRlsD+%{D%n1hh^@{L3I2?$wX_;5dyC~coceNjNJ_~&yM)S0~ zIhjoZP~rGou9F!R2guJ{xu}{IY zJDkqf{eVW~nId-0V|`49uz#xVo~f};xM+F+pmBHt*snl254p*p@$HL%yoH5`vh ziuH94wesskEg@*urIeL!5Ah^PBFZH~e0+>*q(l&uFrxz_H5UU@!8H->jWoHRI#X@l z4GT$iv;|(dYlc+V|I$-@drBg_|JFn>%F%C3TO?!Pz1RAF0LuSeEc|PhNLHKUnh;_N;UxI`<+6|!(tOnv zf{(-MWP676f5$r;DuZolrmfAo=ch{#?)P?%}Ac2e7d z1otP`Zp^u}>8X=FKLPrHbxhP6jAKEisr{D86F_$w%cNar3jqv7NnZln^I&ZQHPA@s z75Bds+YBiV5qa>c>S0~@C7ZJx5f%OJM`-L0;U~>6b1adQ!i9(b>vvi0YOu22NT}^IM655#Fu)$MH!u;4;mAQ-S;_e`CMT{;= zSqWkUMLoGUl}ME?wTAzsq*PlhB18U{!+!B%L&qkW;I1k`SAmO=sJYo=u^RnxJf=cU znG^1qYa}`Lq>6jUOsW9yyJOP;7C&&S1$Sr||G$46RV*$MDsj{z`@Mkd&BjfA55i_| z{bu7l0{CW@pZ+OV%8SHe(N0@Q9BL$jkfCoIrXu$3!CQ5nnlNTosW}eGGA&_sddk&W z4LUiB3L=^!aX+Kq-yf|1;2Mjf5_&H%)->R+2r%n(8fP3`RDWl|-C%RLV;MsrF5ECm zb1L1bq_-a+B-&8qUS(PWMC*UQyuBE)*9=0!+2I{O69HG83P%r-d*%A;6He1P<3$_f@!%M^WP33XL8*BryBpLfEaZ`tP-;;!> zmGfRj;^P(c87#d)XKmw406+`@mo*}RH;yp<#Gb-RVJvXFX-7a_ld=O?J_(go1LjjC z#sCIOZAuK0fso-m``HyWm~T_C>pSsp=Xb{+UK~zsliejFN;M$t9mW5R5|g> zt1(7l-%3UdX`jErw`XmkwP80smJjxE)HVQx%sb2bzTQ(HFw^4sF1aMealahiK6uZZ z6NO)_+WpqBY96||>+Ha?hH+pa;2%Cy)8{Jjmm5R~bT6|T6PYl+W=qsa=kEFYTwQuy z?q!(z*JyWEPP=YR@^SChx?-7T^wqmdkD>PE;6SIXdU!(|2e?GI! zRue9`Z|VH}A(PH35fwpVti3c9k|eAobL%&&$ODisxlT9I6shJ2_7*l$Sp(6q2tGWY ztp`##G0f6REs7AX9?9_^-%`6!XM<^e7iLV)@gSnurN(+07^E42KynT_1a^+$6D=pdT2o zwI2RjtTHTZ^*~pbNGV=+^>H_AZ*c1+C(Jywe@TId`n6+`-E&=nW*rDm?5EZoc1q2I z+3Kvz90>o1-N>|SMv-QsmI{kv0%V!L0PP+xIxG;LVDzeY2G9rkSBBo>r|76V97ik z%iD2Jg3avr_hgDqJ(V$G;K88=zbmf*j~;v1;4~Rp@~dN%GT4Ee=YFV3gC~EJjQ2rr ziC70XbF!BGqIsF!OMcm7dpfCF%{}U!n-xf3pew#LZI?+p^fj$?0_p_M9kGQTc$r++ zHdD6Uc?%uwOAVzqaBHpyT&G2NI{Q6Qq_9`}-Zw1+7y@43uej>%oDMAM7T}J>zUO49 zR}nPOEn3=~pFH;RjE_f161J&sKV75+Xpb-Z@~)VThKSubI!+@o zvt;B$G_AusplFv5%qzUPRtM{%KXG0Ik|vqVj}Z~S0jdC@R*qwcceXF;FZFD+tOW74 zzO1#g^^pP*tG4tc0+t11ZD-1pzGs>rGW(z)U4z4z%1X;rbm%q!&ybCfb<%RfqJ z(&bqmMvvJIUvE#2{B4Uw7FH=^oR}hgAbuwU-rq_D9prRRV>*S$b3*IdF=?f|k8Ocf zlxycwKNLugAgF@ghP9IWQX_*ucgz3TDbOBd8NBdvS#nX2-@=GZr(*v^1+lgC&~q7nFWZJ1#OGVDh@pt#aP^a4;1(byhojU8PJ=Tm=8Bcu3*a&(u(Px z@*2e~>P2AkI*FZYTjGh;ipUbcr|X_-UCzFj&{m>7YX%YKC3D!_VXrRh;dH;gP>hU1<8*{VXJFg0DkUKre0bmpLv&nnf(c+~CxWOaRA#eA`? zpgy8EvN%9x`FpdQJq}+x2I0VJA)QA3knescmfZUYnnA|SFeH14D!O&o&yBmz2uG5<--`86ud^&Fe|$w2qR2|MO&-? zT`P(-qT4eRNJbNB@8b#(Vb?!{({v6BUW5JA=esx2&|R8GNihPE$uFJ|$nr)hV%EXZ z##DbaeAf}ist`06c&-Q_)+YttpqD=LM>27$SQ07)$@kkIFR!10M zf#EC>dQi8UsYRa2Ik4Jbm+Ir-bbYL092#_{I2IqLM~GOHf2ii#NgYcWyN zSIYeS{8Cuex-f#WL1r**_s{Jhk|%u53W|83*z52jeN-##Rs%9If!1%(5ln=3|9?n1tSa85s}qJ8pG&cz81EVVJIrHZjSe zbeD&sPvi;kpNo?%ikTS3o|RI^#>Uv(9KW4EJ1M81iCm%?0#&1lF}8wTf3eOz<7W>*#NDmE{53=lW#(DUXwM7Wsqy*jSlH%4arh zoK%gyk(#UMdO_g+{~PcBFPDBTY?v`EmxlENwb1o~fm`WYs=F2zb1bs$ew$VC?BHu_ z>qINdf874kb0~O^Z(~%xzhH(v4c%2xQgDP#ebvO%4fSj=9)xj6uLjtiqrno{P=8;g6nl2`+qN~JY6A+ zf`??P%|63+cCy|kVU3mMoA}z)K#I!ceuznJNm=-R+tV&Zr}bEb z@4^mQzeGO!-g9|gPsT+y#CiR6xTHT`f15mCU&BIlp7awAv+M-fxYM1Fogp8s2JbQa z_fCv|Q-d3kTI{j;$L+nLfa_=4$Bk9A-L@{sFXftFx$k{>iSfT{)nS2a)s2^LYjLOI zd;BYc;Gi6(iZXovgq*>jbKcj$>hn7eHH$K>w;Y-k|BGB~ZkFh-VGIQc*-ui2UF1DaS3DLody^M@{@m2JkWH278_K=^20vEezON2` zU3iI%{90X@F5Mz-m&~U{{eL~)Sa`hp)`WP%TNA`nm75wF&%BPf{}&taR_03edhMb) z<~XVO?qRWjamD@je}3ToPAiSnkuG{|6mD*-o%OH1pHKZEhm4+T-p22BPdchcqInvK zJmFoPqz3}p=zSkqGqpGMw7$i#>3NQu4HO-=;^dKI$`otfg3I87n|Yrgl}hr#@eU6r zJ_()V55REbpO2)h8fKr1J`Ob%H>t2|*wR+=l(Smv^#6>HiyH$tMmS{YS<%=AKOw!; zV%ygS(sP68{dmVo`q9WlTVG|_-7)&r^@_wqBANFcD!0v$B6_C>2T{CQCc!Nl``*9z znO0|JXC)>2aWj0+hz2&+;~^1K%8{&)mBEcQ!Jku_iQ@!JPsVSUzDqa zcGlM$fS1Hl-EITzIEl^`Bn?0^4?rgXDnUHYDJ)F(QZ+}c#_~soxf!d}@k(z@14K6f zV&%#BH5=7fz&7;Vdf%|zpRmUyc#SlFy{-B+`TpXw2JHt8$P3a7zvy~+3JIu8OvnB+6)+F%H_1GWR1hG^-MYv{*60IU76RIUIb zz(9tC%Lj|zXaJpYyqCt$;gg`ZP)oeD1rMYst5@eI5eeJ<>r@FaH@3$B>~|*LKc;|C zio`nT^RCAmUt#{Q{|0&uE=QKoqIU<#4@|AXcH`Cm#3eq_SS30G1D~rlM=Naxfvm&^ zWG!aNGe`jevew9zaD%0TL%~mLPOp|kedonI`cyKz7PqsOew$M=!@{ABoE*aR+PSQa z4gyHxd0lDATmOE2d`5M!vgNw|4Ct9c>XM!hNM?5<2s$|@-oR$^lE~nFNFua&@ay!; zy10zPbTt_Ggj7O3-7EBbAb7y?`1|JsO}#6?XQ>NAYGinr$Gj_a`X2xo&~5yj6z7*| z%BMpfYw+$fYGS_vFg)~1#J|Ey`rgwlae46yy*q^nw`*kZWRz$z~w|Uz}Wt$ z+%J498{W=~A0GyfQVb>dvCxF!t#$rF`ge0VXo~$sNOp=iJ6B*EbT%EdvZ^J6SGc>9 zAp3L-Xt{L55MyjLP*zG42x}CPS{v_x*oGqJr1EA;EX&?4KZfY+`aZV}0AVMfmr~We zaeJUkq=s!d%n&841OLGkUOc zz5QhJF^r&O741wxa|pfA($X_Oaa-&_F)9ar0q)evT#r&GBmZ? z;fv>BW0oh(;QdZ2N`w%bj18=d;!3@2Jl&z;rwYkHF*FkRUXe zs`7jl0PMo(5ya)*<^I0&G>QuRjh{zp?~{bDIhPtfiJIY>UK=>sGjt*A2RB;G`XCj! z4$(EQLss&cYw`S-5uH3h;8dH`&MuJCqO)s*hX4HeYXWZxn;7r^FnJMnd{&HioEbK*)hh6S6nL^C4 zg&TtHqRx7_?-nDfa|BB}ghkMa-z(jNv{m&Dj`~xgB*60|tQPChdBixWtlz{*jF=pd zs2G7x3QAA~;VuP4hn&6_laP0lHwsouO0S6=5qh8*9eeIgL3Upkly(5 z(Z0p)Y0^XqcSf3)^IW{njFAFWg>jQmHR@3HZQo2>GETWdsxob+F?fH@|!xaZ^Q?B$8>wYOZCkEnCQ1ee8MA7kv;77e#rl z<+eOM9BY$$TKwBQhWay8KF5L=$6sN+2=RbOam`!ys$XglJN z^tzZgJCmgqxw|?UU4Su}=770MWrgX@jl8tQ0Nv#EbFqHK|8cPN6*ATNpbinFkL*O+wu00<=3= z!R#$4ic8z(LG-_)J(F0B+S=P?srvI^YRt8GB3nxk_q!xZ4<2R=4@NTY9 z8_m460z-w}YgLT=Fc|;$Q<(E0LNbNQ$jG!`9^wYEUf%rCyef%-`Gr*w@@rYrKB8<* zk3K$2)GE`=n){K$o5Tf6h2t(zqLoLK*lL*umulyR?}gOWzXC4H;KLfC6)X7u-hOSc zcwG6I%&VK!z7+v&rSE(&0gDz^Pv zWF*kH{S-M7-tb}}-ffA9@keU72!0%XDZC4!;%Y4=WOf@E#FQkkZ8&f}^{$nX?{9tNsEjyZ z$wL8=Col!}uog};vJE~|C)j6_-TGL{dgc~hnJ!C|y)&m?F_rPW#G03-YvGbcFrPj=EP;Y)mGe3{3Wv=TGlNmgQ zu}@Tu%>qe4vO=<TvNtz_AMz!l1A^*Ko&_;JJdoMTSR$yKZp$N-0Vx)7H$4aWgP!{8Gz0Q4Gay3w=` z(zeyO9@q1xc@EP4=BJnS`vcIhLalL06%i@x>^!a|mW3D31wrd}|G&&5uRyw4dKG%p zmspz{kSPD)1!PGR<#isBsHOw14Ge)ySHe>t8m@)6h5|!q1fzW*ycLFCJ4CpMn8*PF z_J^ThHi3a`ofuEHe|E-Ujm$40oaqsL2w7-rBBok`GT2wwkwu~I_iA@OCtE&^lB7cM zP36=pf|95%jxf_mrMlxtYjePX==?56${2+hw&bKCqgOBHjd1a%8INm zamzZ2%u`XX#44Tt$*arNp-QYo_BpaY=xLEcs*uHyQUglx8q1xKL1ymRgdS;KT53_M zLKbCWv3Z%Hz;mRk>#XSGZOU^=&;3O;?I!%OV@6GTurkE*KVmIz%r@+S%7Yvr%-fV2 zy_I%tv=dw;7ATH!h7Uy$ElswOsl>0Vic#y{Z_m9Yniw>i2 ze6KPM7|WBM$QECGUd~M8>;>4IoaX@vLNr$qy^fef2JnpP`tzc&Rn%W~)}e^S#tCyhc$dkl z^e%TRN7^SnHMQ7=QIMJD;oDdzlI)!G5mCbq3|ZJ^4MEL%pIg=t7Pp>FRDf^?@H&~6 zmEmZ8%oJjzqRfxCFm`Dn$Vv=Qn@JZk(>p*yoSH9Bfh-{3g$Y%j{aMcs5TlP}%(OFLkedaxM8XYXPF6RIG{tejq=*Zdk8dhM8-2s6(BfZ-Q#d=2O| zH66NLqdL%m)66QTcZZNEt z9kpHY)Q&&`pJK=rAx=%b8rJ6|MRO?_nQMANb4&I=JFH(TuM~$V*uLH_A>uTlc z)y(vNz!vT}eV2Q0nF%j8NBy=xp0w@@dLb)SSXfV{ydDEW0>^%deh{Z?hA9~~e2TgMFx3>wNxYAaraF#^rzuV2iTS`TzTS20<=A zpl^a%+j)_A)<_4dKs14f%6*#FIK(j5kjv9rDNT2J=Z_cKbW)y)RZe1Fbk&;>lrQ$* zd*s2vIHY z-jMwP{x{_Yp&?mv)1YfM72!n$1?oCLaj&NG4{@ii{pbY3>J{w>M2k5j6T4Rlss}wo zE^AIn^y{GR!`W*KLKu%AIhhr=y$W0iBjXB~v{~1amX@>5ujN5Y{Y+yGrBF}0p!taC zh^}N$EBuJ~i+QQb>7B=|p%S)I<0o2{*tqkL+hLYJiFCb@Wt<7lyr& z84OmhIZH}MjSwIs43so$Pd?b{HT5qn$ig0;o(3BfY4*4^?i(O_OQ~d8og6U~he0mB zLo!Y3v(++}A2B6Zn_Ipy7Zyv6Eb|@O;-SIPVv2ARpBP>t!r8T6^=yjq=j)=fM~6Hb zy`T^O8;pHTXs%+&xS02X&j)dY@5yI2Jq5KmI5@ab;Nk{hCz_v-)xfn0zI3cD7*=7P z1sZU1-`@IqzqxUi=29&y@oXXr*CfnR@lhHR^gKbs8NOb>C;^l;Wx2qdsZnil$ya27 z-Jf&B4H_JO0#Iry#5;vK!ez7sM=_8tV2=F!Q}X*6XcW_e4|SM=I;^(M#Kgd>lyS`OI#0*(`-XXDDNv77e8gg77B`R>rD0~IBO;yUr#hNV28LyVPEj228|5RiF-yGAm2y{3D(Xff29@RO4n7BTjCjL0ilGJkjzCgF=Ie| ze)SGSQk0Q=;@ zp@b%v)w#A_k$``HJt)Kag~#UL1kj)(^{=Wggf}_qJxmr~O(O`s>3j11PO03SFGoJ= zsHj(R^hLQC$0!mt>GNH@E?c=-fM<%&AVb@5^Ya@)cJ-5qM|N@RSC9d@R+SA0sdT18 zdazLgA3{ttNgC4AeKbh@uAD9#;H2-8hV_4c1O29&c8&+Yilau3i0zj}pukMTbGN_R z6_s>UK50REnuuo^i$!2Li+EOmN;7exCOqTEX!v|du^R0~%GAsUJ5s$qNjS;Eixt24 zT#*}8@&deit;|B@)>arXJxZUoyO4rE0E%f)Alqv1V|x(ZrrtlsI+bU&!Z~9eMjAa8kDx*< z2YZSx1z7{V`}HHd#=IL-wU-)~SIO}TY|#$}ILG#BX)WcEkH3x=g>8%LFn#xN_EXe=fUhtOZc0_~~8bn+zE z$=y)C^$&O5LK6iC&b4aWbubf1m^UNdC3UWxDR@rnP_YxM-VIilaNo}Dj!Y8 zRgvV%^02#aCE#M`&IS??PbyYj0H``fW$&1eqN%T}_>UUOTTYp`@_Ua1F4L+pnxgIgT$a!Jj}5($czbsS!U%rIGCx%INz3{=k& z!2-E=w{OZGKXBkSIU**CG%M-f|$xD1*(^>imDK~)fujL+aqgKcwt zlnt`eIc=aA5a%h?4)kGW{e}b@lTN3W@2kYSn8tA>i->W2dj=`bY9*zvrgTD8VK@Q< z-9OjNSl|vqL1hYbjrfBykR4Jb>|+T`gA7tpntsWaC$6|`3(g7&CYM|5C;G8U`eJ4) zi>29tj$lPq!KbEBdmSm#FVp0@JDjE#k;Y>a2kmADHl zaYmR{ZEg?olr}R-baYToj3ZwyFH^Ydi}_ZyOf`luf&a3mOyVd<0tQFl0}Qvjk5kwm zX(nvWHo4k>yixJd06)%2Peio{kn-aO$5ketSv{D*cmG0wvCh$|8Z28drj{8}ICScH zXWa19fa2>vF#*--xBNTLJ`n$)9G`U&A<4!(X5>Q_TK}HT!tg(kN;i=5m%l^YNyj3E z@F*OLHyygg*4XA7gy0|0eke&uK+snc$QK!x3sKAiUjtg~s$OhyrCJP4M5>tv`Wj%L zaB=tTX(leg*6KTfYHbX1r?J@Oof^q#*pV%?vU+z%*dA0Wn=ZtWzWR|v-;uElKM?AUBk$Zab-%+`-Sa>JzNeDuK<>H>vg zOAt=O7~{M!sx}KUM&AR;?zbWYf~`I=(D3M&s9qz35pxZfAxzKfBUYDfppZ#zt-6?t z-Q4}?|JPf)ke*>RyXf!Vzqjar^@C*`xlQT&2XeF>&BzVXnM6jKP~_ZRoZyh-0^Vb(fF9$5KhWdIM6xKMIqA!0p_1E?ct#r9(GKc{$4XQ{xac|i-rq>( z>30=S|9X9{fy}!NTd4t5;DQ?%VndT;wKp8n=D2QajN_T=jc~fKD98SW=<@xyvB~(XP8*GUut5-KomF=n!rjkA2=$U!gV zc`e-mB29m8So<|NdniM8BuAXo2|dKvaI{9T173w+@+Z=TtIKY%1mO%EbsIp+(hV^+ ze)E3JsE&s(KAk+cK5Hfb2k3U8@dw=^ZavjM1j2c#raB4R6=r|YVl#FjnYpC*G3T_R z?+vEa&Ser^>FQIhTw{lUK~dQ%u`zQWeoUZ*(Lw-Ss}()pCFP04yWWOf_Q%ZyA@_>h0`4asBJf z=i|;-R&Is6UVxQX0yM)DSOA>BO5wiG?W@gS7XLa>%yn&~hEhq4;^NtStGH8lcLv8H zHbcZyQ%qJx8iFF>1a!?X(y#O59(+u1ejmEc08|V{^FG}^ zSG?_6TJQK1r^jg*D;vgWlA&4>70vlu(BZM*hh?uITdRb#k@Vsl zE1h~O=hFH6O~=~Fv~zI0m>oQ>#kAMN4|%2xR0-PJoR$S{}a+Y*aAFu17E~u9aLItrQpl|m!Tj{@4pbD9^N10B?;;tj# z-vV#*y6W}pj&*Y9-xn)m=ZoOc-&*||Yj}X{?GW4q=d77NfkHtRj&Ai;7DPZ1f+R|g zNapd=TUZ@~3R)jX3JJM5-t6Wup`3a4M`{wX0u8-fOYgRaD$@a^*0jUuUD}aq-G9<* z^W%fvQueJp1rQEFi5>vZS0v>E6QaZ5PI*b#@ELg{e=K`|qt1i}qbb?h5O0N(_Jr7)ru-?V@{8sXz|Z8HN!y< zbs`T!DnmG21sYaIt=`k!Pd;ay9B`JRqytevycQ4kKdIVv{RRo$wt4pcaW*N(FE}Y* zQ}%*(>)O$Sn{z!LDY$~{kgU`DSRvE^vj4)yYj)pxb<0v&75iUxI$iNgHqA^TdJ9Vs zF(_?7stC*;aEyxp@vRbe1vrFAVuAjpp9BT1C&h|LwFshacZRfSwSukR) zkovWJT9x1KR_cYHzkxBHl>6CFJ`3z$rFHxaR)VH$V!9y(Yk}-V7DWjJ25J1g;SwTr z^Is;WB##F?xZbP;sWWvdJdYMWMEL@PM`^nMm{tiPxCZpla{YQ@(=yV0HxsLk#fy{acD5*0Puo8{)$U0U zoP?AkX6@1HuuWlL&Me#d)1&VIy*DNHd+Rz1%)7(&l7XUUz!a=x=`Sq4PCKz4SPxr- zE}KgF4?yb`?A%Z-~B9G2Y1f3}Uk zEk&uv`*J1wrUbfiQTel8{FE}@0l#8DWt}aCm)NCNQ}`I?>omzZ$($F|%d0*S+0O@+@tB9)0@pmNJm@q*drM-;mC& z%7Go`u>-!?ysD?GdfQ{XY^78BP+t1+GG$+jKkoh<#iuzQO0ygs_+MPaQ1$w&?m~-a z3vokfy^+M;3G_8KNXP?T2Z7!)hY8){3c(Ze_-yhf)#O8k(WggsGyhkHCJDxDHLahf zh<)@&dnMIKzEdrW=v!2u3l*Pz!UxF6R$5V_%N`Cfp*-o2FWN<_jB85OjusTDx~W;M zWafp!>@u65mHsD@60HvJ!-ydD;ipG$pUmb6^-k9B1bk_xqqUTf%}u%!Tot`_qX5al*~)v4VwOY=SO+HX26Wnwn*}R*oIt9*eKd>U=d-j4i3lu1VQes(A4HS6s(`Ui2#{ z;YLjT0}E1K$M#b_Ni09?+nZybP>QZod#*?PT5tQVu!sF(eS_*snoPMbL21|SfB%O} z5rlba6yn39tJ){A@B~F2zHl4*?_50C4*&A9P`c4}!BC#C)z-F9bltvlG~ytR+4aM{ z6VnSa-RrXOHUS>bgQPrf@&8m|@+6khd~4=NL|A@hwpDb`O7{rkQw0Dx~U>TeFJwx>4EJ*t&!+c=@rep8$&ZD zeuMqd#5c>Zuws19Vhb2=3+kd{h~IQ`_gnMyu^&vHA>j}uVg0h)Lmcg3@{sDm|H08& zMFrJuQCPaWySux)ySr1mC8VTNLXhqdep+cMDd`63ZlqiCZtjB*4jD+Cv-eta&H1f0 zfjk?FZ|q({qq0e!Un8O@kMky-6A+E`3)sVm#eB4ajg=|!&|uii3jO>tc{g)2dQpss zRpPdN@0k5_U}SLcX$sY8b%$0umQCAR?zfPZH@a&HhJ^{qJm05u?nCwN(ID1N1}Jsi z{v~|%p%%DFR?V3NC&Kzqn(=%*K9>dZj7q&RA)oNBE_eiYI2~74E*V6lEbiN#A#i`o zL?VAYnzgOarhKoO%wAX%&-iEX^anUXqkK>voh_i_*aynSW$g-9;n545-|34SciI#3 za!H5(L+WKc4(SPs%5SqOb@eZBL36J3TXfA}|R@_j8q&6Ql!OQc-=GTwAx! z&ubzOW5Pl0{C_-eFWmR>J5dmlGae5dVlW9hJ1G?~lSMlQlcjb>%F>zb_a?QX)VjbzadsTRV+x3f-C&Fu$bewA7U`UIJqb!g$Z9H z|4){@x_%fRWR{xqNY|}{wIS}al5cvLy>z9~DYAEpW&J9S_a*2})IB45^DiCkZZVA? zaXY5Ls~Wds7g%keW!9D^_w@IwjguH<==O1-K`K83Lg>0DZZ!47hklOQAEN{GR>tl0 zO->k&^A2)}u}bNEyCc(>@!<#{_5ZO@((rV}yM@|-Gnw&g8vpl4cy`9c?(W;==Kfrv zo{0(X!!HO3x%?Kt#4Rim{`MuZaay}Q`9C^qRAaMTfXq5>%QIM7mQ#=*6+UC%Ai%xn_}XJfG~LcZ0CDVW1@m6 zkDCZSLakvI`rJ&CTfic5jk1&87z;oV=p85^i+rbI7j>6@(*Br(ESu9n>7pwVq>4dT zZ4p=d7ePfuPvui>!`pKupl-XsKGj^i(6L-;H-S)u3AKCyjY`Gi1EQg)aS=LmEhpjMT*^)m+r8wa|`#4PpoEtlR1j%O^s)3+1C69(x_t`GW;Ae z6N#GpdY5g_X{hdz2aDiHctaEZcF#9P-JKLROAm?+)Xwe=lJ+tsoGVm4mQ1(L5Qq+e z7fEEC$TsKtr=G`VZqK=@-I1weB9%1p7;Nn)RME)2YK<@mFE5p*E8!8f7k7%}!ZH_Z z2agY2+W2THRDGx`85B-PZ5BvvRL4GJ8;-IEG$K1cZPDt)+9@P!VmF8=XU%*xGc543 zRJb|D4ek`)`_gH!1lQ*L|Hr9pxy)OvOu!M;t~Zdd z_j;E9$MoaOPmv-GzpSf&x6mA%WQ1}{4*S9E^$maO(dOGzD&O}pG1`ahMWR>^VP4#= zC#2!Ol<*o=XO-(ubrUT9STs)uFa7pip=ff*bJrmY8YzBA$kJybFxgIs%>PVuV>LiL zK&@EvmDRcPD&b(VdvCjVSd;ta%vE6L8~h6MX+9QOLd@g-4LWZP0R>vPh;+gNkNKDT z#T#D%=@soBy3f(+27P`~zW=gJ8N6K0ApSdlH`%d?qjlxpKDI_PZyJQt@2r?g^-j7Q zd2WMP!03+bD*bN-r=Z!1MK0m>dT^zl{?4%6BiyzU@ zi!$v_ltHR276@Z>|6yQFn3lekLJO2_SMyu?uzEA2ggj1W!7NQKjc3dI<(Gm?jr`$h zR8e_UQ62IaEbmqSCR+%1-QEUQIywpSSFbKRuPn2bH)tHXbDtn?<|-$qkH{PAQ#0Fd zx8Cx<+uZ!^yK?A~b5xv5=h^l$gO>g-z<4S88d%M>Fso`v!u^5L`hxr>W>KV}{v zBHt_ooA-|OrFZtc3uMmNN%MlV!xEUq{^Fpt(4;-T%Ow>T*k z43f)ResBME|5Cv^zCim{2qhAlkLOGUy{Z$ z&`M>gTy~o1ELkg_LW{JAK1S!mixujM`NZ^bFtAVzIk?WEZw8Z=BV`Xup&}*~Mf!=k z$qmAH7R5cN#Jeax^Jj9NXDR_*wTn-D_LLRVFra84{3Nwv+V{AR^W}~^4pGlZ%Ot4H% zZPS=7C&@c3q^?RQM**h<2nX#T{7Y^NWOp!p4!XDt$lCD`26t23V_U>J;pS^IJb$rR z3ta>HfRHgsphV1P=zr2%9v{DO%7z;M)I)?LJh}+SotPzi795**5kBrJ9W)qtxKry@ z?HJ>h^75|}=~F`!by-=iSpBC2oy$!I8_oWnD>0gCi)IqbhVP3G&X7Zlw4ZYmH5);} zS79K%A^+8|8l5U$YF^KZ!;5>o`!M6>bqL9HIJ4}ri`m)P_Ey2cZK2ylC{>U|BuGb8N&l_i^e=_z+7>;149PSMZBOt+8Q)vi zzqboG-++Lw2jkr);KJV7-E9OW-lEzOx6-niE-U|ZR-C{GyD~K)Z{14TpFViIBXRuh zPONgBlguB^q&MI^o`2%=D1yANegmzAWU&Gkhi_dT=WZMn;Q_98BkEBG%$+}2*cb|HoB;t5 zd({H|(UfiG$B&t!d@?PX>&3d(q*@8deBJ}_*`H1*-SXju$wO5S?j{H&N;1(!MJY8% zxnxj86fjsM1Te%pd=F1T6*qxA9cdF8z95(QM>dhyb=8A=iB6u}uo3es;~|aWI}Y1+ z-e4A3bluXfdn_X20v#b0bO@*Gb5ltnP#+wSn^Voqm~VMM`@c5s9G9 z++k2(XHI7M-WImhR=$w!@-JB-kNMgOx3iv}V7z35*Jtdk9R33>N#ajw1L?~wN*$3+ zBLiVV>S}DRw*lvm5yE#9Ti;Y}xZV@zC3BYIi%%}YBT+Oezi=9(}Oizy)DJl%COdNLOJfx&2 z@JJjr&*Z9J7!uur_g~sG2KkiK^nbw%R-D+|iSpOrJ#_~ZyEBuKSqah*Yw?kAu^>*_|$Kzl(rH>09{zF^l`VHD$x$1CxG(Jh$Vwh=`cJn6d6K z=Ul;#=pVMt%M8?}rl#P>380))K$EmYx2fXAmouAQtzPP%+S+sA;@58$N}=hrrLCl2 zvn!;lrEOn#d%EQw!2T|mh}{U^lQQ@m^FEx=B4le%(><{Be7OWpNU5-yy?r}w_D1^W zIHiKSfNz}gkN&NwwZC*AVq%ndlvCeNKkm%? zs4IpOwW|0&N1%9jaMO52JtKwgFHqVHIL*GT)U9#Q-{<-OssS;HvWR~cm8|fcxS&?Q z`@~F{8aPR=cZ=hBDE=i^!9(+uJ12^FUuCTC3nZWZUKtw664F5e{uzAAXZUH$cS$Qo&x1B$u5FK&Z+96;{ zd*{ljy(SSYeQ)~xFF!nSlCzn+K5?!C(>_t}A^wkMPUMw7-S9gmP?)=yCkF*aS=m_# zo9yJ3m${bpe@sBAedQb$c1R4d0v4DwHqA0zu@`zq?daSTjaRZsXgDGgp;!Vga^HGa zv*k|^iF?l?uKn=CElnu+K=Zi~*jj=-Y03xZh6M4|XIM%ZmgI(S=ibcC#o4dll&tS5 zZ7wo5zwZ_AF!EKoFYJd^Zk@7i?Wrw|txIo6WjC{9mDQEGl$F`jV(xHT?Yi#YfcRB< zg&fJU*b}+vvo;zcCpgl8Fz&uBx{X~Tx2jVtYybS1jYb-MdvbHJ&6A$MsFb*56_38X zg6{5=L`qjUxHK|2D>vW4(<^{C1%rUSsV2< zQ8Y@G(CRLQ&B|P3I;T}S4RUxtY;kIPl4SRZkbC3VI?<_Q7wYyU!l0Mg3J4BqisOrW z3PdUviMsjvhP;<%5{Sbu}-y zb5k5YNs@^y;3m3aMwGrtTOWhp`WY{q@?k6R{g0#=pD*jTsJqUOpWn?3c};dcj-THK znU0=rluQ-h1U)0$*&gd(EWUT?owQyZ=MMcGXVqYpk8~z&d%D@=bwYx@l|yx-+{GoZ z#K$}+Jg1eDS3)yvzL#A=Q;RVIHyl16jB7&-^=mT&h)T=NpSkV({#}_St_NU0-njbH zpP4duH?eD=$n z=9l`V?`KYxwq!UXZs%ATS5; zruO!BN@WyC^XBES(9o^lYR6V$cIz|JE27qW2NgC%C5xEtk~ql#&T#5+Bo@J$K%3be z7V-`*zQ(W=_`;b6IMPOqnn!C)KKoq(a>CZ*nX`bW=m6a9hy($gt|fm6T>s%je?L!F zIyysa2Eos0zO3czeRYnFePd7_0apMpnEZp0*^C$_+{Mz0{edauKmLQ4MC|paT1uxg zSH?c=QtgSmaKub-!TXnC<&4*iP3Z`Qq2oEAe%cO{>V8RMmh||Ce19W@;`wuXY5fL>8DRurn%l~Ns*YL-YG{ftl zIAJd^as3Hu5#V6?%4)LI>*@>UhZ3NwzUqb(D9=cv$M6Qt4!LR+YStCDfY@YsewR;B6n>U{``_$`qAJTITZ6o|H zuD1W6C6PMrD0NCj#3j_x)uq*;F{FRecQAxfs)$#>Q|d5GXH)7N%EVqXVk#aaiAx@x zjy_JTvDYX>Lr5Zw-d$br*4J}2=RD?~tz>=cURIfjOz=5AEqcJyRa6#pEE>9DMO_AI;7uEefjGbuUp&db#On ztz&6FzcTOvUTtEhqU+bMUp{MoQFS4>8YS`=7w?$+-~}4wPgbPek34yzl`C=*SSVydfAW6;&QU4?5Dv> z!k8J%27IvoF)%Bu1(B#wG~uAV(ISNu!~`-kI_kc^&v!SQy(#<+*aQRu_R}T6>qGu^ zE#OLJ({dV&lm&=U8SLbt01=+AG1k?UIlfNlft1;V85zjwx~&i7pUvIt6`HYEcimY4Dmefg@Y_;y;=Tih}_qU9Bv z8rs;P$_H$XFRn@k0s0^l0YXCnM)|bkyCwyxQwJ!k2NBcY%{-?PrbK~s`ct(C-~r#E zGv1QC-OIeLEBC4?w6*iD?BJ%#W+d+Jiu(mIyn7SLfO}B6`?Rn}K>o#_mEB3Xf}U93 z$TTK8TKvc06cprCj)3P@e+y_A44g9hfUo9_;+j~&o`RH?s_+hE35kJI7dWBU0eaC7 zhC~YxLvosDv7TZwNZ8HAyF+1iQGg%wWVP)r`Rab;p6AUj=llO@ z&7?E`XVP9C_}p0Ss7J9cllQ24>|ACYWXg6CHzq_LGy8_3eg%I3VlTy-<-;i8NCAVs zKS;p7KA#1bSb(n%eD-X13rIfWcDF*$dD4GKU-4&)TRNK?YaAWEu6v(isI1lGgJ%)A z@Bxs1Lu1~}7~Qs7|2rg`46jBkHXGqZX}W1qkP$euC|Nd=UK_%x@ zlNX5{4*kgRVV*tZ_F~{DM}W|PNOUEQYT(%p<*6H_O9763Ms4@ReQV&L^({GmK}znQK$@sgYuEdL`vT|w&^Sk`!5*Oa$aI?F`em`&U9k192a zVW)DDsmNH~xU3)5k-@ZE=^VC*Djao3!Q8krz;E9BWd5ehpT6w<(bN=WuqV&D`YMys zCF@+!N#lGhF3ZE5p4pICZ*Q-{8ld9Da24`|s{*6Olm+L5Omgt;;(LI^I|Y#jMKb#z zCCbL)nzKw55iKi$>@WKU6!>8`B zDaviG_ce|7DOc6asT#$pfHiK}R!8R%tM3Lpdwcy|uP<*VX8?641DNaJB4qg!II@7r zuHfLIGWa;m{+tQqlw|j0kFkAQi4JHJ#8+BhD9$4AGFttPe~U%!;E2$U`nhC0+|jd8Dq|lM;1ZUW=MBwqZ~-nc zcr-r(%b;!Nxh3$ZJOOeUU?l#^A9UAN1((cQG{sf_rx!yPrK!qc-LJqfn}a*v2K+E=o%cnLeL-974q0}vZP(Y=JBq-C5`4c2M+nZa?^LwFg^&r( zJ-wCnAGS9~-X=e18H~J{cZD6(tQOcC<8j&nYA{HbN7uaDpQ&5vpnc+Ly}3M|7gsDF8g)^Ipb`59mK>t5=2{e>O*F}$d%~E@--{xpLTY>Yp zGee=kqYHw^pE(Pw+D$h8eajtyfQjSId_y-c7R#YghWC;9$;-=w`WED7m8%p!Nl?WG zqQ1hwI-D#sG3mtyJ;w)L858k~z_(14O05G^_ouy2$w?l}(0R!waw}BX_^bjhHJ=0B zB^$fo7A8JNPisyr8SRGZ^7*HEsSxrdg{K&c|Ih=>asW>NL~rFC-jZctZh_a^qT^{5 z*N!wV)u*R7W?Q88*!X;LwiBramOy|TU;qoG<}Xyy!XxClSW>6=1c2u&+SQ6%2eJ-$ zEHxN_r%W}#JfbDFqVJ+tkG8cRg5nhPV(>2DF(G+f22U`0J1EsofiWgoOVd(LYyw#~ z0cAE9qi6x2XI~C6;l8sOv;RCV_{C2e;fc96NiGKx;U2_w$Bv6X0MRuJKEjkQ)ZaGxL7F;$$AM=Oio+6|w@8AXLuZH}c#KHd*lX)Y8fF z-O0+KMrS*4BK4_x&NZ)3k0{>`?@ZuiWB2pw zU03i=wz-@(e!bBmkG}o*@|Oi)AVM}1G!1YVROvk!EbW)WOzxxas(Z(zzpp58Y&D;9 zf6$OrZ7s!pTfYFPnZ~F;WV32k>}AO~rGaO!${N9zFqvo0XF#@)e^<9mxX=_9Qm zLDAjQ58u8S(?i_X*zqIOLawlw1rnac^X&LdA@X1MorngB)5XA%0AO{1fyOSO^Trj% zGxdeIA_WG$Cs%g}7Q+T|K!v=Giv|w8(@IjZ5{u+gJf_UQ>#yusn>1e{n#|Ko-Q3tM z<^T?bkk7?wP4=-T#;smJC=?k;gST;Po#iJ-t;&VI6>m@IUjVYm1tmJL!YPf&E+Tt$ zcl-y=_I%wt@LFY8KtjBcE=WWJ7IKK|9p_n7;W$^Y`9NzQyr1iX_?20p%VU>Y#9z>1 zR=w+4mrY+?HMN_8GLKd*PZ=qb-<`4s;{#+&JRwg7c+q<12o@UbwM;_~f^v z>C@dI>78E#=V?*Zl$3`mD}Kly;6uIAtNj>wn+e5sBjNbrlG?qhk)OkWX+ak|&#o(% zZCZJw4czs7Yre&R&+z7%RI$VabwFCt=RLVgyC~bTw`$>SIf;fbG!uUwkVA=uypboQ z#m#Tew_%JLAAS}7Q_Y*C+U`#z(c_KY;yO0Sq6h^Z$uLxMZf+v);n19#Yrq!A8aC&} zmjww2M!lMV?cXRBLEvKoVD#1)BK=o3HiB`ODwdla10NZoU>A%Pxj{V~?X)80(E*c~ zz^kc)!=#czI|kCIb@cJzQE+k3K|%cwm?Tr_oS5c3w<=9nVYngTeI!3wsQPk$gK%E5 zK9={}iPmrXqucS&n>nuR^ogJfU|PuHBfxeh2>*f(D~gsk94Q(R@91+7Rc>M1*N)H9 z2MitJKK_N9#zRS>A~a#|e`?*$bwH&3l6tG?L91|qbOok+br5qP-aQQJX-y=t{xyNfAw2fN7t6EB zLMVd1-z!RJG|*F<^^Zd;*jN$vz72N(R$d7@y(jh{xJ}RiM^pS~W;qW1{yb?9WC*$! zg!|eLvK-GQQTeo0S?0K`^_X(Gww533$HAAh8NV_|dc+Pg@qlwLo;1Y7&KuM1X_4}c zGbQfQ;ZKzUa(=tXCp0Xzw$$V-!dJwoVWy;Gb3A2+Fk|skaOXm-T77hMY6b|Oa>SXI z($o<666zvzu%T%Br-@K#9mnBxOwe=AS*MbEf$b1w@VhI?UDYzIExSKenJpyjoAPhi zz|E|{_z18%Xi!@TNZ*fO$AA;>GB`194u+I4#PR=v?D%M>fhZa=_kpHc-8_&D;&8_= zzxLm%9IfH?wSG2Sj8SZA@;DFkh2IRl1Cu@K9iwl`1kwoD@#DY9Kn^U5{mt$TP7sfD z&N|qdEg(08OYNJ*q`W*Yf!us{*f1-@4C7Lva^8c5F}DE=Ewn`qIXN2hOzjNLokU-;Tf!aCzH@iwHcmA2{`(4JFH8>on$k;*^?=jlLk8JL6I1HwJ|_Tccm?PGTG+GIse(pfZ#D}Jo8b;bAoRRsfU26(ZYMoyiB(paoL0wP9Gg>wTLF+P} z!BOmXF7`w;^hO+P{$lic%0IOUf^)EK>wcUTN;%rLT4@-{lhDIJ#GbnR=K#O(E&In;kpLwRXx_AoF^8V?#G{V(7EHu;h0Hd7RhbU16q_N zgJY4ri|O42T6DB?bDpv(69{=_({0DV`-mBVc-Zy)?dPpvESt?Bk~bt#(ZnE0V_4x< zp$eXojwZYv-Vx0E7=|xC$7FaB6<9S9I2rUgs;!x>16m*|gf^jgPR>B8c0QvfX0dbn zlNeAnU<6-4=8D6xTvrw85u6Dc6C4~I@Z>YAnn?VN!hB<(L9GWv3(gW1UWN=6&MZmByK@=G6@rOw(ovkq;s+Uz`| zPXYAw_kfy>kAB!Ev&NN@zdq9ySNYx$DgYzISfJyY8mVyPPCV-PWZ*E z05u1TwGTE{=??v;l*FP)vKY7u(+77^9k0|4RuU#UYtddbFBha;;Q1_-y=7NChB1^$ z_nUvS&)lr{*BlY*n5s0d!+Ae6&9+Ms<0M>{spG%kxgOL6%ItEWX2bicfRNq5i5 zkZv~`o?2rn0s=yESR=n}J)(s*J&x83_(m-Bt(i*@PhGK;Alu3;4?7{<%@~s$lS{)jxzkjRDUO(D9EwXsx%CrsIBOg(Mglda$lk8S1<2K z9NXZ!E^3Ik)(k2e@J9bGKBt67wGDy8@YEMB#JnB*tNs`4FpT^c3!+UL@Bqz@fQFX- z6bi>lWwn_VB3+5ke?C&7W9CMDR{kPly5n5CLlT}U@gI6rH+;L`%O%7LT@U=atTozW z-@iW#_4+gPxcacS3TZfXckdRN!q^5D-*)HJy<E6OAYvnnCD%`e zS7xIJhq3vbQ%ZT!c&^7y3-r$9W7}}GQ=g!zd zv=UF|M^06hAj#4P^+q$PvfJo#?V5v6cl^_!mO<{Z;|mYts7Mf93P>CcUM-Y87lQ?b3{QgX5MZ!A7 zY4TmX6-jD_d4fK_9$-GHBY;L3ZUlLun06%9Vs!F&FPX$V#ON+>UoP;0G0>IP_eBp!v9bV3R5PH+;5TCD?|nLotVm{O=ryD zfB3)0x!xgyOCarSpe>)~%F;o#a8gA;P%M zZ=es%FutCaQpujv7;Sp!E1Yvk1xgxquC7vR`TE7gP`;ia4fWJQ_nzHNv_`J=*Z?vD zIlYf1+j{)$0h^$1^6a}}@>N_~1G;B2gOA`L!fl8p`2n;~zxaW)v^4b(Ttm`&H?b=; zQ0VX1=vEUlqL0DlYN)qV%F)!FLPVw#2x_0q$o*%aWzeqQqHEHh%=r{&3kcBYrUs~9 zmj<^~fWLwDAZxv$3hp%)ya3I6ZV2ISFqRmrh5;>|;=hcj1qE_`^<^LfROO^W;9U{- z1qS>ccw(m}9r?h`J@g9}q89t znTq6OpDc5R2{Hgq>Wb1(_4z;3pVZG#8$m-5JVr1_pq@QP}FRhIzs%TZPGSv1|) z`?TRlRr%P|jBetWnW+=k&|y(b9u)IXo*9?+ui&cejg zF^Hhr!S^-P^#Q?U8*QCGCu<=~4ne50>%MuF?rhaC7r_@T@!hMs?w*YCZ*aP!p zYLfI%Vf#_1RyFwaC>a}J(v*1ACc|1tTNA%O{Q+$sBoBH90O9o>%oMEhI(`$;(iNyP zTED9L7?k*OtZnq?&f*Eoc`*`7-cbDHW%`s7V3%x*>v|_>(~3vsGXj_`6M#V%B0FOX z3bFT^fj|@0V(9boE~!8RT%Ou2YBtgD59cKN|MH~^*_;I07;d$nk~C!yy8CU}St#H# z+}>HAs|t0G7@m7cP<#Dgnu2YO=JMKo@x&C*#q3d(Q>u&{85DA%3NqUGm&*9P*grqT zzjoBfwL_+qikm@A|DDv&nMyLLmb+oQN?nG|&I^AV_5BHvJ7St9%YMXvObcD0&vq01 zEvqwZzoGpRr0jQ4;86phKAPNmS&EgT`0A?KCI&Y4hG=!80k+Af2h5t^@<=_{9KQ8> zVyJd(9&Pf&Ik;KBXuE!@%9ule(yC+Sv%>8#y~)o5pu0QIRn(_5yRWoZJo=pdL|EdS zx&oo<6*@7>t*(b7CO>{NVk8QP45lSZfCxCX=k>RVRzMHM$M@NCxmd(DT;U!u&9usu zKGJ;Ps@KUERs=`42nPnXsn$y@tt_t}EzLRzhtk87MbiCt9r6$#R)8Kjbgg$I`O2zyzSr z<9lu%+7N6|+som$Auf-c9KxT17wki^6antR#HCc(OR�mCbA|2m9a!-3bS?cj>!B zD;w+twWB+{t~aU$g8SYaV!CQk2>C#a%yv3d97Dv)>%$k({PD)go z7(MS16)E*0+Cm$#=-2&PA%z`I%H`Pm<7untE1C+yu%V5qfUpw;(5OY?sVzxHk(2jP zs5ocM*ji=fQR`U2ujM$WmTdf&OLLX0KYgNJqA@!GQMGkq8x+YKY{BwVj7+k-g4%er)t{LadbscRY?66lOK<5nAgk1}P*u>i^ zyw8(r$${g`h@$NGu>~^yYO7~iZS7euG7*DRF^|v(_!3>fUq}>B46YaUgS+%Fv$aeD7&PKLL*B6oc!WCmdDmzd(yAU*QqI zg)`3?FUa{t^!v!S?~(rUzRm5S%U{{*nO2KlhfnM@>mi z(taQxi(H~28d@D0zIdVdogHN013i!g*Gh((R@)lS&xKH4Er{%Nk7sfx0i~KBEJGZn z>OO@#CXkDc_Y_<0N#*Rru|5LDbAS@lH?*=2BM--#{MqJr&dk??)(dM z0L58~fvgC}N?C3)j3%!M^{5pJ^}GsCpepAuA@oADHFG{0gI4Gtjt2`yFF3m?e1vm! z1Ikd&Z0Lxq;Pd;s;GSbizbdh=C<%=>@ikb!P>)^g;(3LKN(2m!dDHll)A};cepdM+ zcQvR$iHp3aN{Fg85GOSf;Ih%Sfmxyc+zr_5BVG`?>Ly(ZVAWk_o~!cY$*l&qhK}Wl`Kvcr>Si(sx_$$;!|j_ug)c` zB7M;w(d>Vz+Vm3oa0HF@l|joE>=g5$BJQCohd@wUx<`*{xi|nV_~2J2yehA%UQETA>4E;QTXR*mox%&h613F;8jX*PtCIqedFIYV6q-WZxAKt*Va zcb4K5?jPk@dbYyw=jc(rv&DM2`OwBWcEmRni%)^`-s zC_q&Ln3&$2LM?4XhBwGL z(dW4x7DHK~TP+BPIRF-_^>Vm|yJLZ6VK453a$!vga?6ePt0tO|q<8T#*fk z(}$h@L}x6f?fl#arn4U7zE2Re(am7U$c}&p2BHbd2!E8)G$!oY0O)k8J#+fg?v~Fl zC34RDSk7=XhD_+@@!pbT1N<^S;kXz;Wz`Y_2tH*u6a1LM(cPn1{`chg$bJpg{Gtjw z{IfN+`93_l~$2UHPcczAI(&AbWWE98Iu zA)6cSzry2R1-_$3!9AORUGRGtE}>f%PyAf+r)08;{d1M$oHp9CS5N;Gdn02jO;Qfm^K$BSvH{yG2id zMA+zu(0l(Sq^x&1U&Ml6?*DrRySv?BJuKoLPZ3U&{N**r@6F*?>wY2O&FWUC;xP49 z835Zd;D6%8y51vkm5Ay$PfH!y45ivKd2FZK#( zcOL7qOcK8g`JGzPTH46vS=OD0{M6nMAB!|&FBbZWFYWTI^E!eu+^77Tw9Cw&Qh zKfDqS3;6~-{w*7SBzhv{0=Ln5x!wo*JG-x7yKd3g@Ux!px3V%i+q2G5I3oaUVWV*x z7vhi*(VT7YBE=D__kh8oaLiFKk93!XVGvR}O0S7i^mH;HTJLf%LY;C0lbo-?Jx73; z-~wzOty-`Vk$nS6(1~_b0Wm|5R%W|#E zBTYz%ZbXnl>QcA5!ey!C=BN~zfYRqt#*`{=ryHiE3xGg;;d{(l>!NE1k@V__5BvcP z-B&C0Sm^V;y2@!ie?**HYkpC2!RX>vJ1P?O$KR_zqxugFHxZo~-nWt;fB}|o0+>;f ze`Ghm+b!nQ9Dt*m`8UkogF*yG&&l~qSv*bP^x?;qDg^cs1gmdb^h`yBi_T$EZ^+C# z+&(hre9VG=9@m$(3$1P=J(Z`QbBD405qbaRYI+%4H)OG?d5;pWGQ;UG1O$bKCLcjx zk)w7SzQMUxa7sfU#ig>L{vb%6E^UeK@2MWTf>n?S1cv26#^X$j=QdP^e;s}w9^vPO zQG|QBDd^F?S_hDy`qhR!shO=a@z6HYwPs?-2-W5;C2e3dt@!B?!{W65&&C3P3raAj zW;{yKYkCZ)T)<>-oWA=$h?BJjiq>P*FnWAutO)Gj)L`&VLvtb2e8;RYdGAXuMkmj8 z=gh~fg*E)5cRf=%H!9PJ80Gx%e0s}dOqkpbd?{q8>3V?Zo8aQjPdtfQ5)Ol@SV*<| z1R-#Sf)b^uBtf-}uyy#AQ=MHlzfYy=48mjX0L=Xa0HktnEX&?=&kp$dwf{Sg!!=XsPB$7MMJs%06?pv>UiSy8+_IssS3e9eDXdvky}KUbn~g;#5TKTP0! z0!R7&L*w<5*d6J|YSU^^Bw{(2D5WQ)ZYZ%I0QGtOwQp`=+qI@f9reQ`N&4J$+*jn< z!5K5KXb<9RFLuK@e<*{DQ?i_Y@?+f_{8akarJb6uE@_!eG?a6<0rofHcQ9~fwWcEQ zGOUAdZNVr{vO0h%V>_|tQCrK6V|MnkJ*BBsmh6UHH0n2{C;!FqL`}A>)KSRK=mF69uHv{22c9jI)wad-Iu-@>kXHj?>XC& zB9_81#=oX0Rn#T*KLFcU#9!kK;M1uCiV^TN^*G^ALohF2>z=!yV^l9XUh9+S@(gf!r zsFaw*DT@XMk8qleE{tGc$5$20{GQGNMb`ooF(`>x7w>{FUW%$~;ilJYx z81dfH5@Z%cOS<~P*|~rsBps4bU+w1s2D!i{DXy_SF(|YvC7_OU%EQW|OKf8g8722F zvR;l~(info|EwcQZUSrxwaqlHK}87F*_HsOG8=Bh$9v%UvqL?=^xP~#uv8t*^WGPA zHs0Fk4&$x_fHTb=YvL1`%EBCmO|bkbLqyYq@UyYXn2~bWrYDeDb}W&y*kRB%^xE&(|fKAJQb461n(>=oBZjx|9>SrbW5Gd^#8G-7EE__6^=-|BQo z23J;#fG?qG1kT^<+L6VG6-b@Ed#gIH=@Z`tbL$=#V}qGE`IcKOu7J-N$W~D(=;Z*i z{{T#wifP;}3I93@pXX$V^JzV1_2NF`tO?K*_RzX1=B!SWVu?pUn@$o~o&p~Efcx)x z9d;N8G%@Njzu{JF4qtk5m5r%g*O(+=A>;wHIOgsELeecz;J5H;LuyU? zIc%dT^0+*9G- z@WKJQx%rX4EQf=(-zx|D9E){$rWjM$Iczit_*p^iEW?5S=ps+z`LQMFNsEV8mPu55 zY*lHh|2aS28S+Ao)E?%vH|{i~D3xE+fe!>bRH+mTeHBZQZ@?(cAYSM~ME(>D435J! zf#Ws4kf^P7B8NfHOC4ixB)zhR)$5uwgjti80PW(7ip2YqMk@(coimEzZK|JWbGU~`l=?!_Dya0CIJAcT%raXR zflNK0B;Tta^GRzCjRT}R+Y>9@L#F*qj;an}aL31cg=z_??{1r4EA_MbHvnJp-o53`SPR$5CXdyv|-^WH$q3IPjT}*GZHH>a=4Ss!rHxLL}q7TVX zcP}p#vHMU`=9ZRIZ5>4SWat}tExL7UDZ-fRgjhVnQ|w>c3*1`rn6%QD*0spAQAI_+ zz+!m3yA$Pt;%&fC=XZN|gHD(2F+)4e#&?!ZP}cCD#H_5x1$Af)wqiBg4Kabj&gM$k zClE8pH&DEA6~8R1XTZ8t3ibQeIygll4cXvzX?NQGKdRm`tjcg}7ZpW9xL0Iz5f84kqT|;)b@}t6cZzqpF=>%l~`z1`Kl_&!Mi@C z<2@6<{y4slV)!_{*O|_5DZM5<&zD`=X_|_{n_3ogQST6~rA0zlzc`(K^=jMP9B*y-+0BUX+DPWt zY@Xsg*Dkea^3jrn1cT4nN3HI_NITovn)I5p8 zr3WnDi5?%d1q0a>W6rAsSac}hrba0AuTbBxEDOKrCZJ3s5u^AONXvUcy%bll@X;sf z%R7;NTOhRSl*1%Z4<=kCgw}VAX?*FD1`gR4pI)v&h>tqydqd9pnus}2GkNZi*J08Q zthYkzj9}m*UPHuD0p}i2qYPGzdh!Yj53u4+P6O0*Iz*g1lX78DSPcG0e<(VFa&^_+y818^^m!bGxdAH zMI6&MMo@j!-~KIi+XHu8ANj4yOU6V$cU0{Z(U+cd&23c`#%=t;fO($Uov3?c|3UQg zp%EVQavS%BjPr|vwGz3QAg0KV^P{irluCF>yP#sjtKvSrq`^*@UOzxA#&G!reh^IT zCA8N~AOYw&o`1hfYFB=H40`gpfsHUG(ofE;4SQZfIPnbbIwfC4Ptv`e1`d3NiDs+DXMiVSv z2^w=tW$-FG&3#{|PZOTL{%-g>mF=G?m|QYx^OPA(j0A9=G~kuRG4Xv%;qx@Cv#MFw zBmeX9eb#!><#ARvf0cn_bYlCv^e^=qk1wqzYY)_`(~!o zx5A3Z+`)U~9l_<@HwpUqPLL&`z5~Y2@y*eLX17}bINQi&b${r*0DiWpCVoZta(Y}8 zL=$PxAmM;rA%mSv?aNdj59hn=)_~rHt*QpeLjoIhR)xV#ne`jII#a%Om z)OOcY1^KRg46nhbWOsE3(T)Wau_-I}dy1?NS_D4v1=V}#qQ zeP^Ovj~}1@u1~9x2##U*708!U`V}^l_qx8YdEZi#;kKf5JS@<#=M3J8n?iGJBRsKo zQ$AY4=QX|#;j1}1_&1WOrqb=_KS9o#xA!elFR}5rk=UnLUgM5G^Vgjd3JNxeG(1B2 z#=Zc!gt9*PV?h4`+iu0LH<`HDfLyi)E`l9V%ZiBPA%K+d#F^zRfN6)l4pbu_6r+$@ zl1FBNE&mPxI~e)rAK_H*AyDdrXz9k14dePpAx?t`{wbun*Z9IP&??I2d-haIZ!f5- zpXm7upwPsU^2>Z7hJp6j%QR|V|g^FUWD3uEEROIGSrzdhzJbi3nzu@xi)Ghp; z35k4gMwNP=)Y1T_pdc|$Je0q1Fej<(re(nywZd9?r60#~_HS{{?8i?@qLarnpn=GPILp1gmk34h)AUIY~Q zDK-_iEqON~FFgY#R%zou`d62i%SN*h4>ZvBjoIV~z+R|`YqY@sQj!%G9uKS=AfjDR zzF|xTK}%ut@RmX*Nvdq@0fi~yiqQDOHk>d8>BD@*{!3xI{>b*6SC1`cf1hstn)LE3 z`}M7%USB3J!6C&9-QMBotH@@epXT1AVtNEtNeT*q?a5U#GsZ*SF$;_OH{@>>lR}@d znL2%wnQ{E)G=Fby^EtcxT(ibxMR|C*L)e4THZN9xeRY+|C$x&&xH_j$xJ)7T14#oa6|UWzi^M^~IUxCs@v23JNH}-3u$uT);B%_NAoE z0sk0474k7LMQ#Be_-D0w$oz{V@MdBljQ9ZRoK4_~@k(TN!N^1sQH=~74|_y>4su-q z>-5p`;)D&RN0skYk`FMrL(T|!QRkU-B|l+b;z0_FLy;R+C!dr865uXxD`ToC zqc```A9R&0Zbtqz$SzC5LG)<20wPKeH^3<2)@izlb?SgMEY^PcQ$q`uC#N9Cy=g_R(=Wc7mHnPES_e?f&^&}3hMJ!1>X&v1-~-$CXXz+{Yn5Z90+ zz}_Yo7gyx-ZU@@(_4jXoX2!Sx3zx(1WB{VHOTW~Cz6|Lc+Nxc+_yBNwuicWg)lAPj zK^brv6yOIH&uaqK@cI4Y<18@18(#xn__&1NV|OdK*NSxdN!MpTY;&?id}_gF(ci>m zgveBT`G>%lH>F_@-m`Um`gFfjXS}XhDt&q2y;^$yWXV32%`sjTEus7yvL7&XYumB- zm=u=nl9G)7tKvAXXPJ5>N=E(Tj7E=ebYF}5r>@%9XZ_l^@xD4z~!8?>SI^y?jmV?29F_;a29Q-X5B#zAl$YY7` zf%Yboav7R&Yo|1Q-)aTo;cWwu88jc!1dH0L@37o>ZY;_m2P1h3>9dQii<45=bmH^j zv6f0p^W6=>p{<`R?cG~!Y;>ZOSpst=nx>ZwWC3FjU-x8|pxed;yevh=MlAM6bAC5|K6uvjtSQgRf;Xyq>Pdx*Q z!@awADV|VRx49v`z_;xn_}mdamLWrC5WXhUXW$U78)|A#E^pUi!G9H;W52=<`gN{cU7+!W1?KIMl6K=HljAN7M?8cD+Y1jwx_jZi! zCOTpnX7vMA2uF}!m{O!fyYj=Y=Dg+6s({lhgZI(98~?nKl50JPmHn^Jm8B=*D64#Y zqn~7fFDZ=N|*XPU0hn5n~gqsn9v@Y zh|y^IC6w0eu~zyP;!$i^79+9VP)pqU$UlV(cMR2#=6TUE7GB?^ggJhd7U7E{0vtEl zwiZ*PbjC`yM&Zy2L(x}~hK(b;8BKmk{2|=7Diz`>PHU(k^wtz4nN3lB#E$R8j7bEZ zi2EC1pz+MGJbS8<7i>@zqgh|FyQ7-SocY91CKRNSTfC}fT6H{j7Gn*yqVdNw1c=xT zO47L(j+s8#AUgNC8_U`)7Wage4y>%4S9CkL$JpS}=x`)dzT1S=;@gSR+57g+Ju^p! zG)pl&-k+LVOkyJ+88kF?WLJL3^XKN%a6ILnTjfHyE(L{v$TZM8c=u`d*60EcJ*N=# zZwkna_|}1G>38LU!9)AU)Sp?%Q~T6qe&O_tDD< z61S5Njjvj`y{l0ke0xoRXWUjs`D!ol{C-U+q;#0m_ln$@!{i#-382e>nZYS^d;@v2{ z>~?pu?xqNeaNR!2&>6Ai0(t9>*M#_VBiZyvb%RyfI%p`^Ev`{gVLgYVwAT2XRm;b$ zHTWCo1m+QwWA_ZsG;lnWWK8)^!d*6{rm~_{PX~&8iN0xy(`u$_zIq@=@=z|{AW{{W z^neZB-P%$v0blfp2@o$}tnqdw-`Gq0W13gY#VR5-S0}$ShTvsuBq`eT%+^smi}s5+ zZFU?-n9$v=(_g(!zgPxS9|p7^L`!(g-Uz}2&ug5BuR-dn|n$oaL5}O?iQh!UvEsc)mCD8tB^v;WaiZ-Ou zw{7|z8!P(tqGRo`VE6j-s28FJ$%JmQQLVWPLbT7F@C4!_$BYLm2IW#4y-4X*xfX8p z7jN!LW(_w*y0q2A{4}o9I+Hbp0cDy${1>I}LcadQF(fmDwVt*263Zt2)NWD9;+6JuFBEg~0h1 z%IjLqmg75bbhm#LuL#hEf<@r@96&3W=&mHFG z=HQ{T4g))p{WFcvPND@`Sa6>l3C!nuW0Pnu3rT(Cn%|Y}4VD-BK0Re+`ql``gN%MvEPLa>ReB!KsI4WS?m^gCko?WKD2!tsF!&7@J0c&gng)kf z(U4{B%ZAnVF0S)v!bZbTa_qd9$<>xLn=vRIHrk2C>l6qMWw-`qwxMc-Q;b!+NrpA= zr$p~*^EK4e&pCOH|KZ_d@frNGlPJBe@$N7M*KKM>ke6HiwFoQClZOl67Qe_0@eLEy zFjMHe=WKU%)bFv=TxM%&rA~@|D_@Fwu%;=*#%%eyYXZ#@!`LhrkQ=k@eoOs0HP)|v zGjNvm2@P7^H~)69zE>j2X>!z99U)LoB~@)N7*Wi1UaQA(y**{bhH%_Ni&S9^?l*=8XE-?jnoz{w%Vgr_ zT^t+Q${fk!{Nd$4J306+dg$;Iq0H1|F-zIo8qefMnC?^a)9ESRu5MGEPs7MX>iUOO z{zSHEOXvh#0v_^_xE_)+IXD_?vdfRzx9cN6=E_}F^fo_{J=jzKR2Qw?!uQKortB__ zj@T4y)vj(d^1?I;Cm{v#|NYecHiLu}=F%?v`Bt{QPWv5;n5^2>PP2tGJ2e5};Sa8j z>g0Y^OI{tSb?dJVF~g#iqYHC2sgh}!b9iAx=qgs#i@iWkRL);m73naX0s zfh+t2fv4JHmgGzw%HN|h-N3ye`^bl*=&hm^4r;X98@zG#C1mD@sdF=FgKpOif0E~3 z>MS;1417|&BXBX69BP`k;2-7t@{rxq6m<;)$4}Mc=VYdU>=0isG5-VVX@jH3IDW>l ztwpk?xCy$U(pp@!8OGkL-(SUZ{?HzE>=Mq&X31Gf(mfn1oz)V5`s|dA4n=uDuX^vO zOP$f&{5%vDJcQ3z1|428ANCS~g#9&1V>}Tp4L0EtxHjB){v}N1d?;WwP`LJ$R_QHw z(fhT5_p2l92djLZ3&#hwrJDh}qE3#yueMT99^e+My>?scF%5{ihurfkfVKDuYWq?+ zF1<`|w8Pc8!H?R;IbnH2q1DPgtm%gtO0xEEGJKB+=vQk=eP&5KjY3WNeV>sjWb#P0 z*|Y7Xh*!TXrMQlM_vBQe+~*u^^r+1CNiR=GkuQx)=&+hM;*9nSbF~7Jw%Ie%hXU(m z>e{mVwdstk4Dy??_#0(K^0Wh?`K7JWQK(v(0`6Z_i+N&rU#FR6{3$9DK3YGdIS-C( zEt2~s5r~G|MXx8ARm04MzF_LTLTFO?hAHPxLRsKuhWrfAW_G&vLxbVLoraW1MTF|Y znEPmId=_te66y2ZY>$uZnXN5Gc?J??+4S?1Isb}Lclt?%qo8Z6Wlwtj{m%bf`{Xat z+UVAk;?EZ(+>wqy>bHM{RaL!Xh)oo2OXMnuKkv?R*4B}c-H?>*qXUilxAE9wB_-*H zYhhawG{d86%-RZ^rY72@`GiclM4XkaPv#mw4qkPOc+;JzS-n0i;`+n48Xej4p(oUV zOINnXl!jY9ww)zEgzpPI4nfhT#=*7TL-mhg!@4!rV>(zmiWPI0d>L_j?!#oYJ}eX@ zj?oO-l#2;Jyh#LJ+B|A>!}h&fii7&JjD{=$1!tO@J#<<}Iz~_`ly<;dp?)Gfm`g?_ zZS^DlkztpM)>MA%lwnh*VVTgP46c(S9JXjSSZqYU$QKcP;IB{NGJU( zdydA%zNHlPpQlF{dXK|yM%}b|>}m|X!bbIYEr&pDv?s*Dl45&fqA$OAqPTY?3qsW& zI*erng?@27G;JN_B!&?(#qJCtvaSa9!bvs6BZo#u8eI-{Q?Ukj`wBD31fJq|0#!>O zgq;=9c#T2d6Y^+r83n0>Q#x4BT(l>c1BLdt1Ym7YN=u08)X6FU+;K6Pfe z#1!B3w)ynu=;wnkx25*o$jfuDE}UAcUy{6Bw!=Kd%$#exD~Bd3aw2xsnAQ9(LWrCH zu>JzokR@Y5t>$9GvpzZJjpzP=#bJM;w~dEy(Zr6uc1DNAp{%w&xT*hQG{1+6b`wr- z&8AmPMW&p>G@SAJ^51ctEqLCnAh|sYVVbwNxL6^_L^buvo@rl9ACt~VrjkTp3V%f+b;#yBPs^w@dCaDN zEUhjU`4seIO}scxZgQ-x(q2Z>XTQ;LX4yqoi(+47X@qA+p?+^rDBk5g*U0QoCZ=al znc`dd#Z&4YcZc1*VsGHR@A71WGoPp4)(LiTYKOYxWwCc*19P_2F)zawQy+iUleVVk zY8A8J>=a0*)HJjn?}$k?uy!feUCiQh${v3wkgdZk@PA;YNPy$MOqe3)Bko&&+PT1RYg|wehD0l}`_F zO-#xnBC6+xos!t@A9^pD4*q#D+8QfLI-53_UmA%#eRADJV!6#wVpql^=d7`27~z0< zJs&9OTe>&=S`zdY!o*?X9m~(FARNd0Ko} znbA4?XlkhcNgrAme&6WUzEHC2*KI1NmeDJdV%qH(yth%c#QWIUdGU+0ccG2R>w3Ud zM2&7<`-!9Vmr}bwLn+nW7HS@Rn~6_d-@I$7S!x%4^YQDkn{f?WPZzoQe;$R&I**N@ zu%|Y+&7|$HCaVtjG>1KpO(Yso^3P8dcpaMw(U=E&b0;ed2?d&k9-X`mr^Pl zoSXg|dB`nBzod!I{acKPE-r3=)nZVYxkMo%oJGT}srGi@fQgWTEQW(*m>TnAxk*-e ziBue}K@m&-wp<3shx8W0-3L%0nJsQeZ94*~SGMW7(ro>CBK_v!s9{E+zW3RqRx2s5 zQsjr5i^Vz_HQ|bJ`1w6dhLt1V)9?KMuMNg|pq5eOf0mcRRiM|X!frhKjf;>16`k4b zob|X0AsS`csS<;DC3?FosEhH`(xvik82;V=Bpm$D&J?UqnN%}2fBv-iDbk=sp!`M8 zTl-Op1EsJ0r+OKUn74|ql%$qv%+dt=^K$SSh5yztS_sC^3F;i)9_+UD{j3~J9rS5W zc~i5eV0MHVPJxeXLbMn#w|%o+Sp2MugdO-RlOM0n9P2(zNa6nX0KV!OiA(2^x1Ulv zJKyZMv=};kzt0-I!ptUu+bowVSIT(Ks#MbaDJiDrPR30y@u7`OdQ{`KQ^iIHVd8)P zbhvlaS7xR z((?+P5xL8YCEl&h$*z6vSdyAuZsRk^t%2r+_Mhi(CAAw;e0f>-y`}({uxK0?Nk4mW4UObjb5t!me!++LfispsdOF~>CEBnLg`$#k) zo5>PQ%E!Mv#lyNSYYxTT?FZ>a3) ztSwv_FSOo&`(I`!OFbzm|LA$5!8_rM5%l`}36G4zDJw%lWC|Q5%tl$KQYEeMaeJ@J z`Ec?|rn6LbE8x3kY zUDag}OTU?QK83r@>vgR)rH2J%1+&jx0gFQ<3BpZG29xpJ@0Gg0=jsgq_kZ!m1?`-QA=l@u)b+}Z1G*3m|DQMT zmU_kVtI zWir&Ij)B)o>(c4be&6V2hQB*~Jxw=Vp6?R-qsN`Js2$`@b9;$U+$^ZC&Pq9zrb#Tb!Na(+mYfwPZ%jta-fsX%QY$L)v@z$cOj?7 z<&DBgkA*BX4wQSYx)RGq^+(kX5w+1P~L~zqHHT@;LAn^wa3o9-< zS}8~Ds(a||(dR@j@R^4RpI)v60?2l{1aLUOSjmbX=>FN+*-QMAj6c_K$jHcui4{)V zmit}A^P{am8|NRe6F-WAE|e8@6baW0G&D4jU^0dCa;ul;{dkW+$Hr@sD<+CEUYy^} z7dCtN&H!gfI*5)~{Ru>+s#~Nc)YVoBzB}^r@;O2t(Pf-Q&DA+Mzq(bN$;PlTDMa)D z;Wza6IbPtxK@#|O6ai3TL*H4D4DjiZQBhyPeGzbYiPxGAH^2(TCyfo0;!)1n(nfHi z{Pyzf{u!spzUJzvZqNHEhpB?r7v|4eW5No5|9n3LhyehMP1jh;XVzaF3sznMs1X1a zPBYbuuu#2u#M5X!NQhDbikxu67bh7Wo`FgP}7_G9Z$h( zk9qGFW>cm!$hIfw(4Dmf;>nntx}}<7lm6HL)>xl@=+6-k00B3!$j<8Dy1qPAOI(26 zAi$!3bpHuD-5=oY`J1Rvno~&7B5ks4n4V4NTU4mb^&==kh!URb?KDigBwi-K2i8wx zV`I0TQ3 zPD(#v9Urp7xDv5`2Dq*`Qa+{YYM_ep2Ivcl#3s`1Yif&fi;QdbMcH31XgwA&y7}c` z*!nI`1K)a)t4~xZ9VGC6Z;D;+bpyHObD^0x#*+v)P>2dyOCj3F1_XyR!V&m!4oN$D zKyK;W2SnQMx>2z$7?c6Nn5qY?iqq@quc+z#!NoeBG#ZgS@D%``)nK8Lr(Kwsnwq*1 z8o3CYR;1IFuSpRZdB!pl@UAP;W}TSiLfYj|oj{(%B{@gKxAUp!z3;l3d-f~;WjgF_I;e|_QzKi8O)6-Yl9KXf-Vm5VUkXG9?aEv5 zYfw;7BzkQQwRCt-5;d*81A;XD6<~Xml{`$_JS#wzrmFp%g&>bksQr-dOg&!E4CZNj*3fYoZ5Pal=Vl$dOyb+_%Hcn!pkj#X`Cpr3n zh-0WFUg+H`hzhVeq%MISfvbz|DqtZ>_)txOpFGY!u;wi0OgNIkYp;3o*kuVZD`p;) zaHKERsEPL9A=P5-sJ>+(kO^~_WCv|7gQn-?U85%u0Dy5t{@se!Qa;ha6k#)pc*2CL z0m5NmFQDF;^VD+0fH)h6OMm&xtAGLAALNlV0d&l6z}qU-gGFDU0mxHXbi3cM>*}P< zuvE(ul5HC^E+N7%TCB~=TXfdQebN3e+y(tq4oA8JRx~D`eDhxM4)C3?hwI&a2O=8W zQMBjll;ZwmeNxPT5PDdXq34c2qxx8TYR-X|&{z1?*`xb+^<3o_;pn;J$k3FrDdc(8 zcE)C2D67rwb~Y_*c0+!Zci>PXRaW^JM2Bm15a@o^!1C znCRn^vcM)cD%&2zvlPNC(U*k53B2JJB<+Ak?Ls~&UNy`|rtf)8G(f=S#_GQg16qZ5M6klGX@eeYlbq(^(v)ud;$S2 zn$oMqgS0>gMuqsmN2gs5cMuE`S#>$2c*3whg2DFJHJ~Gn#{&y7vRI!{uZ{$t@`akyd*fLGlI#_UF)$0Bn(ms5fm1U#H%1wZ4&!Z!zK=mw|hZB z0U7!1Mj}n5j})ZO^)G-cFB1hxWKa%;K{1gI)NAp(e&gSMq&8I4A8B{6MeSdaqI7;H z%uK!4O^#BJx8N{a&n!Ga*ebPKHTHrxqK8~S;$<$qsj2BjHwm*HRzqZ=_|eWBQL3QN z0iCLi)vyTW?~jr6ldl!pUJ48&eR;NlcbM}XKrPezCo5H zNY48Od`~5MX{%MkUw6Y=3*D5qQ>+6$Ptmsv&4lwapJ}*G$!i<%fjP)v`e#pxW{IqpzhzE2*{1m-}!I%f5 zrgzf~b=1^Y;M^%A{2k!;@^ThC2ZC*d#Mx zNlN90P6U}^qi!ZXcC)e22OP~UFuP?Tk=t6SD>D~8-2%u9E;$7=!8UjfaA{T2BOe$5 zxT_lk{}T4`mW+SB{S3mVL2MfMjxu%(jZhxcfqss*^lm{QKHyZOMwfGVbINFV#)vP2 zo{Zh}V_k_m&GH(^EC^bHy2GuuY^7aR5dhpfFsdc#M~a_6YxAQ2(|JoFdlx5zGUMcMFl+%}n#*ojf1< zA9Y7(05a?CZdmM|W@|mfx>XG%=~?DIj00 zzNFahc*AW{MQPtwXOJIiAI2FGz^a#Ci;|1}t~KDs|F=X@*AHUN*xlIz^hU40CX=ZW z^F^u;r;DotJSNh8Yt|sX&IVPczX9@T26?8A70z zLNdFbCTC(+M3%PN_O~6>uTrFwsZZ~VnPHxYgE~K8yRq+hN2+L;xPSZ5WH_e%&9AJi zW6%1)M_frA$|kU-0C_OAx;9oz$NN#-T*eHW2MF}EK@47WCbt@_jbIw5j(67=Hk5%H z8F)CusKaC^E~JbK0~qX7z)J|={X=cF=1z6R@3JIwVXOJ;)gi`0EojJG2-A-d{|tK~ zER$Xxpi(Clp8mKclJaMyZm6)X4M=~ki(;w+;(d5r`0^xT_s7^@92tHtvAiL%! z==3@43@z(U15KwZ?Z9%VwL7_Ik1>g)@kh`wmVIC@Lt^Qa7c}se6

&hS2eRI84FS zznSTjUZly8Ot1d^i~(yAWrpl|DZfg6Auv6eefJBc+06to`lOT1dR+^;2>puTSLy~crnwJ>uy!2Kvwq} zs6zkVG1`D5MMsi*xT7Ig_p<}BP%e%_6%+64bxb5A7&*LmkM-tVznHQNZ&~yeADEChA7|j@wIPzGvqvg)KIq?rX)~%s|2>1( zQc2w!Hegj2rR7Q`pV!>;EEp$WYLDgv?IR9#xf~=EUUwi8<$ebM)E~?qw)}@KDcq%4 zF0on{|NfD9oZqSuGN@4T(bW`mji~`#a`SrytGzYALX#!pBv zS|b-Y;)QK!3aQGVBug$zqytzcNOd$vyf`(omn?(RRP4!Z@@rH-gAxQP{aeR&XfdED z;p64y1l$Uu_(g`>!W<*kn&fh#d9J0EBO6w1pEUP#IsTAb> zwtp?kCu+{93zC6OF?mgqt_wr)8nDy&r9ZHLdek560Y8Y-?h2i}7Zc zKkHnFOqRT4Z4h5%aDA9#%EMoUqupA0mg_@z!9%l(z=Y>n z8+F>dVe~Y%kucU5+5{9w!9}L)Ee(G1t9KJ$ zL!7&~62iO@9h`qct3kb%i%RVXEzhG+7j90Ml#*y-=$F%$qud|QBdb`@HINMk@t?*< zCPK)6KP6+esa2{;kLUsFlD=3}t*`iiy?rE2k&`FUvjT1JU5t0fmFS@|1^%E>pa0lG z%^o{sn9eTorK?LJn!eN>1+~Zb_4z(03z~HJ`#~nc9s7D8G#Gt$X8Dwg$kwB!B}mG~ z%XCLS(aKWKtbf}DaE5jEF)%cN9n6- z{@{-9HVB}}ZjT7BA04AuZ^%Fm8^AaxY8oVBOcC0lTWDVIA6g6RjmmxkZBt)PV8onX zQ=wrjI=o+7`IpO+{11rB_Ku+%;RC;I3c21LKc=;e^#b9Am{^bxFzboHc$fmY2MUqJ z8fLAcI}=eJ64=k!E=5VL_WW!G){2RUNY4|^1$6Kdg?}; zY@Ca}_%>G}Ere&;nv6(J1wjmj9zg!nrVAh=Y74?a>d$4e9?4VFIYB8!<-Gi;U?bie9or$Q|^O1&QI1X) z@Rg*}w4)t_6I)-8*0u)mBqQWOa~IRsjri`^xEgv(Tc`}h#@g<_!Lhh)pugUcAr3+v zY0muc{_1|ILJ`Pq(v+fysWV;s=5^vnk7YFNlN^ClbsLyS*s)L74b4>x5HW=` zzkxayGA+Lrml1KI8kzi@1a>f|QE)#_qs($Oj1ho)^}3{@!(eEn&@ZqTdPNi;sElaW z+x$BVAASo%qBY=W3Q2p*X__4x^FaXE0A^&8-@SEL;W%l>Q7QB!v#Tq^&m+$J1;BZex|qCErw6ec_pQNnbeWl z)U5m>=nllMki9@|Z1hAny}pfg0e4I;LdAFz#?0UsvcK=^7mCr~zVbibe9P7}P@3Sh z9y)q3Gv4cmnZzXhdM_5N53opi`&T`?poHD4gwn49v~+>T5cwPiE!O8eI>BhABKAU& zeWnh z2Iv$ML;dWyRdbDF#JW`lzA3w#fz8w%w1v;a49Fc2BD#$@w~L5+{LynQ~i@G_L%6@tPNVE6@PdN!ighyzdbBr;Imr)I%r&P0r+Qk zhORsAKU+Os`ws%)D6vzYX$?#!v?T%*WP&;oDvCyGv#aKJ%+!1nd1@K&VbH5%Ace*9 z#!^cN#`=7`jWU~uJ59fC+aQ>(Hr<3__!9goAVcJXZp*#hvBTvL(gmfEd*nN3{9YAg!3#m^1I)&$JZoJKn0;E}@Mh8|Q^{f59e^ zlN>G>f_gUU0-74?Lfl#~^H4&?S1=q)1d=RX&p2a-Kw1wrixhi0*AK>7HM*6LktuY^ zuDapcZ?9dhs^y;V?Ga(bvs0m%zgt&Xqg`8{fDOaC)x%^in}5*c(lD>NcYZF{ty+%A zKO>`+L#K+Wesb@tx@7vT6I&2UF>jLPj|k5^>>jU41q$>HXWAyYnJ>*k`O@MEy$V+I z2t<13>tlJCe-*x#S8SvI_P5~6at+kh%Yy+pvu0u7J*%HlAAO#Lk)TXx+51^-K!hoG_MlBcTP5W!-c2#}(wgf_#a2vlgbqi4(K`Z` z{bR0YZ3+oACmsHsC3(MiePDG1?`2SLhtp>NbT(Ve&lgh0biqfZkaBQoh*6HoXG(D> z7`qH38ovO$8My-t29`ULi9>=fvoJ=HefCL83{22pS@MbfK|Mm}ecI{JSJ3<&PPFIV zZ%L%&)jC_qBAw)agrYGuaJ_AlqIOb*!~_%Qf)Ktg}hm*slIcH`CC~W zzAYseb>ZEJOrG7okfHg1)-}*1IeeD6e5xr+bP5EbPbXYle!mgQ!7e_Ah2;(1U5lwjI4rZeq>=> zfG!G4@L;G=AIT+bjH1j!3i;`Zp4vD5Eu{^F%Bu(ln9!!@O>}J_Mfc#V_nigjKd-Hf z`6%mXX;m*14fDz^m+vwEE-vm#+^SPbp-}eZ!bm?|Bqd%cm)WrK!yE49cFc12@XP`l zz(UJN=OXN+nmu5ozLSgouLLbwGJZzEY-I+{C@Ez=PA+K3O4Zo8HG37plrg%V_Q|#) z8v_kqYLX#4V4DwO;>6s~2JgLlTe6($ezf^j?H>vycEBz9b#s#Wsxof7+W*Se{T&0Z zW(PJK>j!P=H6r2$7Lu&I7!2J5z{POY=R3WTv^2}f2C3DruP^gSGyI6`;K!41S z0i~VmUaHsi6mD$CPv^DH2flLXR-xmWO6r?8sTXS^DpWl=>&?AEq#wU^Rl_|NFHBaLmO$F3}*BRcsaE- zQMgHx#67*rKY%Uzkk3II+>(MnT*oNta(`=wDc;=82QGw2t6SRPGS}i0{>cg7MB`ck zs$5th$XHP!Q8TKhM%_JO-S|Q5lbt&RrC(IutC^-3Iet&cE5kxVsrs1oVY`7444v5d z`T6VzR@yA*?U@=_cICcW{?g|jD>$f&cm%81u#0wSJG&AE{Jh7W+cW&OHTpZ#KNYxu z_4Q^o&!H3VfxHGZW<{9J#00R8*n`q1cI!1&PNoZNovCP#y<9rJ^v1&)C2L<+VL6M| zXC%192=;3*FNU!Z(VNe@+?GUFo%Cih;UUX2=IPum(TkpF)<-LGd|Q4fAMrQ14>Odu z6*;L-HLcc@K?y2vpTtn@j%;-O-}TP9ztb z^)&Cqn?kZaYU4IS^Tijk;`>+g%u)d-nc9}t>IWNzw24f*5kqKLe~d@Zu(bN>EMnE4 zitdBTsihPh0h{EO#>h(~Jf(l&v~+6~*=O1+SA*iTd?YC;X>?5c`)~HA}OX0=E$yu&?!Tv& zmZd_#Z=8lX-@FGuYD15{<_t{e2JRKXA}0(@;)LOug8TZIq=|gu+vzBmlL?;EIZzKq z&5CU5ZjtFx4K8Z4e?JbYk}>m7VNnY&;_#FT!^*cXUr&Jm;_q z3l>kFkqOsBVw3PT6WBAqVJF@{+qXnuPKp$PU5B{1ILpQo27?S~L|&VjI*GNux4{Ta z)%u`X@*t~0t>&E(Hi1P)rF&{B*B}k}NA<6~k@NONjTiKTci_)k!-2xIm+{!=L zjA8LELxpIUFV~jaw^3jk!i9v;th&Ju$yMa~l)#r;Z*i+7y1o&jW zTw0Mjxvez1yspHar^XXX2MwxN|GLOM24=y5SM7}BRM+nFFZf9J|7o=!;>c-&P!JT- zG9Q1sBEF%ayAvWqd)>*D^G9N%7{_4*|3l4pu6ka!d-ZrM4@ecS_gK5I7c10bA7L3` z<7)gCqkTph#y~~20}Cn>?xbe>s{R8Mg`7d%@uw~x$wX)Vd&Ba6sbOa-rmZ}H=_zDl zg{zTnQ$y-W-M-H67MG zB&og~Z#H~wlv~13{eNDN{m-ubE$nE_UdRkyJW;G0847_}hZ{dpcg1KoOc7p~A!MLz zd$KXhz5z%D$wc^xXiPIZCVuv1NLSa;Gz;k$QM_;pG*qu{2?=A`p}VAfbBWH+`X|n@ z28$Ua+LMl3y^~-722=J%u)J%I&rUsj4y%Bs;|HtagVKnyK^~+H?0<`kWRotEdPoB% zwqa)R!=rDPvPaA|G@B<~J#0s)*>mNgTD;y$ky!msfIG11UUmQ7$kbq}+SGOElt4D| zdIm2c?b=>blQI9dUpv@rlC6ruOch>#jrp{1vX#*N`CwkaM)hn$%53c87m+&EgN-7zG?glF;Qf;tEL7IjYd!8Fp;~&H$0vAp@q3kDgbU$pr zM`TU;OiN;in_BfykyPt(@O!X@QZ=7=K@o&!nU)k?C1V<-O8i>G97iTE^SJG!4?Cq3 z4W3pC>&#<8ujH%Ri~TPiU4PEOcI^)kGQV=CTc2&W6~+|wyXD0GYfL{_XtQ2t!>xKg za&Y1H^sw~4RYi`j_0}8=FMqezUq~ET`XmPzNk}wm09Fv*W!0aq> zG2G)!dMg6TmalmDweNZf%~fH^;p>9(^75m`w)Bq|(#)=$&~#9>aFNdL`X0W;Vcf++ zRX*t8U4M4vTPCS-FsE)_{S6UC_`(G`%bZnFH%?r1M;iJ5-jG~WkzAO(zUeYt(=`$J z`Dr`plqY_0H{sR+!7nSo`_esgo38)%bx>;cq1!u%f4J^%s4-6PG%G|DjpDtx&nhyY zl=kHNN2}XSty#<|6UrTq96J#x0VjK7-h3omE5Fu;DcRQ)%+SjbJE81iM?$$%*_on^# zK?rTczxCBmBsNS-pSC597?P)=q{TqOfq4|VX}@z~3yn6Me&V$3-Wj^e|H~PE^Z)v> zT~4f8;Ws&=JsCZ|^_X7y`s*bG+USflWdwXY-jkwUF&*_}MzMi%6CCtTpnP};&Hwf3 z;6V!utoK>nGMCuw3bwd3aHtx6)bgZY9arLieFBn;=I0jDqmLRT4Zl@O+>DjmY*a_f z>+DLwao|7ww;$h4JjTRWi3^V7h3lDVT{*Fy4ZUj>2^No({M+34qms5F4<2&buokHi z+kndif>S*f!-lW+jfKvP))aL*@ zV020Z5#iy_pPyYLciEh(--S)a7(cW!Z{NKY%FJHm>16Cu#alxmLDTxNF)+~hL)BVLAjr?&A^@mOATn;%`Ca+5c+=Y zunMMu772!?X=mKm6h~>Xy9=+c_?^yt=x+tM8OT5fsq+iitCy;<1(k4nFtAr0vBg=G zsuObfHsWi;q86jJ5AI0r-nn@5+8OMu)zegBq|ocr%_lH_ZSY>79oaZWI%ftu)&cN? z=WyP_SOPx%gntK81Q?@)!N%)ciwSfc9)O!_Q)wwGeg;tmC|xy)plW>gaQ}p@(%Dy1 zIf}C#%l7YBWj>I>Y$0oB<)-yj7GLp=QP-Uxoj9|~J^M_bD+AjA;|c=qRf4&gqT$XF zFtSL*x*HgM`s{#cCYJ+1P^W#5^C2DaDKk6{zNr?3RhgkUF59nc8o<%_A?gN-s066(@ z^8%W0Oysd0o|I{BezqM_iDh>92U>A>l#xZf8E25kfy1{f7=CxR6^I}~Z5aiyRR%2*US%Z&Y1)6d?p9ApCuC9@zQ>J6wg0ENtTY@^vCEHk_)Mu9aMU zI{zx5%7@hi9y=TQvq+d54#L%RFB*l>qXCX}wQ0F0`JG}gj+;hsFL{Ryth)f4!>PB3 zX z#W)ADZKwNF2(XsqX67jtQTi(*Yk9wScAJ5(9cfokG}A_dnujcIu<};}kH)x~P*ZsA z5uORx_#9QJHjH6J|A-O5ItI<(Y+rTQvZcR)Ow#w?9|PdJL4qnPM_Xjv8gPSkD_Fl+ zFIZLoip>pp9-vZ!x|f6r;EoP$2`MhHtMYIki|hA`@KI)g4q(xP7i2YD<@!J4#WU% zOeh;Xp5ey$v*yy}3UP`T5zbR}lsND(nf>(ua{N7z4ZGfZxl9IK{wTl#EQV<)m?=5c z!+iBb+Hkfl;O?=}Nbty~N@t38Eju80_cE3=AC(L3ge^@S_HS78oj4n*>fjqahGp$= z;JXX12Cx?a$H2iB@b8Bq^e3>M3^daRz)dgGidQBjXy9@AdmkX$p`u475Ry?)w5tgp zD$;;lmbXnY%9`_)h`PI-4A={Dw%G#_1l_-?l=@5EpJ3jQ@?w0`Z*}-8S0r)rzoZU5 zg0m8^gv?(7A5mx~-kb%GyqKcXH3Mf*AX|$VW!lw`=iuOvkP;%zTAHTjDr(_@?g+@( zRmH6Md2B=BzY^BREZTq+7q0=rykKZ?roVrs*U^WHFOOoPtwLFiL_~+fO!pjaz`*#b zNTgbD5Ztay5reZ(%h|FKUswUL931R4RX2CM&qC$`o(d3RK=GGdNe{#fr*XVyD>2XEY%kfTFvdiPYtlD$eCiEa+LO{aJg#E8rG3>_M z+J0Bsb7RKRT!+rEaqG6lf5nVpA2Le0nAhb8btMtGn1d*GTiu6ceYU|KoM=PvhyuVT z11jgW4q}7ZY^dM9j9a%OR2j&6-rjzblC?RMPjJ`>40F=eThKDokxhSkY61;(uPlD} z=zD{hh+Ah%UX)AU)h7g;iin*Gvl#+9J2w;Y}$5_n-nI0xVcD3~9D@2_;2zog?>kPFqZblBiszUWVs z8x}(6RBOd7kyDM{<*LzCiwCfv{gZ+OlOoki{lnv9WdYDQ47Dov%3qwikL-cfUTqA&{RY>9aAu|bRtbC93M*PE4Z4n()I9NhmEEV%W#bSTY>YuPgJ2lX56gl+ z2jF*tqO1<8(FZ&@=fMmg%v!V3zsJeT%db%9UGmyOT7zYF}%;9w8cO0gh$@8T;VBFJY#S9#5rQ>}PP z)z9Ekqc4T*&UTtIH~SuVd8=+M!kZOAnm&Qp`YpNZi!8GuNjx5|k}v2lu_thFaBRU- z^asK1ohx+wPCfsk23($satt$)?15deJp&!tLOA1-pNz)Pm@hTKIW95&$k&H@Q|ci^ z_c1_^!X5OWHJ7i?65EJx(;DBtDGUX-qh@(wqS)!)_qzo$J}Wx3l)K`n=l%n3d4&hb zw=9nKpR2{?+pDKF*T;!2y8MNN0en1Qtu~kEFozJM?^QSOFwQFerVt$s&4O8_We3zw zQ#ZS#-nHLmr$XX=VH0^p?x>VT5egzFia;O&-?N6NlmaNz!>)K4S63xo2I>Ny`zpUd zd!vRqKSDY=K`N*(r)OuFY*C<@2y_-h^0WGDxJ%%OHDuH`PLPUgI?KLLYNzT7{{re{ zC0jPGg;-KDB{d2M=5M`|z(D87>=9{J9lc1L0Eo3+CxUNC8;=(<r-l`%zwk0K3NDS@?Ffl_c`HD7ikC69aN82iIWUEx{y9 zKQwa{Pd(!n7QxqDS8^X)*c9X;5s0|g9dQf)Afn!tTnW+nI^HH$igqwJOSq(WH24;L z2cE2YxWaH62i2z@l(PpBPR=o!x{ieLx&AQ=IJ)#&3dS!$>(fC1F3h}Qg`Bf-=<_Z) z5*vQ!tcc8$4q1rzj==TE}rw@WbA@HLhIt9O@V4H?FnNf%_l) z^0t2|pBv0n34yhn&tbgr{SE$M*o_72|Nen#)!HP{o_)oX=4bh{y?emHVzsD6NWah) zF-5Vj;#m@IKt)vhS4v1|6sfYOQFJFut{zl>zCXB1)L#H*(`$CdPWHimFeg}!)1~&> zN*I`i4;DcOFy^PW(N7=DEIBDnX(S~TbsyV=Ec+}s25{X%0VulEf1 z;-*VV;@e1=%2}!Kp$Va=;z334F|;NTXe)-=`WHo#z<)Je*cJP-K}TbeNva~v1f$x- zC~3dcA=?!jgSb}GC>KYnUYa07lMj!MdT0zIWyf-2>2G6M0^VfNWJT~%=c$~MHA`Jj z){PU8hd|VrYan~(1{%3XVQV|scFR@hOxf$^*aMZBaj|5Lr0`dumPpS}y9N*`9FA{^ zoCF)WM$U1w&$fs;?L$S=U!`rCC}uyhY(hq|r_|f)o7fU8;4k8v(x{_c?ZNo6&I;gz--+MKDygJEW9_BgHYi6^*%!1CLZMWBJ1}Fd3 zSmjclJCylxz8nsquk$-Ut#7&X;VSi21}c>qgTG)`1{`=F#Ijg-qxHB!EqT7&DK0cc zVB&8`4HQ3#mKNK0_9YVbw&qkuhQ@KZMMjaK?7?sqRi6ACMFDw&*5&w?B(;TJVxo68$3jTt_(=r6^4kKb`LmnhBN3oEvn^ z&!B+-_xQvv&bI&?;9inHTBLraj76x2-G;mX6W6>64`vBf=5Pfm&Ql*i{b3I4I|c=0 zyp=+rt;tC+%nnA%#~_nR=F*xk<;L0u)%GAPf)-<}{YnixKq9MSE*5(9Rh;H3TI)*S zrLOd+OT_R=`#v0J$1HvheS-JieD7b67MqZ1_~q5cxiWE8TRquoC>n>EjIr;f{GSmrZmd~eo~D%;coQZpp@hR4ZLhb$g_IM0F#a@JV}s+3mf5xDDG=-|`6)m~VT z6pREGsIKlVEj>LU>!h5yo4pQmYNPLg)6s7bVocOJ!%!OaLd?|TdhXi3WF5dWQlGoq zC41GOygO&w^gMK-hn=2MLAZqJ$4rKA z-r7flVqpXZSkVP@-G4FU%eVeNw1Q~ZX2U84)|is|VfQHqA%FKH{uSq}(4K)2y{XHK zLGo*C!X9jB)h<1ROj^TgI0Oh<)1W_&)9Mx@IU;+hsPxQ4=m z9<~tdqOV;039n~J|E3g-O2Bm}#(I@_PqB=UD_Y)h&l!Q zd*5ux^I4(_$|5j99GaZ&rhb%12TXGz;{=4vTH4v64*RCKmfRCtcuQ7A#co)4kMTqD z=s2)A9i3@6>&&98X$uX4r!#Wr2@`#?; z>OoYRD7k8yMpw;O>89jQ|85>c`g|_Hy!JGx#n`6@aoc9+*}DOUOBApBa#*ndeQB65 z2OHIS+5J~+2#hx?!%O*9#zec7V87S&HzgKHQJ9YUPNoku`1V8=sF7CK*n)R2L`p7r zcoG#`MOBy>$W;KmBAg7ix9Y-DDTlX$F}-UqE_a_#Hty=B`!e1e+G#+Qaf_)hQ1Xpq zi$D$`NhcKy(gC?ciqVhtmo!RNHDts?)TT6-i!0LfuSK-z*%@W21|A2A|9MFsEBh@= z-JvPqOy+NqwP)&7DZh91JH+~UI z4E($ec2Y~}4M2ZDp}A_uhkp=My;U~UWv(H$45ewOJCYzU3zRVsdA>AqsJ$2|dw2qA zx2|Zr&r1oh|JuZf=_A}}n2VLk_!fBs+eim9B|uWLQ4&i?C&fxkgH*)5lrE>8&e-1@^M3qmTnU_O-K!-?e*Sm2yHqxw{tukt~S zQQ-_#4g{{4Q?>>?qkRlPy!~J?STgT{KK&1_jZoNMH!|d{Sk23ogv2de9LUc0%M`qN zo1B;!Gxv*;ZArI^#?jE=+OSnaE@8igWTMi1eCtp7*{0ev2mTYR7#LE$ayws}&b!|_ zkK`$8G(tLtjj(~E*3MDqRbF?+Zz`D!gw4Ko3V)imLWAFtC=z#LMb`f3(QE>#a!dkd zS$yY4IH!_Id|r~&6_qW>GNZNO9_|sM((cQ6^^UgJg&tJoKyvU%?vw|z=E~{cNlR>NzN9U&#?e;(p;PPM?EgSf z>qGgbuLdt~bjXq0v^|<0j32FNYFT^rF2rCjiP?C zP@-9u^nEMiinn$H+7dt)tvWu-&ZybN?-Ethz_=8aTBgaf*HQNslN9q+w!p$q zN#E%f|2O`MDv1`4m$sVV4(9$|rO^Kby~Lh7Bx7Cq^Jp4&o^F!Ikqs^~=RHv_dYzPl z7EKiW7@{;7Nb^aBilAf)H`E*TN-;e3gALeqVbvL%e#M4j2%5bksF}`#CO|LQ(@!Z! z(N*|fnBWS<(G+loaKWiJ7_}RuRnj0chem)FW&#YQ<(l(w;HOSw73{w_PU^y;9vVy7 zf=O7wW5`9OtL?~57ME$yzAk+>_lKT&-`gghD3}5-6Z_^JEzHUex5K@F4zgyu0x*3`exY7`|ofLc~qi*k5LG)aMXIyGb59~ zS}=2J5Tm;p4<)Z$CMC5&DIv;)==%%LVP3M;W0i_7vs#T!%gUTh{UTEpYd`{`HPCT( z6OX-5{dY>YkLS;Xn9A2x#13@uJ2(`ni!qZ{k@Yk?T3L~8h?$@(oSTvOI(6O>hWJJt zcr*3xk%#uJe1dr~^XE{tbbd4$YwO<`!HQ56z^pq>+b@}!p4|mBFlwkX8;4C+qbzDf z_%?tCGel^N#Nq4E6{91X3dJ2IyvQeUcmxETEL>|N?T6xh_E4g$<-uNHO=%a5_&;F) zqjuDjDT*m#uHr$4(yz(g+;yP2eJfkOxmsfV?Ch*(c~vDo>BolF6r}^!JoJ1XQopa* z=hOg@mbl@r7b&C;UVl-QUtbf`@<#~{|47t8^c`cN-s0QF<2-ta&`P6 zYKSzjknta4+%lsGZY(K-c!lmBJizZ?#b12FO>7I_dH=dUY8}gILO8*REO7h9caYCU z1cw?TH462{S-*J+euX0-s#sUMzdt|Srhq7fP}Vcc0;mfVX@@SLMIR%}q`!Lr^FxY% zkE1?odq{=DB7sYK?GAS{q`tUJHpPB0nlWr+)f8}~)y|`?BSy{vK!c5q4XDEXHMA;P zj>6_Vz=;U4;_2Y`AU^z&>#Y*#cpQ6gpp=}n+@lMM>dyS=XgB~1?i^=PPbN5mUfflx zOA^QH{PcM{8$=Yc-*>3G5_dsuL7hmHgEs>;B2|^vb(m6Al97dm3G{@6hC8}?PjPBW zS8QrvE}K)~Yb3cw7QDNhdFXBnBYdVbXo~rcYR>u}q85HSYU-5pxCVCH^C!k-9 zJefKM@BePdwDxNklB_9EE1lo21<&C{NJP`Xh|Rq4YIxLf0e}#6U~i?(VP|wcJz3cJ zsWWwhB0_`^;Di$B%x@;J1^1mYiXl~OVCX{N26sDFI{@?8k~oBbZAbB7M)N3@7J%4P z36|7kXH%A7Q3&WYV(Q1vBX<=WbryE`>0q~oI1O&qB4*C*OcGSmG9 zyGOcUaxEOl2bSqqH-`-Y&Lk!#&J&fwr(;G&l(;PMp`uaGS

$10Po(@w|z!Nn1`X zsKn4xogfXvCsNYU-G(=gsHI-9A;X?ws9ig{TFe*xrp}=i|4BQ)urLLa!&pUbpYw#) z{AERP=V_)NT<>85yBWw0s!WNs=406CFwq(tCz+$&ZaP|i^~r^tIZSeeRWouy@H$Mv z8(~Ke#zFb1GSn0OFRoh=5X~ilCky=)1*gw$LwBiE2@Lm8k0f~zz~q4Drvdjp5qp_a z0`5ZrAx?s)#&k5h?w%j~M5_3-0@-X)cnUr50v1zv)v%iQZ)jVfcM@ww#g|?K3k(`N zwx?N5NwRz+i>RUC^%xpnfEj5|(w6ATRuyrdoK5tWq( zm>PB%Uox=qm;1{a09m}sm_rB*?~%J+4hW``eVK2GZpIT9^2LpOC|z63Nb7`YzB(z+ zeJHNuCT$+^1e?t4z!!&doO;um$i2V`DtV}7yeh4uoC=z_+%=>4SzeHIpU{!B%5!~x zb>KwU4uHDqW!~&ez#(sy@{EpB%U9X$*Obg*J=o4&Il7knNf#>hVA zs8Be+DaK{I?i7Z*@)a7u32luWKmUf9vKF$)D;aYdT^KTr)>cEf2apKTA zp&%F6H6J%Zo$)bkWUB44DB_!1G7PYKvw z|L{w)-Qkg&s_0nS#2NE+=;6k%{CO)>3!b13i_f9s3abFCUGy3nCNY%rfb#xe6w3P^ zGShF!8tKxP!V_$$b`E1Rfb~mSaSjCjsW^g%;JG9DR`2e-Gs=p+Q}d>Z4nQ zF&xBb7ZiWI<+SF5A?ZvWCI*pAk5eGu0P~!ufi?@ps;U~=vrM!?7MM8;bASNdjs|Z3 zhCl@{qJ}fv6<{`=_BFU&OZNazc^wjZs$di=9h2O%is}=ND5k4pgYV+f%!*0MfW|6u zHL(0+1Wf}>`cF(HSBuC+Mu0?UTc_#3%frB(?F}+(u*}*S2v^= zm^2JN0PJ(|tdQk~PpL^Q8Ea>7kM@**Bq7SWyIYUx&QDj1stKVpXYOp>Nmw*d}!GIO^E2%c_t$G}zw z=<8rak{X&B7_d#}HQl*Y6b?flpP$!FP(T(OHX6Pev?^NyFi!7>d)>~$IGf4aau!^3y>~;ogfoqAl+X+uQVnay%< z`O|Z5v|Ot#QEB;^zu}2b_1%#}j7T+KjlxC;k_AA?D}t3{YWE|bX{QQ93Z|nwzY$ug zm+sQ)ls=zbw}#Fj!FN69iZC`Zb@a}k6cHVunbV{gruYbKxn!CdoarF7#0%3#>Rgs=|IJJ zmM(Mk_`%3Qf2OP^?|S&;;mHYRJ==>R;!y(hUG?spT*F(S>s5TaOr%}yV+B*kIo5}= zJLN-PQ1;Siv-9sz=Hb*lcVd~OsZuVPF7C76xXT0O;5)5kd`Ss+!-&!x@E4I%2jYyETLB0h#0M%dh`1-UtNw)Q{kcVh`jFcuaI<*D_b z0D#ct{zoY#=^PLc&>jadfP8djv=b#f6zTq2j z$bN+^(4fm6*mIa@KpMP9#iX&Od+rG3h2!Zx{Za~D`{xI3BIbx5A2`Q-qb@MU08Bns zQWDSIfRp{FBa}9;3{FfLop3#KH=x7A(!eBXNJR^qcTP(>qe5|V#sGEWcqs}rBte_G zDqVFeydDfX?vomyWY+Jqvq*$gVP32)WS$;#w}*JZAZ)G(+N_=5140T|IDzz=&Ir=@ zG|)mrdH_iT-Pv+lQz(oeZbMnHdRhxC2A{!uVLT{gC6B^f0nUT~J3k>JHm{Cr1203Z zRr;%wO<}K??s6aXw~pXx!$RY#f$eCM`yh15S7QP_!x_Hz&sOic&{FE-FJ;ToC>ALf zHi%A?4`lq|+W=s5XvirV^7}ZlOnfc0>EK7R{wCA|JEa0JChT_L#j&-!Ac-H3NqNXq1rr}u3e>-c(B2zDI-ony#VQ1aBam``c=2ApKV45e zQ<;PvjlzD*o6bs~K}?_V>%+(AD_-$9kBaNhly%Tk!sKdctpcOm_H=aR5 zqaH(p_8Tb-cxh;4-MgZ|nl5x!^6w~taf5gHInwHROk4VBra=m|!sF<*BWwB(FyB5T zNB959cfwnZr$62G}f+@0-O>Tnw(W|_q zhPIs`)qzTGT*HPXT6AJ^rYnG!R`j!*O@w#K>Z9#%C99%nkNx<4x!bT?-X~g#w|Dn1J(5p6`%7taf%xw)i^6QwW9eVUzOH@OCe7rB z{*-;WhlSOzqNS>&Kis;>zUi67>-xv=^_da1i= zi1oO_@bK7?kdtS2S*x#d8Za7;)c+%B`l`F!kUctXYvB;_{OV?o?K$875^M=$o~64t zd{1V9p_h*wB2J!_m|5!W|D47~Kj5czcHTVrm2iUYbz>lCN^|`IJAA_maCO zyOut)nyZ|PF&_@4M&|d1{!00rKJogwpXk}@6^ZkcvcxL#HjZ#n=-KXoe-gC4nZ*nt z-f)#56vFLY_OIQ$m;`)t^n;1UX&;RBLf@39@p8kdWFSL28Ll7DP+b5ow&k?|9tdOP zXjo{3G3H8BIX^#f?hgPlBybxp`yg>pkEZH4MVPe){N3CP1oHrZHh6BLkib$VuB!93 z0__Q%R{=<4fB=W}jFj&*phTT&yPD$wHayl+81j1bWI+xRxi8F~1EVjGyb=f*A+${q za$y>Kr@}88jP03toJfa2>*4(6U4nUi2)u{u)dNzJK!MMBWaMYatJjq1k?-|6$5J+G0?M9mUMz#l-CZFNPbzMCwfS; z!QM?mBLTk}3cx&Z$c)AJKQJ6y?8GJvLUxc|g|F8FZhYGdT^e;eSQs3qs0W_%Y6AS= z)8ij#fwJQq62UK5>2C{HLema04`=Wps~aGXP=qYt9uAz8onO=fyfmj9yAG)xBy(bx z?NPuUrz`k@1j+-msnLN>b8qRjS-RZT`Ps?g7V!L_(*RLZ+)Thpp8%EKa@KPxxB^bn zKW_SZ{ghpEET=cS&~PHV7Lx%fy%3H|!5ZkE8a!6_CaEATa*@dgoYuicq;{PugCjmR zwj6lR3g?GbKq5@NHw|+(HEViCc{`+%is#PhavvkHG>m8~-`YrpeOdY${+h*eSoX0w z*&quay);Y#*lyilm>h#h;Q-c0^uZB-!D1os{FJij2o9qH(4Ft`s6N^cSwhRWEE`D+ z>_8dFBf!}$*Xmba(B`j34V4rjGqRtHfQeY`|gw|L=Oi_6~tmIfb-U6 z&<;~;sieZT>=*5r8)Kb0s4dm#^N(-NfXt}Qh5baxxCRMl)#-;bX5=}vjE%8P{d6f7 zi~6|hIS`NIV{qKyxU6awEq+f>iSmD0=9h7hUY`jFuP*xt#&M$_}fey704LCjWf)3$Ad?i`;M!M##F% zVg>Skz|gO&(nyR^A}k#BCmW>CUI(>0@g>k9O4|X&E%6px8~Bc8+#5Qupp=)%ZT>Sn z(l;aZ(3|g$&fQa9p%6*&l`FeE4(kA&aFMf&_FU5#jr!w`AUy+_Nak7TKejW;5Jap> zvB?rmB$b1iqN<_TIRM+J9KM7aSd(XG*JS~cu*(+Ts_W^59=Whh!eng!iWp{0W;q)s zzP>_PA@va8F6I;!iJRbJ2VVd#?qYXhsDQ8&+$S;XZeb`_l8^haM5ds>4z&e$784Ln zW8>ndN)LA0OKjYZX@9DSkQ^2;<)=9Wn*q=)hPwCkudDp7zFQXr8`UYMRE~|v@I)NA zRXWGEjfQd0-8hG06*ML0F?Y0_D_-ghy%@E(J6fg-$#A;lC(80Zv`1=1hp^ z0_(Nqbqv~H4qogm-8#hGK>|EyZ*LDr3Lx}5H=Dt)3dWG85ok?jsV2b0plZu2*Fi%J zOg_FR`XR_shwZ!`;wPBb*@E-NjQ>F#+K_rDnd_x{p9yoR z?K*jb9OA=cUD@Be!Z!kPDx?5DPvaq$hh_}hE#{jZ@(BY{E^w+K@j#RiY_`s!Foa;@ z4d7YZU%dTXh3#ucJgHIl=D6UvUKgWPPc{kNA{MlsihuWSb0!cpuY>H(@2}&%3(r2J zwRpDr{SDm8%$V>;;X1*-GLqnB_ZeBI;y#sG znBPkZQz#dP}8AM3x41e@ZxU-i83Z7>>bfO|M#Q;*#|Y=5x%7YD5}^!2aL?}{3V zgGAPiFt#O;DKTFM=SFZ$6Qv%^UE&Y~-QF3~6q|Cc9Zy4L5(WT1AHqLF^}JZ@BlI0b z@uKzuE}yd?!K#X0vWF+4Zlxtov;u?>6U=t4EHl`6K%15fDGW%FA9G|OqI>V<4VR$^ zhF)N-*%xE?3Mj@t>{8B|sfi+?Csg4xmx@Gk7E3=ID$t^)@0Q9$RLTXMO2y^9rSVvo3!9j_+ndH_K!&h6kq4dN%i z!F!tdzdwT&iSny0JBXPt(ckMP@BaSk0nNh=+o2MD^6iK}u}g|+3D{X!h{k|vf>fN> zSTaXJj=8;njn6%!h(1cM7Q3?p32#0b^;xQI@3@pV5}9vgH$00EM3yDe)x4?AVonmt zX-bBTo6gj~l(UJTpwOvxddRoAw)Tx;>-9O_u|tk>8q9McYykZE`)Z=t);Pp?dNtDb zxyJvD>BWg6?R9hpfiT|-%Nm)9V1%*kBv1@nmTc$Vg^6zxeUKBvh(=4v1jZy3@UB68 zRm+Uc5G-;QIr@+49?@;^f7sBRx_FkTEYp;@6&ZH=oN?GDxNR#n$MRIsSt`uyHc%3I zK@|`KlG<^#t+(c;Us0-%tRO>VHGezae?f}Yw8Mv{^iF1aK8z$TY$27>U`Q`W)aUnQ zbPz+)WrN$V1v6U|gjJt{8UYg9<%tdg(RDx^>jSD|)015=x+A#O)?0f#TNpnPh{tRB z&MY=ko-`#|%H;}tdHv$SXh4}ApdGX=+#DN&DO_oczSXIo){*Zv_5I{H0Lzr$yYl(r zb_JDzx$0Yme=7X|`w@P_N$+ITCm}c_%sd6R;j+7YPSgwx?`P8UT%Nris^R?}KJ-IM z9cn2Dq4q6Ew=h0D9BgVSnj?cA#LJZZcfaPz=$%48Y4?XGjiTui3b~%}NyCHw@it?e z-wsyFp#Bl7GQABn77sR-jf=E*moA`n<{;?T?OdCq{QKk(a{)J3d$Vz|v2<$t8i7=|}*`dijlBzB{dBQ2SGAt&p zZQwB)*6^Xu5Q3>~`I+um_MYxQs6{b^sGl;yrQzVyD+)*8FzmRzJ6-3>35B$j!sAS+ z%KnhEekFwp;0Rc)r_214jN;^%+tBLXHhcBfAbu-QNbt0PBJ(z6bg7UvhT3fZdCn&)>{>nl0d?? zdn*#m$+^ylRYxa4YI*y1u|+k|;T%%<8R!$hH>B@)ssJDrzaT?4tT2l3I?pv)q~dUF zP+|-&0R)QgJ|LmfMz2+jVLVS>f7>ktXcGfvEu!CC7kb}oNCP{L*^>1n)>KH%%bs|`$x!P zi|Z6m)sxWK)ZJlcXGA3)EO#Te{LaXba$QDjn!}8K0GB?4k~(s01h+77lm^{Y=O8_4 z?CUilyUYJi{*!3mLlk?@8gxM*7XW_1@j{@OUMXP;1TIr6{=k&Q7W2$&)LbHi1(7AK z29#R62M0XI*MaK;XiCy7aVc4kQyL<&vJ+(%;NNWzgh{2n;UZqLAzXo)mCQ5d1`&)T z%n+C^3gX<(|2s%Nc{`6J+(qBs9{EtjW%e^1rNqq_R6&%`KoU6`f`7WVt}WQ(MqOtG zHHQy~EC2k=*C4-{!w%==-S0WEn+dN|D_{~N=Q<#MPy`|}$<2d3%5*Vnvw=CuPdoOr zu7va`e7r*zv&@aw&XoBG-oEjEnBb`rR7oMN{ncXln2esw`#e&y^$IzDO zv(Vz%Y(14Djei#b4F}F^7?!Z1ve6_#_F*P)1{Y2-(T>S9CTU#xwo5BCL*m6hV3B%H zeOu=KEgre5^sgJQPNJ$d<^yeYSG^sw;zXUZMVbTVJu4fRep+sld~ce6Z77%rJS@A$ zCX5;T<=izEXE0WFXPj3D2?s;yctLktB$`nGbVFKO(x}w+~qsU30pHJ(nrY(JNcQx&ie}VmD>z z6bz}})=K{g1(e`5UlgW+b0m#*qYT#ABbmOXE5#?zHvOo~RJxmc3N}^JjZ*fIGe5a2 zHWEe=-1UcC>(!ait|Mw_x}|H6d;Jd{2HSMNe|GgrE&yD93Xh2$Hbpb z>;Y6RYS+dhn_$wOl>)Wl{h99Ipvy9J8@Swmyte1nI7G3}Uj2yr#WosBK)!+)VeniO z%T#x}TX>n1_WE9H4#^4JUA1aHYBk+9&k`u3ouMNf$#71zeiIDKrTH2#-G5pVhuBjH zcJ~T2DbH>&>j#3q8&q$$*XeFFVMe})>3_hiyHW_AKK&W4IxtD^6f9jpoKy@a45u!K z=Y6@6G#0nHM@|`#Y{N1#rh$mQSXamCrsqmBbTK16R%{WDfM-Eb;0#h{ThC>PjzK~$ z2Jny&iJ%sM^8Pw(o{bH^qsDY8IQMv+SEy^QSyUlfK#Jvd&dxAXM1)1#+I-hba^gv$ zLjGrcIgHocbis?hZxNT<5i0&YJ;ui9;lbS&>QGkH(183zNDq^4wtR+=BM1Y&*_063-%#hR;n-!6*=bpW<^sJM9bAD1>RhYLRY zmA^`Eu^wtnJVU)%H)O9!_P@>1ZFd#>9x$X3bYqR~d0`xcNEs zrRJuF>L&y?Fm4^9e9!$0U7AF!vJOGIVu`M3mGv7F%JpiiF0wc8lqG*D50fP5HoLIy z0qOGHIab!Q@ayUgz5R@cl~r0aOap)&L57>PKl9inyPPZHDTyH$gZf^=(*lH}fVF&4 z9OR%AI=Z(5NY$zV;Q}NV7|C2L*yH()BZW^wKM1DJo+=3i))81AIpesbnF7MP0?Rtv98^q?bv$c zN1u@A^Q`oaK>wpoT3}PY18xRv8~ObAx%F6CT|1Ys#J6@X0y;e`Hj2+5L{@s~iZH#r z4`!~#*Hh2c?jgSh9@LuLfi>x`575Go&LAa1nYn_of3%__tr%o07BLCpnJsAv% z6FjJ{^=T6dTNQk2eI=EtORS9tZ>Q-2LBfYT+G&1V|1bvt=tvIaP8mx4ZEJ-K4_}p+J424KA&7JqUhNEqlZgG( zm1Sz!cG?5lnc|n}`zM>}UHQF}tD-M)o9~F%_+?FB+f~iJOLN_~p}x6{BpsU-(|vT- zGw-X{Van(wPxkRDm_Femxa8@dLthp7zNe2dEuCWjW#Wz9yC{633~>i4wCY}%=AiMX zd~qMXQy9PVQtVekphDAw=(_30dA1+wXZWSJ%K$5cM265&P*nK*dyFGaY*${qyosid zy9dbQHgNP%)T>uNogQRg1?y1~#r$$!j=POGxVX|`K5Y+*Li%n96LZymGW$DfFOD~7 z3RDbV@+-r3BOnC!CSW1`*t zei?%kxwpn!qhDbLCYS`^QY}9&1*yRj-C%nu7n8-eEXNgz#`*O1iC}K+h}qkB5b7~l0=a=^|Am=X?#WE zVduN#g#8)k7kgRMU2?S})1w0p+wRi012ENDa~4Ltc6PO0EQbO^g;B?746L_|`IdkG zhPl6Mk>8GF#f&)0fln0NK->SEBmr!sChcA?5{`Gg2n0X9#lUY2sABl;AewVbkscbj zdaZYdPJFL2z0|cWb$B0!UFNAgq!!Wg)~7qSC}Ww!R9}Jyg`fxTIyMbiE`@mNuQBYa zh3C+1bf}oOLt(lgER2ns-6ECkyQvv?x=k>mmbo1U&F-8n(i=Xc_xcz%vz|UEMVQWS zO2>EQfE&y^xMUUPVZNnMZJ7!^%Q@Wz?MD!$IA?i*tN+m3n$cfo*Tg2Erq+~%+WS_1 z+u09qU-v`NPjPbtP{zW1cvW9V6%6(DcXuq!KlQRngkgDjT@B1$?_VvgItY9t$)u_hMUfBzpum_Ejj{ zVIV!slY$H8;;JfmZ>9*(U07}Mf6lL)uDzk<@}kkiMd(iMg9@DRyf1HQcsDi}rhdI> z#P^Owan~iAvvVbwf6?0cwSFYidNiK2PgHoA1WR_mVpoiAOlSA zrw!F_ylud@RD2oQP+vcO&Tt(U7>8OY^vlZ1*z&RCpZWUQeM^bk2Wz03kDeSy-@hLU zu3+gH`yNMl<ufS&(KoM!SiK_6bC4kZpUz&wdN$3YR1cQZf6Xc*MDcK&{uSLQq8 zzTF>rEsx(CQh(Za-XS4(--_Jt67Fh1vgQv6wBQPj8U2JH8U4-8gTA8htrjZGWylbY zM7bBqhoFaccE4esBE*a`ehf+%hj@Tjg47Rc?So+O@a|C<_r0y;jw{%&Dxm&YQwgkHb0sH4|`|!Ig40X_a*dO-~3U-`#|mq>#t+e1~UShRR!S! zGY*r#uEo1OCTsa z^7jDh=W04QI7?*Rv1dgI$q3``@PiJInu&=&>k3${g%K6qQS+VnWeQh62jj!=!%Xe) z`sLZr{=hXq0!Ji%qbe9zekrf$2QB1qjuLJ#*`Y{fNB_sg z)6*!K4_c!*?j|+%xn}}*V=N6bgk0z!Dw`To`{s+mJo`MrX+ZwmpBZ&5mqI9!dV3#W zgup>O+@Nkr9llHQ(+J+D!1>w1%xk1>NK#Dg>R>tHC68Nc-GS(ZM&cbT$z;x1l@9@HZErls^OCQp(cUgGStAiY_Wdzk3wF(q1Jv}#`zOGy6 zF@SfU&c+Sdhil%wvjd9g^G6tg=mn0v@?%GI@-hzd7SD@BDObzNXqogtXFZ^)pPou6 zb%+z$0=N1}rr`K2ZRnVz;QNzZE}x10O|ZBrPzn(dtk%Z8TlweKyUSbNzU&=McD z4-lh0A)lbr43k2@DRedvq#!Hl8*)lfkk9?NK`R*Gx(b{gTjOE9+ia+RNOT@E5&y;= zS#@)&q`L1K3gb=B#eAt-nQ1E@htT9mX5w*F9{7j8aEOp^egYi{{+ePByrsgLcBLjK zMGspax{?C9Lf7UcBh9EG)93jW_-o+-} zY}*CjRZvvji*aUDH$W`{^#k&>peLN)6_kh@x&Xt3ikT_6e|2;70)T5qo?tD1TrHHy zjh7$r%t)GtjiZyt*?&8}lk$?2WdApF&svw;=Vm6~Nx9`mXDR{{+ak?z4w3Cs017RQ zJ*@K>(wq=I4zqe@DpWSw#7DENUiBY#wxdG>u)^nl8y0RESU;zFnHA#6@lct?F@ZP%}) zysZtj(w6SIHgWTR{Q>O(D^`!XVNre~gDxg&W=rl@qc(XT{`a5QHQ9M&M%p}L8vSZY zWWX;{D(xy-)kF)Gn3RJ-aVl`<$GPf zHNFx%xoMj!=V{lxQbq9c@)jenMvHQXhx4*O8|!1SXt~9-E9j+ZVD|t22N8TP@~Mu^ zQ{0{eHn>sD0Rwk?b%(aNGT-+TSy7%AHIQ=ky z+&!&vtBkhNdtH%1&1}V;a*&$$?*IBFAnOuXN-CieOSCGxO16#p75a&4X~M}ZJ9k&r z&ku^mzy3yFXaqJ0wQV0AGX{J`tN-G=rRJ@L8bYqCB)HYjlc@VuQm~yP6bw&U=zea<~ zDk_~&o#8#Hr~Zl?N#_qvJo=Qw*}(1;v}ZRf-HhNeU}ZFN=f8Cp?$8&qTt{3WLOi>; zo^Iwdi=F}Qn)Veh-HMT@TP^i$V_h7efoW-I;2+S1V}~W@)H~lh#ey>N3Ol2tpU^%Y zwhx*4VeM0-{l*B7wnQ))n^AwREHA@5>I%vu&>@@#{0_5TFw|K9Bg;~=0t7EGi|vjH z*Tu$#omQ3ysc5i0Zyw+J=Z9yvVetVVZ)#{5X?TRh1@mfrH6LO&F!|s}EGg&%``TpL zk6p~8aXd>UhHArZT#G9A_OR6Y+AkqOtEgkt!t)EOKllb(OzNmG61@)H`9erY%@SC9 zw1tCR%}y_1YZ%1@D9Xs`DtzWS`|sSWi&kcR&H^lX~zXKUQR-lx||N znb0wMad8_FbG@SK>VBr5)4k0#$sv|1#pi@^X-GtfJp|tf%RX^$AQbPDtnBa95QRzq znZPBdAwSTL>CpXNSfhKa1dbQo{5ZlY)X{6u`mC(17W`J!fO9dyM^uDSFze^(+Ge5B zHZ`d-UUkwuD?!ZNywE0geotCCBb+>;l_1Q z4o+|4$~oAH7p(HRl;p5RB!@goL2TbFaexgTo2_JgM`*|-J8kAX7qr-R!mj|`?b{BV z)JKn|M^azvIz-S9X`OVDs^bF6gcqP7wmlhRZuP4TM~^b6>2O~?^i1rvcgXBey-_`_ z>5V28F&4MNA^=EGZp26nEG60r8DL9VdjU@38Dre&OozKS8p`r_cRdZd_PVbRyUZUd zGsNr%utbU+_JvveTfrPUh6B9dJ)zw9t;5%$`2sNxW+*p`Bp<+oTnQmC9`Ei?KxBeq zT58W1UyZko&O)vOK#D7N7I8Oqdx@TNSX5x-0Z_Y|0ue6A-#@ZEjND)ruk=}ZR<7MY zP&(zF<9MqGj_BBAf(1q)o}-&#aooB=nNFND6hsngYLDLNoi;;`U zUXgRDy!zA;l$QrW!1o)5g5d4D&nP6qu1UPn*m&pp#U&`zq zK3RFwgo6-{@ru~kgn(OvqDZPx?bDsIH!m+w{1lFL%?muZrTqg!F~chwN|+d8*w2&; zxB@H_4D}aY;#pYBAZK z8zTSF^Md5POpgF#tD{~$JToLA=>74k+F!X!0?p`y2br0acqp?=+QzM4`L-**r#`rs z?qX~GqT~0F!hl&&5n-i=Bmi@@So@l|{z#dDF}4cZT37M*&Hb*fu7)$|6#@ZDYJ81I zqtcKwa5fmykaPU)+Yb0KPdvr;8e1Lt8_rO+zz2+Bg=#KAs{6Y1&4w2(i+rcTrNJGw znO1K?Zi@ehH5kSCKU^&2-=UC$=u!PGrcDWOf0Z87YQ%k8=wE~wIo?sI!hmRnao9Pn z%nlufDLqwPD$63Zjn$uzf|QdS#?_Bjz8f3kDewBIX>6Va(m=!{Co`p?BFF|Y^Ui(< z_1eArHp<k{7y`3sd@SL3YPoB!&-v(QzUX01d8B_jiaZoE{avK}sY zo#YBT^U&`o4@2Zg8MU>VoD#5mMC+7=DX`5)?^+Nkn-nMwmeZA zZ>-{~pOL8u`&`W^T<~uNfitHn@J=jXT4ltKfB*jdYT3WahbK`h5{Fit2uw3c?S znC0j3jZ{@tB`wXUQX_P*hpitp^kQk@M2 z54%Y@ zB%C*^rH6HzvX9qhp_pi?t9P)?`#e28+tgK=>xzDF#+roer zUaG+J=f6s7Uj0HAR(+Ao-hA*wsZ?lKz-gf+6R~|Fwl&Vt^_t9=9HDf~8@;v4C&&X_ z#-H1P-Dn%=Zt*Wq*fr{Tay2wm?_i`lVz^3GvSPu{z%o=9+sZ?-#Z zG`D@Y@WuAf*Bj5Q4n$E&StaoL8Cf4KG*-&IBo=8iH3+@7EiizSAmi|K97$McKwT~q zR`I&s*XCC915;J~3bNqY=@=X|Xw@gbcLXcCT)OV!=$!dtmP6eoyF5?$``53r)2&Kp z%T3ohrC=AFo1ZrpIC$_NnAwy(AZrR61r2T+`^dXCu_svt=X(YJONpt<+2?idCMV0^ z_1FP6r$XoCJ{&XPq_Ycg=gyr2Vfo`-)$PXQN00XNBLt9pADh3!3v*G#1m1Li36qD% z?NnF}au%3;a4Nqh1`EZuapU6n%E-Jx z_$SJVCf%(5#@V;%2e3Bl1jw&skEgV1nv%!v;mYv1eItU(V^%kjBR({bOjYAL_;_>u zHX6lvE0QpU`EcctL?V3@tjwJXZwY{QHNo{MJt-T(-I`fRM!3 z0U_DM%i;|Gdkmq*lkI#L^`h8EKW0|k)4AaxwqX`SDyDs9Q)B#t`5)M(nZnb`8$ynw zoLxK~t1!YI8JvFTqnpj7WrUMUDB(HxJcpEZDzo~o5WsU-zwZqOwCwE82L{T&);JBm zM~vhagUV@#53%pu`mQsy5lt=jef5AFihA4>!RDU7788TZ@|-VJ@tMLg5~`J!7*&`i z-%Fg?O5Ld%RI#EWl?TL6U+&b^NL^L?8z2ZfVMP-xP?dPDP%>5zffHFWuMjfROVmL? z{5@0|4UI4?_73vC_$i;L$}VAEw!|RK8O)koLMM-L#U{WL5$EFpBgdn2<22h$yX9GW zCC51`e^)%4wsZKT%C8@zp%H2uUAGveqSWy?#CWfH%)pSiwALK8;&7tb6ebkkECbJ; zVm%pa6kjerUHAg$)#(F9MCZ(6;=-?mP2jq&keT)-iRSNb0t-r=*?*V6XeA-dQez0s zg@82OkwkDw5nqbrYIior^$+kooASI`ytR=owshqWu{~EAUpx3B)CMFsQP z+?(lageqv|$D77qzPwu1y(TDxSjTk$oW{emrxx&d6-*f`;a?iofY`9e%l)ruwJ|n?>la8ZM4?y?4*gbRS05%el zoCvsnHcSC?La-fmJY;aAHy1LB9!x9=B}6eFoktl!=g2bK`pt9bo`{<^JtY+tD6rfF zOq>}>g^S`m!=vOqv2}vR<(GQC&~=E4voP9!*`KW}*6BIXSeI=~E^N-}wFr~V>v}3N za=O7I9>;vG46Y?6(r5ZW30gAoFe}ZB$yXcYlm^H<50GDLO8VyS2P;?D!a4?kFNjl) zQ^vNcpL`HaSN!5jN?c?K{=V4i0w;}BXU{4tW_dCjOp48NQ$#VI4&YDU#hCSwES4n5 zNh;Ec`N0roqs4ZGnj$f0f+h3YWV34PsqIW35UC&t=2LZUY?r@&S9|+5p}F78aIjl^ z%z(N?R?$X7g0AOKX84ZoKg!(O<&p1Tar>RNdEfqa>9G>V(|-XjM!n>V@h&)}!ez|z zGy0)S8+HZ@9JSRcrpyivF^F zgO2)zLtj@zu6L*BZ?7k<6dGnEPo5QCGjnM{r%I;4)iK7!tE{&v6Sd+O9X#d-6#UD3 zXF1CKoK+NA?(fyr=a11f^yais#|kOqTCj8&cK$^xI$Mbjj+Z#d=1hA(Df-xZZ0?M= zQGd(aprpa=;{>$BdpyrTlFk-swE3iO>KcXsb34uBLeOPl7oPEgSUY@zXq@O(;$xq6 z*b-fMH$RLyyOw&Q?%+3IJscMn?DYcQaU?fo-V0cK-fXqrf${md_#FX^&-+<5j%vND zcG9jP6KjvrF>dxNV)ZS$y5=B1tt|3OF5X|~Nx2+S8XVTGUKAJBgR~O=boG3;yNQVA zp_1{3e9m{)hC9>#j-p^A)2W4xsvnGj#m|YG?*|OnKeZ^zXVT}Bg3ob23d$7b*&&&`AFq)+X7|5bv$x2yT7F+ zFRfOr2Msh_I@>!Aww_{eo!VubB|+GwmfdJQUJoqTL7nl?Gs(0FQwItEtSV2k7qgnG zLGHomM+7UpqP^S6Q%n*aro5d8Y;}(6&-`mjGn4{kM>GNmG z?V(DWccb4I#A$VO4FjyQ+t_)l0l>~SV2i<~tek-{??7{@*$_xu+9`Y@)n2@Lci-A2 z^cN5)^gNw6!^(a%$ML^HHDDXG`P1QT$yJop5Lpku&mXtz&KJxT7$}}w=k^u8%B8g5 zeeeQ>{8HMVg53)*`IlCEOUdG}ff%a@4>=#cilR=}N^*)Mp@EiiMYEBdiqQY^n)%kP zVFrVc&`_MO+of}th3Q*zRQyG=&w1TXG7TV!AUQKO)C+1iLx)>2+R-g*F6OE79kv6r z%XaoEOZyvpeysLZK+eU|HRP~uO~>xeeCFLcb$8~kilI6TDTF3c&X`+kyq2w6^G*O< zGpoL5FS=O_flc_(912zT0M$%VCCHsfYT{tn#01|4a=jlmKU2xa9N_KnEg;}$Z%jLg-?bLp^<*79|@&+v;7*|IZ3 z9jv2}V@AIpT=G-}`S1*&ZvK1>flQH%VdtX!PIvfl{@70;jp-6$VVu*xrx%=c3k7 zx3bP(X+4cdmh9WVSMxc@Q4MtW{@IKG-IoE|c`#XwE4wJ~NW3 z{FXV!zD)7aX(48T5$1;A zUxKH+g<^fFD5ZFmmUD;hQY z1rLKHi{Z@sbbevO*!M)t6L3NOhr*qUCpzvg=cd{fBZ zzy#?Ckb~6oY8?7Vt1n|><3G^J!*G*_hz#60$ho_&;_s$u;M^w5;dxm%q5Ex>gSxPA z@s;hZnZFz&1qSFa!X|5dTudl9vP=*;pM*K=7eHdzeOL;UaVl{`B1sNSKS8tW7N?YT z{w3jF4m<=NH%gj-*A3suC?ntGps*Y>e(2?)L$J^L!y?~Gt>cLAO%+=&dgRD!=)6ah z5VdE0I3l0rN!uBU6HRJwg-JE2)W@Yo{&Ye#GDc*>!0z6mpoArZSi%Hfu5;g#+(~gk zv7&7ITZt3SS_d|mN5Z{`ED(fTX8}*=tFYu(2MxArob>L-u?H*VWAyoFxdI{W*DYM+ zQ%>;Z)~@AT@h6pMqss5Wen?eJpH5&t=9Bp3*x1<1m(u+F8XW?l7Q^U|$NHnN-Yi1U zB5~__qmO(CkqTKOd)XqN@J%-aTpy9AAQF~8DEH({!G49Ndjn+gSnX+lpkZW7GOZ&> z0+%Wu$7y^uU>RVeyOmu_5ggy)tJm@y!LeMlpF_AR*)%iFjUUls;eg@FyF)_K-Q-qX#nBAy^1(MB zK2%)c2>%VSbq;@_|#a35)dwbx)S6Q;Vnf$?pz*qniv-QT(JE{ZN z-wnK{kpVIRKfkse08_##-p;Y54wtdxxiqCIjZffkLJtbEuK!@<%L9UzGx4^+0vhaYT`(deu0#1#=3 zn_ZqK18KS;Vt&+sE%Ye{J%9sItj_&R;wS(G{u((kKGSXJuUi+Z-SsB3IoyZ?s`4~$ zua)nwoN#tIcjxwSO>UmuU)Lj8tXw;6m=-2D6sXQj zt9w$2%Itr`lftV)c4Tl>L!RReduJbuic+bBdyBy(2FQzpUwMoRer6ui&2#RuqLtzPP0oiE#xJ|%ttGQSyw8>R9-QRoi15>qS!NYM?92A zke@&7&#$vKcmJNzEpz0bDf?GbTt%F0AY)~o_3Mzv0#Rq1n>{ije`FzfD#|-1a8u?Oolkx8<=H@B@s|9h@N%fI_{ZT0 zi>uVPrGs~=m-y}n(e!P{9?NlKWb`v;xhia~XJlj~VPsgCByvgbMp$KUw4SL-mjriH zv`R;+6ziq`*B4mbV*Dx*d#9rOQ|^~fY}*bhb((X#A!hs^mGk=YddU20iuOSxF<*aG z4(snsiZwbnW^tT|KZrSmwFqbkFr_ z=PL(9y7!oi{>88Pf5c+RziM_}?#1nYoSZ}$RYWTJ@yD~?nJT_o>(jB`c3k*L#LE@~ zmhPr2e*JpIbJ!qrU~Vbk#&b!n?Xv}J6SJ9(w{j&}FD>uyogXjDlrE>BmVEH*4y5F* zJVEv6320W0u4h`gzWB3#&v=UT^Zb$I$9gKKzI~ozN^|H-OGxmexyr1)zT8uAa<7Qj z$7ZdC1o)h{!WfNB^JtAhnz!BED`^@xs;49icBxB<-&6g3Vs>ho z;qoEfxtrYr#Xi$!va&t*|NCgPxPnR}wXMsJG9J!4@VWa}W#W?T(b=!D*|%atGR=8i zl-Uo?F$oPkl1Y1Om9E{Lz+Q0Zki7GA%eJ$sPeEW$XCe4wDv;w$l?>==O5&^AnD|^1W?y3`)Ap zV~Hd0RIWYYe5$%(kNrE-?EUyM<`Q^9(@@v2KV9;vXn4g1}wr~{o=EF6Bd z+xmMTW&bN-6TS7bLDll{L6I13DUs!jTvL7#cCU{2yCsi@d}R79^+Mookqe#f`f_EW zuxoi6FK?Uk^BpE*9pcBX#B%*w7_}@+dV9slX-4An?GLekLplwzt>g3TX+u_5r3`U` zX8EZ*pR8}f&DN(2BKT3VV8N)r^|Fe> zHmFd=V>MJKcWt-&u8&5?@>4G z8UJp>sf)MJsF&*CWNEOHnS!OIpS0ynH}Ul)bN!uc`GE27urASwkWP0bwY$h7!Cg^A z+d||WnTV-gQ~h-@p+63p|Mxp6Y|!C-?Kc=pxgJMg3)9LW0XJ*>} z|N4)D3XQQlv#6-3&Ra#FmzVdcg$1FPqbCAdfjFeVG;tov{9u3v=1E>|9eX1KrRA)- zSgMWndOJI5?T!N$!l54@Nvqi~ucxM_(&VO}?b~KnPU+BmX)~_8d+S)bn2^Ywte0Z` zAOcZ!-Fq{8g6oJ5se8x8)4RN@AXu<5F-^_SZ%&;5aKh#*np||zaT&n62iYfy7vvNF43Brm9PI9 z8w&y2>b;5XaqNi0u7ZfCI#s4QO5dzR70K2x)p)PO0@^D8w8zJKbgGbu_ilg1uMlat zPc#>OAK+YGMp{N(Ww#p#X{YUSEP5CUO3L_$vIvR5Ae!?!$OFiW+aFWZFTd<3dSnzb zyu{j1Uxe@o?vNH}wO9#EYTn}4jOfn%ju}2EjUwM#82H)BhDURN zD}}1et6`~gk{-4st~v#(0g%i=NMPj0qkQR7`TQ)o%HMl7bQ}S+F75@ywSGDILE;wA{^AirvVra ztbFda;e+~=onE`0=Y~HOVFc>gGxeAbKWBrU&cH+{aYxU0W-bf7!a%(vdA&|bbB&Dz z;zZ7apIE*DCH>|Vc3$31_)qAx_q6V1xR81K_U-~nJYGOXf}ju9?;fy#s#d*!;t^bs zT?!x|Y1~`1_gTKT_f78a_1X8;4WLy&iOZ?avT$Kau5lS{#4feq{%2RN?Az|O;+z#u zN>=7m7Dq_mdvqk6oSb8iCTd)$$0900)fNxH{N>z7Oq6qC&G`cHbMXh<0NmyyTxVv$ z4Y)0qL+ko)d|pQmXp(gQ`Pu&I@13Uqz5V<0U!Y5Thrt5aP%x-^!j)1gfua#2HfYH! z#APoZ#D9a1Ejl5FNSgtM!I4jUbwo5=0mtL>4qNW?16S(}JBnG(mH`YRyKvu# z^e(+g_tzsSt!IRrFkY)L`46f}r<~Q>#J^ae5CX{-E_@G2;_ET>lY)co2aIAfY<#vAbx*r0B3qYsh6O9y>TCw-l*GsbQDBELZBUO--AkH3@&Gtdq z%S6EYFF~#M)wgLg(Y$bVYnr@4ip4uOZ;l}mEB;z}d3gx!x`UNm;4}=BL`qC@6Dhqx zc48v!nX(SIoP#f17!CZBe8|xI(~dWB7cONrr*SB_zk0Fusc+x?Ki4ye*W9sSF@Ic7 z(6L=#=CJQ}T@>a>KWG?1rp)#Ec&VA@z_{sC=p2!1##uTp-oDi#1nl9|a%2sQxRJ)) zN*{AhP6zYy;9!dG8?OkH+aqe#w!&Z5(>ac?c$SFCsUv|pUowucn04?D@%}7 zxIXB&%z5xZooBj{qNI;izvyG}#`2u&In75xMmHcs?F=i)4QL7It_CP-DR-^FTG?ix ztu4)KpsIxBS5n$R5^( zJ*8wcE&^Vyh6Te)$m+>0=r9`N>Fku-a=a85zAaubo4P3SxuB%AUuhY3bS_%!CcW<8 zxLOCJJsQw$A0za(e}SF4R_Y`5b=W~-kM|=T5PksE&YR}5Lb}NXwNHa3tFaQ26xCiRJf$E`k>i-Z& z)uI`dHu2ti91~C`BYZGTK{*_wsK%4~pIKmzbs0ULqE7wy#sl{w88R4&yH&*WH-_*d z`zQwmPql<^U;8(I!ZzU(F*cEB2dP&JQ-8|ChYx?0qY()?+XC|5{m* zK}b=p3AbQSlPz;F}x;=FoEbl9+) zXgm4LrwCD zt~7&GP?VUmCE0!AhBlZbu4-0Srtcb8m1Ih8>1LAd2LnkO=RY%xz~sB-07^I0u+u1d`zesgFiD%`Zn`NNQkQllRR z0;n`n3_)8Po<93;XGR&|vEet@I0cO5cR9m0hZ7=W#X!rf9Wjn?YkLO zTAKVd6htWXJLiKD!n79-o1ge=NSSl*;{Df%(cpe6alAD3K8aLGa5kNxZPP_e!GoRp zy|^f5S&=RM%cK$EcKW~)lY<~e%(#_Y83D1!f$*3H&t9la#L!VvT`2-VwnNM+{#uZ;Y z(wz%!d|xM@GmM?SNV{selkaABT!@4-ZFi@k(`AbSY!}7{IOhNSjn*^4A3_tv$NfS%r#(tHd}_!UBiqReiEfm zMha35OMqc8{hIj-#ydQaB+nF3*06>&4RBv(XL_3Z67=KOdQbRE6iN8@o#l$R+0WQ@ zqDD{6X8hkke7IC}$FZ`C&V$;q^2QIoI%#LZ7t~!O7*mvn!R1b zM%xEAb|v|gYfR0@`*)-j7+AZYhJ7P>D>zez5FEY^9*o~iKpv@e%oPk zr`Pm4pIOW? zYd$%eG&+xSEi~5Qw*(ZGiy#O|2i&a*E@=sB%8XATl5D5cX98O*vI{lsF7(&Tpd zwvzaZyia@HS=-vuqH$gE$CE4DhbqYR9H~xOoDK7Ri0;AZl+O_b408T9$gqxWK2iG> zogOQbl@++&rt~xKbHg|AJ|cBCDdYW!5L!A??y09rw;5d>Rke&hb-q-{Thy(H)>I#X zfRTU_*2c1zId^|IlZ_rOUu2A#rums$HDjb#jBdAtO!9H90Pzi0g2-=jgt z_;EB(+$8RWIhjbzR?H%SExj37o=X5)`=Ze8Q12pteQ<1d(WFA5J0hD)~ED(|G85ex53AT?^}?CJ6n^#V@^%f#AE{Dsqvo{6HW&Jhwyp zF?@%gC2g+`p*HCcyYVOY!F$K&K(TktpbJ+qW@fW2QaZK`5&<_G{l7AXb$!R!s9tatQGLY-I%!}@xtZ2jpAf~~qfJ0QH&SdIqtUF-{Hx$Ubmm#KmWL%>&xsZT zJ*iKG=ttcWso^W@58ys0V@KFf#;OjBiAkH=H{eFX56Y zP>^cxl`9t3`q9ZJ>_;oFr|kQVojqa7yWbz1h}tAZmSTt5V|Yh}vk=3P;e=0l0{wWU zNCp!(b9yC8dhNz3|0=6$}_D$_yQPhNXKu zNn8oHj))FDQ1Q^M@g@6MZp-1RNf|FJU8uK9rl6E$x7P(Mxfau`WjtZ-P8D&|y0p2h zWM5&uc;IVlO)WE_)^LJOMHKi2tPSKuU4F3UtdUDleT*^j;fd)TI}g_#v{Aaa=Ho$P zZT@c!A0Xie@&ODv1@B$#^thFwwg2(RyLVYEelp7oWAE;peP{czvWE5b(GMP>P~WMZOoG#c%vmWj<8i%rh1C&MpO7_F9- zx+7&Yx0SBkWLr2)mCuuyf*yv1)kH5`Q-&n3#qS;?&puBV@)nMp(V{iLN16teH5^2MgBt zWI-bPS%O~V7&X?EVwhLi4C6E);5_MjHPlEtK&2TxAN@ST&UcFAw>Ri9-&x$Sid5`N z{-8;UbZ_87HbX9^y8^wZ^I4o-S4ulK0rLk4ChMIObD$KZIzzk;0z@XMiSZ8dR#x4? zqgBq06O5&Dj(Tkaow);LXWM$453KPhPV>JK?;Sxv$B%11B z%AG<#Yj}4ie!M|cJZIIbbVrupFJ&dSNT?n9 z!O3d3N8us{ndfu2^itYv*U6v1Szyx1k0R#QqEUWd079mIk7&6co39Ec2@kIdCAD$- z_JX#oK4k8?gnp6d#f@fMg3W1L8Y+QQ#)n0Wvwh&ncT{o+zeJH548k)0&4aHPIUsp2 z$HZRp6vZ_5wFg;p-!}kuvF>XO?>p9{-*8a=dy7C>umv1TB(9<{`Q(>UOkW9z?UEw% zUHSiYy0&g-&EXV=E)}vk-91m)DE^pcOTXu7{>3S%=|9+ z7(4@N5x7|M7usZT)EHYr7fHpQ@QtD*H6ZwvFP-eI>B1hJ6(%w5jhx-f^#9E<+7Fw@ zj9-1|*Qh{O(@-Yg>nP1cJ~sOM^1cT?c-iEFm&EymrRHz@@@PbUkn0t`atExe0B3u^ z{L7iK&xYeDDa3UpKW-RyQZR6Zzz0Lc@ORsyeoa)yzm$u^;`t_lY=8Nt7sVGuQg-U98GnL zN2V5#JW%#=Lyy@DRRjAb`ip~0IwE&-%Go!V&nPjIXS1-GvQ}Q zUO9(5@jW5t-;HwbQzE_k`O6o#%Xgx>&rUR63xcvMsOk6>x9RhZ)5;h7`uYx!A7XuY z;B6(%C^*a^$)hKyonU{gfU#ehG1h5JiPciyMuUrs$3jS%LMLCqokO~F>s!Jy_fwH` zxMmcxtJ`vP(CeO>YFZz(2r*%~Se6hohKOt>?Nu%W$Kl7ojd}>yIdm~*$ETNPniZ68 zcZQ7bGa9dDSv7q5j8aLZG?+2hWgsy??ZRxoKxs6Y2llpRY;G>S&Sl29yJ!!S`~|7J z)TafvgkbGl_LoW!zV6dYWZY``7TV(VC_FBm)QMH#tqocj#rAoofqaJn9+fnpDH+TB z9x-;4`cpkDe|D8$@HICkr0>rzE`AzKDEXJJ52kt%pvHPLgwrKc#b+w4yj(K5Fx2&i zZrTUKe+a4(nLgtkS2}pQ^B-rBfdr?6rn<0MlF{nCymKC0qp7>6cXiI|#bi4kR%lZ> z8=@NO1}idb(3KdKsTwU(CZk0CxLs6jh2I#(S8wu~qz8 z@P59a?n${RxV`0OvB_=*FTPE9Y!~dlGC{ zTn1xX{+{;T;7y8MN;j0USNi-+_m3EC+IE4+ire+CAk(l`b|Q&Y|9oWpQgVjrli-M= zunPf~x2(#dyFT0IJ96B16eOdt1v&rrQR;O22y_G|F+#ufruW-N3%=7cbRU za3buX5vl!rRcci1gf@3rq^TqeWo6en=x`;f4m76l=&!Jc)T&A*wx&26T~d-=Ce;x{1?aasLf7(MQek?;wZ5`m*G>!O8|3o#bwd%SR$7od9k zGw#frAFB6!_>8fD%o|vhYfUCS9Rj5CQA}9BhG{!r4%|$pkrV|z*U9*IAL0WIn%>4$ zc09+{fz;;{6B9@q7nZSdB(dH(2?fmQOo5wWm(Tq8=nhUAc{SJLv6Twx?VUZ@2X@!3 zB&Z3b6aEOgocX$1>SCKiJ|!fcVOV#l)o+~Usen$f9);NRskzMTGYP6Wuc_FxnkxR) z%iR$)Lp=$L@!Iq<_dUXzgCL5k3p55hdCeVOxR^8fz{nFQzH_tEzWKnvgqJV(t6bSq zo1pFJxc_!b&s+WCn%rikv|Pi(E8CZUkt91ePLfl@Z|4vox7mO`F2Ih)f`@v|+V~fk zh4&b`NRo{_L7XH(lOTF7lv_R0ZBZ`B%q%td9wV26x2t2G;yI)y;S2X|mkIshY#=cH zLy(E-Z7_4JXBuVpZLciYOxgU?w6v%tbL~IqaX0&x)7|g)0j$$U*mrx1xg>_2HF(wD zu6>qf!S{L^2ixE`y%ql75boYIf9xf3&G%U&?0XPwf5nNYa=wv#vRlR)Bihh3xTenB z-eOltOG>Hxc))pI(mwN7w+{0BY#msTpjUZ>b~?KQPdKn_cRPRO+e#a&4do#SZ7LX? z8n$wvBG*eofdgiR+$1d0nZ*4N=3i@}U|~OwQq8VY4HbFX+NQz>MGVtBls%6f<8=j% zG<;6(z2FmuWC8OzQDsk0x?p*?PVvr5g1_NghxoII!ONdT9(==&A1tiPvxK*2`ljK6gsH>oYBWbd(IK~TCDmYS%TC2FOWq&El z7A-!u>j^Os{q4@%ZnVmw%d_SKy5CMNufW{s;UH9&fPD#TNP_9P|3Q_lP(_*Us~rTs zt5+E4GKmU0Tyz0_bvsDzX;j#ePJ&JC#~}SsIrB+hdxU_cC6ktxRq&hoA4)hqar~;5 zf?AjzS4)c?VGneUQ(HVv6+LD8eP^ofn-i(S8fsI?g{qzJ1ry#udGZ&1zrkv?OlL$N z5*Pbv$Ww7X*3>kFYe)76G7f*&S@LD331Ky=P|UnKwqKdq)Boo`D#0pPOepu70F6@7 zMDJL(sPpNCpghQe{`Aa6Q`L^T+6FIk}gH1aa}+i+5Wrq zoaRe6F72*JEMTA2uD>IflmeQAZhXpS#_GrT#6)K;SIr^4=w~NG-{;hfJVVt#eX`+f zhp^}%$tjKxzI({x_Jlk8@O)-FvMb)Z=b;Z3qmk>&pL-qGNvK;NDcAH^LxG2Mw}ER7 zVf(2Ffd7^8cBbGaPMym%v`zB!QG1ZR&#j|+dXOh+R+q=+w+J6yLync{Vp1_H}bPxqwde(m92+l z7MBnm#>S@m=;uID?3$giT=K5y$b|F8gNoB?WTv#zlm7(B(9INB@u+j3x?J^g>Q3U9 z!c>y`KcrvR$FW8+R5r_#UieZD3n(W3_&mSn7XBO{jU$-IUhYpj=`xqZP4Tt0YIzz@ zHT(59Qpp~c(G2rakY2US0of835>01Jc2GpNFe`*LvsYpLhwTI0B}-L=`({Vg9#B8O zv*bZd!06;DW&KC%JF`x)5$#!D=ytd=wJY#a@;EAs{N8Ko4~Q2dn>5;4H4neDU9i7~ z28o*HIX={nS)Q3}&g09g+Kq2@_U5+v|;q38g82 z60&~Mb`PE#!eF67MM=q?`?8Zpd&oNf&YbYbrMmfOrCjN?@yr9B`C&GpJd{)}!xX~$);F##J4WJjIq*JAA>nim z%xscejn|}YhDQ%z1Za=EPJ8pylMGn&Y3$b8Y>-Ap^#lVFF{3M@vX$N0BND1Lt9PGT zqOl@#m9tCqH;-=7R1mVKD&i27EC^37{C z)C3lp@RhYOkQr~c0lT?2XI^Kqi;-VK=CE&nzUIo)yRvOL2LdIO4@U_-zKui3CSz;8 z5ovp1U`*{rcrgj6R@W%VZgWIU{Ze> z938N&@1M3}t(E?we(8I}i1>d`^Z!mA()u5v{eO&o|KI(iJTWXIII|FYYP(K7=B(M5 z?c$1|cPGiy-fu-$uI%Pu(0l=Nk6``6vjW8{|1#`W-faKRgt)Kh1sVRuz_Ij zG_y=iLCu!=7iIi0AgWkA%~R<@HMT9B#XCmVhLun6tPhhEzW5Os^sbHXXt@E`fSG<(O5UA1(4Y&}8Q%z6!6q zlPZjOFo8`GSrT3tO>P`-(mECM?w;Il0A*81u88a5u!7t{z8&e@wecQF-MV=YD)3tq z&Vc46?%YJ`k73hAd=t=-7_*f>uRr@0*x{`_de0V1jPVIsnvnhZ^-(`}ha1aoQe`QQ z#S4p5n&74YUgF(>Wxyo3`})`KePnEO2r=~FKfiRReT4c5hB4mQhKs%yhQ z3JZHN^ZmOGLY{zBW_~$a8x~f;vW13tN;F1 zgx=Rg7us2L#E?h>KKe0HXSmTMuaYz66PnumP$b=+-bSxOCa>%a^1AZsPu)&v*nK%n z>nvJpAMjRa8lj)ScBQfEZdt=k(-#gBqNu#T?6YS`r8DwX)ND2@gH<{Q(fn zE@l=cH0o#9VQsA-6otel<}01IJQYD?Vs8D=;wb9Y$GxN|5PA?q)1Rgx_kJ`jS_wBN z?FcO|IV)B?9v2~Z(I|P&xKqgkvu*Q;!*M-pftI4}70Z^J&2UYSV0qog6fh48Qw7hi z?pC+2`8sEg06|B~#r-%#X@twi|BF{^Zqw$Dd4;1U`19kHdq=Pc?-T~))~Mg7`m)>& z{XQ%W);{eXjzou;7ZBRq9Y>o!zZI#-<9eZF;#{f{cl*BKkdR$dPDn{1=DAki2LGE7 zzkbKCE6*&6XRM-PEpc=9Af~IB7%O>&=Ir;a^+nzVHo#GTg7zWpR z-b?N}41uMl$*6Y7BB}uk*Tc=Hc{vheZ{9V{+iBS^9m@xhHjdGBSSsb0_wciY;w`Tw zv!&EIt&~*Dqc-MA^>AjMKU)X--2&d3RjI(aqHH5+5j65o0g*e~`<{6p&9n`RvN=hmisd&3wrxF#A7C zdw4)_c@w{a*<~KtqY7I2C7LetM$4?syW32iW_QgjTN%F-S~qZDf2s5HPSH~^%Mfvc z0z0>p|MP~h@9G6qiZYine1=Q_=N=?+$fXnI!MmL-RAoS&N@U?q1_4@r7 zS9!se!M~Bgi%k7AOf0bwEv70QHxdW9+RYTE;H=%UihStqOUZIjGBrY+JXzOCOyD?$ zw>%S3NA=uyZXCC6yYh|BqK~X=N)0Xj&*1Q$^ZTv*?J0&a^OMf)ObFUEnk;eT&s*7I zEPIT;2FKwP!RXC9zO)uC701+b$uyrkD7mZ1#TrczNufdEk-Yoznx}8 z2JA6W+>vC2;kv$fE^0(+v5emxqxc#o>h+k)@jhhr#-^r3Lp4F=H9<;@2p#M5!&ko;@JL(Sx&avh3&WqVL$c0AwO}X%x>+NA2t#Q$RMcK%zR3yWxCO}1t z!ke$I{3?FOg*H}-+fV772ECL?zcmM3LtLQmE5G_T?L^;FjE|bT*~yIAZK;s$t^bR< z_x|VlZ{L7z;+?%mcF2}Q$|jqnk_e$F6_F^}Gb1yz?9q}$5oK@Ll{Bn~q9lCm?&JOW ze6Ra&xbN$S>v3Hz@AvEVe4giV9_Mi$=ON9I)-k1ZhSf%`xGxx96p}U9lmD#myrU`$ zb8~p&{jZZl31#pFgDnro<5taF?=6dZ$W7UF}USJH8?WW)6)|p zi}zLfs!sLMca8u7zoY_Ht_^AZXzRE+1$?SID0xr68S-gk-6WNi~ z;Dy?F*o(**j}YrxqsSNi0cE|!TG5J^J~M_xc2`c+=raSLb)DWdOlG?3kS90T%#sU4 zt|Z1RzIYYID!n@3cS}Af?_-7A2a8wBJ9c7dcON>wZlyiJ!KKKdrVTk3v{c%Ik64XA zGi*g{_iq1QbQhC5_Q;Bf_CsAjT_s!h5k2|-n1>H9fYPkgKZFSf*rqV=cb5Z7s@i~9 zE{ZCmtgvMVodYJK3;sq{4}`wNfU=jXHHDXbwqpDxrL^O$aBxhb$ljNGdWAgpDK%eb zU<^c?jBkTlRAfk~V-rM`T@W29#WV9`_Gu=$6VeZRN&oi(yPYBxVj>pwEdoH+H8Zy! z1LZ(^$%})eEEdTRJhq-61ZT`4aH+Q^@2MkgY~D)`knZ9T8O6R*a6TIQ8AA{Yf|OsV|Q_YQNfEnQb{=Q1hw z8ES~cMqk~rKr0`0+ef{X|EI7%C$o3^x*~7seP`9{bfq!9#97+&L6yoxar^;J$Lrks z*M3Bhh1g+;*inoqid1eHVtG8noF;!E_`>%_s714tJ;)q;GWVn5{9XHf9%XI^4&K`8 zY8k&Z`(LW-L*|T%v{ap;syj0FhIJ17aQBG5=)mM$TU#5s_j4sa-1l{~tj2~yn89qB z%&7UTlDq@@JuIEp!v1Zhg5zemLf_PkeTDE=Ev^)T{kNrp>hWn{;6uKPp^T&#NBr|> z&z_Mq)OA|*#tN862YnZvJd>G%l_GmlCq7PzZDec(TBJ*sPm??fvBS%EfP*blWnx`qyphB1P2eD z*4OcjZb41DoX)ICw~0fg=JtF~b!-}Q?XAVLB{EA!!&F zHgNjxU9;slx%M|x?V!e)@R?bw0&i?=J9Jg&>D#er zMhqr}$SDx|PN(E}}x?P{{%a(rF88kjQ$|H~BGlHt!qoaOJD z&w$^ongcbAp^SepCFhGJoH{*kV?DSYoQ9*~KSJt>J*%TI5K2Kd&jQR`l!}5tcbSo# z{JKI-OTq*yETk(U7v>TrDC_7!^=MVds_C9VXUt*Y5QUiQ7)gpqh>xW79BbosK~ZKs zcHO%|Ov%iH3ZjXKRBU7_$!!O0*h zp-XNPlao#KxkArH(-51*p(rh8`$kz%5@sY2!xGOFysFRDeAE&>tb&K;{`5Nb)H}Hg zCam3&2SVLN&F=Bqandqw9lMm87Sk-Pz7nSUpaI? zJq%?+>vV%e_if`ha`2R@NQ=1C>%&>vL92Y+-d^BrQBwlWQM6c^P>cfV-FnivV9Cf6 zuNqx8c2&>Yc06%$C4))yC$o3WeQ-#Rq0%=6O{%G2TSpKpBd zgQ*G@M6wKQ#p9#BsXq&?oZj~-O5! z+Lz|TL87!<{HVNbU9Kj&@TSokY^!Ig2K`Y@-})P+dT(T0H5VPNexw-S>)H8v;t16< z?azFABNb@FfM#I-(=?~WWr!U12qjIR0`Jz}%756$j`2GDU2zT4lK3g(>Oo^#HbLJY zalFE(f9#SjImNYq1R6ev)KJjuvI%D49ohc%&%w+8e7x4Hl4+8&WTaXbEqP*iuBYeV zUe&rA-sjG#(B5FL`UJm2%(~spBbeOXBd~XjdqyLC{NQ;C1p&j*U~<>573cPF=XhK{ z&&cm(zklT5o51)h-qop8?7)wd)_Gxlt80TG1O&+K$?m}OIESiy4%@ww z4MY!yuz^GAI2>l>Lmsu~%-d^l=}42GwmEE*YjYT8x14Hz%1%XZnjBX(-~O@dG&-7F z-RWuEX(ZA9_+UMAvY=X{r_E%HyK&L#CS9Sqo9rJ6a zYTrrlhId~ZoKpVEqU-POT(0x?(khGXW9XCk9!_rThHpXfwO#UODEP#~8+=k@X0PS! z4;2HYBq*|eeI?f=ODl6oiy``y^34zfS$>`V| z0;xK*8{_WXRKg-m-n&O)bY^EHm`pb@HL~<;)UG#rh=b8!U1?)85p{eiWYoEj1x>CH zZ9LH^o=u&eWNl{L&X>Z9E6$6oHD9Oe9&tAY+`ryI)hb2R@rx5c+DxC6VP#=KE{nd4 z;!GeL!8nIjS>Qp;@)Q#}<<}=pnWQgxwK5Q&#Qr2FUw_{lLS+)jz?os#_FbQaPH{Fb zCtWRw35dh%R3F$ z45CO(s`IJDUftZd^G@_3#}%P7rW#IXWlkX&Qzwwbg$L2j`AjtL@E@>owIMFWr*W31c zed1J4Z#I8=Ec52+2VTig3E4~aFtYRS0m)c$SuQ=l8%#}ZEE3rT*)Dq{xt+Gp{i!4= z0$s-g!kcFA=dySD|N3&suLqf@JpL7W4ksPV0$6lw!nB(gM7+~rt177ZD0*V756zgwt@MK6uM=CetIhM@KzdYxboFeCOkx3`iy(6XAi>tt|)?vSx~KF7>h)gAe( zI!5+2D_JdP#ZD0JJ*Oz@BU_U_Qux{8my_9aXZxfIOLFcTeGLk|!UG!G)*L4Eb70~m zX2#CH(S8szCZ`jmRKoH7#Oud`vKNE4D-NaY14Dx>Jh^zTIWK_l`TkL{^!)sb<2Io( z%F1b(o^&b-TcKN; z++z-2G}KgCwkF{fU=H&ts=v`cU-=^ z<|n4f;@0KMBidKwD5%fx90Ob|>jJKlpk&I?DKiC8S*fk1%XLEX%M}`G4B)043OZX$ zsKea5Ezkk}ObU|v{3Yn{XGpmixtDlI{^;!M0i|Scyo1?`jD;l@`DWZD^!?x;y}T&WpW@`~L55pOCG4PsQ(F^5WneI=r1GXoqYV(a8 z4hrn8ab0jac7QjKX9kLUkyOIBV?R2@laE*obg(+Rzd;hQ|62awWf2tPa;Alj+}Jrf z&2RO(_LbYSItJrx(7%$Bqbbc2+FRu^j;hyR0PF9EiY$olxaR)D9J1QpFC9NcIta<= z-;R0%BXd&Eyk}5Ys8xSPW%MRaA;xg3iBg2dRes^>I@96nX1)byo-v%~DsNKEi81(9 zjlJhSlwH?0JNZ`kIkhvcyR=q~1h=o+z@A}2&QRpk*9OL#r|JpUj3X?L@)6Mjg17e* zx{cWn&&1er1FH0{*}*mPx%QQE%DqiZ6~Fe68$juo1zWlCXj9yQGku@17kBGK`3?c$ zMYJ=B4%2_PZke&Zi#)cs$ShufG>iHj>mEz-AHjWAP{z zvqPMuYp#8PZ;qb+#MdmpMpdkd!Sj}aTw0dohD7*ij`<`OrUdJx$vYHySkNh2-^vm( zNObB*1YaCq()m7;5Y@NKWdNS|Rxoo=x!j)@Hr~qfcnXMhn%_et0qwDnIj6v*N3G~p zz*0MsE0`mxmmj_~B`ucz&$QRe{U;RDoy_v2QxCHBgSwYFz2+1&xn0o>@-R`Vkjjqm zgHEH{hTbL-eC}JNE1!>8JxJ^deZ(vpR~T5~9cfppc2b*$X5+HS@>`?-BDc79uh2hQ z?q@FQQ93GzAH}i(s~T_V&q-369>@y-^?mXkESFlH(kfbH*#;jfxI3{LnVCd9JoNtC zwUc4Nc5vCy!P_4EqY&I|Iy{VZ4;MqFuk~}iA~{rGmJ!1@t5I34z^?vTOgu?F zz(06wb)4+tu*qMe_k>-p;fCu@H{dYkPEsEl#jPJnf!L3W=C(C*CZ655Xsj>F-@rL@ ztCUb&pUz25&Rfp(+I6HtVkx}AXhmFrUDuC<@&k48x4EoR)K^Ly7dO$BI^waAt+oZ| zjaebe3;h9X4J+?6_=on5r%-J9AB;STU>*;^|}55s>)ta|RwYh79XByHD#T1ap(?#5xdP{WC_B$F z5wl4d+oz}7+)BbkUkbTRA&G-g*-I|viR;+`J1!SpbCjZ4*O1>uknSEBf3i-^pGEX*Ap8(y>-jM?rAwKh5Yc4O z96Qpm0Kr~(apF0*9WTjJmIkk*>#0qPHb9#_@3UKSmgS+#{#Po~g$tt)KpkVmirKHF>Yv=( ze^1alCnv|y?sRrrc^}|@*V7WH}s;gQVnCBtqdGnLuD+>Tulry3t)A{G;%U3h*~vTc3?@_o2fC zweKx6Pj6+aUdaga zC=!>SbSyGdJmD?I`!mg~`W3N;J}s)xHR&??D^?(?!&l?}5nBpw8YUebc%AqgO=>c- zhYfwX_x{0jAu8jiA1+%WKvIm*Up*hExo99UcXXq^v3Lg8f^iMaXWPdo1^5ZQuwQ)(e!9dfv zmbcDfzcGDN(y@NVcv9BHLIB%N+Q&fu?-up$!CZsb$UQUVH6339XiTDm31hB47V2>& z-lm6g$?rbJT7ET%g;TM?vyMeAe2;<+n zE(0FN1dAKDqxO)F*OvbDOrwcAH*@=D5Bwz`wH??aCl~K_n`>{Y$2h-ad8@r%OA=MQ#>1f=a8GYfKtaW85m}f&17tUyC`TI;_?xf4t9+ye%&X( z2KAtlhKG!nDyhWRcVon%MXwo+7aD(Z0?Mjhcfpxue9!sOf-zHF@*;`g*%4{^MT4d< z&(7TjYARvq+TQse)TB&)`k^7LG{V%pPT^60m7Y7R&1ffUx~#BL?2s?0?`dH^Iv7$VXqpRj}_zd`8T z($2{=7R;mbTE32M<^pE3!d|=uX*1sA{h`FYe1H41)DGc2mO6Ap@}N+wRrnqa7tG=@ zw2|aD)6NMDk@b=2z}8~<$3jNr!!&LR_WR9{UNw4FoU<1~tHksl273C_Xd>?=V1rrtuV7F;H-hQy{=PEEh!G|%}mz~B>ynhr8Vz%RtS3Z=f~>V_-f@lPoLD@+T5RB=+`hTC#dKbw(q|1 z#ditgcTdkxze&|3ef8z_O`}4&#yE7Vv;%(hvPjHAy938!9mkNM*I#c`53v?cr}i#> z=8uo0F{dc*mDy)N{#;qC)n-hJvB@{e8xnn!FQwFRx#<8xt|t_^AR^&naCO3m z{j1=fyUkpDVavXZb4Hu$2^+%CSv$ogxSY8VH1VHpUkTt-g?}$+q6J0bzu$`ZCnO|v z1^$2XTb&A>#4XG=WbiUyK4Ev$x%?v-%RIfe;tQ@3c))TI+bOw$dzBvD8aubZhboQa-#>a$>aG20X*P3VaEu#r*;F# z-f`ptj#Jz@Fa<*?`AX@5=YMA(g`EUtrI?6ip`pSwiVPXol;fsiDB|7wcWuv-Y>NFy z%v}&C&p|U%2*M!b_kCuU0Zs7f%#y|XQ#;hyH&SeOZ$NQ03EC6QLxYq(DK#}UXYF^p zPB3o9@a&h_euX7L>p$@s)gWQfso%6I^+J7%8a^>DGxHS8)`)JTVXhEvD4|u?lLn7a zp={hLxw~7)As7KP#%Lw*K9+jjCGItCTSJz_G0*2>q);&9RDWvW7Qmy?{$Z`<7*z?; zvze%>g4L~J6goV#(;4Shkvi&Ka3j<%Us68;QPu&k8Ai%nRz(KuN6U_Qw#K~7BKjJG zc_xd|E$=9aD{%MA$;nmP+Hj93Yt9<|$7iscQ<0-U<`ai`4d0t4&Yy65n+N3M6!~28 zoVeWq)>m)Al@Mf&xpoY`VV2RG^`3groaLm-(;~2T$f7`hQ{)X6)gUP~Q8*EbI_|2z z@SPZ5!S{BLL@94kfr%?Lq|2P)n-8(%)$1W5mM1`AZvz0aLkWi$jy4b;UDvH2ax0*t z?qddk(-JWRvWzeZ8(1`B5p)Z%9X9)-RIpOuFXEOTip#duNmO#jgz=w|ggpWgrZpzg z$HOhGoCIzjh*RzQ@MaM7e>dJiq%;#gi#NIv#ywg$lo8Va!2xI$!E+L8d^TD;ECd1i z!4q>oqH$-ul=5)@^ZRG^Od(to!4h@^FFOW3!`VE#iMABZSw4U_JA)s3{jVB;eXC_$ zT6s@Fuh(lOUT9wMFDFPRKKbJZQ7DHV;{`rZ#wK>EEofF6{2|YMo2N_nTjXUmKMToigv}S^ zN?!i>W_LcrS7|px?b)6zaQ&VyFH_~@PKPpyeO6q#-SL}FcokAc4cCG(R)O}nkZ8A) z=lhxN{1$b4k*?w}J@6F+8?m@Va~4pUSJA~B3P-7MN{#~7WO~j4C1zg2A_yGTbWbMl zOg>5qdUw0I;m$mhIh{w zkJX`K+ih-scYH2u9T{QK+>GYft_miD%)7B_!!7K4IQT)1ZxZO~i#eDW-Dx-U^=hwBx+9-@&FWJ}h5$J?K#9Xi}EWsr+8 z7o3|)tL5uVq&x1Kv<2ruA2O%~DS)Qr+cr&pUNT8iMUfi+t?RJ4Ml#=rePSQmm%GL- zNe}l|6r2uax?c&J$>0DwHsb>!Wo(^(NB)hydlZu!Hi+{hkl&#Q=)8ltHu2lbozn?n z0QY9y9IdW?&l6Erh+#v=iSzmp^JbLRR$fIu zJf{}4{9(Oy71$oi-r*?Tyyc#_&t5p*u++|v-S=B5eA4UFeT%JMDQ2BZ?^lJk_O;!&-6^@Gqww95{8;WS_a*=7RRH$?f=YDcc zQfFe%3%dK`V@%}4#>PeyEk0V|K-7*mf!TcoO4b7f^G9wEKXzPEJQT2<)x1OMaq>}2 zY%tyujTv46=8oF4fe0HCPV|?7oz%R>*5_zM85U~gA}B;h=mp4Tw6799e|R(68rs?- z*lXaTe=#u~)v^4Cr;ZWJKgeurefrN(S#6&NyP zAD3^)*6&8k`X!MTku1uD_dUFL5bzSMkawlFMm+5>m*>?U9(T-m2UQMEXwOxX!ZLE6 z9m4q;a%_iZlm3hKN0W08{}?Ew3vV#{5G>!tN?av+p@!&QNR1v&$@8$EuR-#{m2VDp zURrrb(#?yhgLMPr3amtMP?d8Lu@AXGu`Zr^)^pbBsZ&o+8jpL!wOQY_D3(uH?hNzP zD*|eV?P9bwOnK?z!$Lzb^^h^t7%|-+teC@+2G!;uAdMh`CDyRfGoYL zIJS!J@Tp5Dl@_kW*jhex6WpymM<(Ntk2ZOAO-&Qm$Rv+7wtA&Wld{SY!k9xqc9M!VPLiM z_&wOm+x%4ALZFJzAa!QsqhTJ6WC2jF z?JQ;aPF{p$wv$sX2W7GS1>jJXJ1&anhiF9j)ctE$MpD_5iRyPD?!L5xD+7yqyc&{9 z?0YOD&G&XPT-Zxet*mq;PiLrTnPbXj*N}wE@WT_bzCXkDNyQtsVQMN{OZU!Y|GZnk z=cg{8s(u4uRm2i^*KuLRUaC=(pAu)K_Hi_po&*H8EGJ5xRH*9g91_jkk{AXkCJNaf zC_~x0uzwRyXmyF@@9Zg@3GIb^YVKnimoHyF!O(A$+l@?F^*xAf{v8LKAxm(ztC5Ye zjjU4)d2YaR;B54NJVfacsxD%og^9OUxstv1{B9d~?=bLB`AEn>;tuNi3DY!mDY8Y2 zW5PXz^-5ykJ4Tebd-iu=-_Bk%*oNH^Nj>bsAAjAM5yXaHMAL(7i+p#;%w0f;Ic%-d z?cWzc?p$h9t+fla@h#0xLJG7CP-sRpVdu#A_fO2u+EZ@XaxqCoI*dIsO`>#mziFuR z#m(DmviRV^i5SA~4z@2vu^YL0mtU{x)r1LqdcY{`rkq>(3-@uYt;ccj@O^&iv$eY7 zi%5k)RuY|g$0Upytrr`8O?p7;8PtQx5Y7yfk~}I2dz?~tmvljZ?j8yt9e`j0flsqowtC^voz$*B{ zK{p*Jvd@LMP&HSJ^1~JQ17~n0eA|;GO*nxW*d{r>+-{DPe~VC?e4^+OE;7;N(x+>O ze=DzhU6+69Xmb&tH|{9Ytku(ic5TlFGuAas$%}s8FRa_d(+_^VzF&ne|NMvGy$O=W z`ysUVIfh*z&Lh7Nm6va~E*-!ic6b}-=eD-P&)o&|x&kEf*^-0OIWJ}-E`kvl>p~&& zyAEEtiHGRh0tLg-de*Rv6K|s7bn?oO(!DfTw9|@&YWyPc4mcu@%8^Q-1-)FH?SCfn zNiN}3{cCVT0jmq7k-3u@at@8qS{t8kEt)InNZWO3@ClPvgCGxW>F0CMBe@G+B=gy?oVc)01!@hDN}cTHMff$# z!df#^UTh(O&-5u%rtf6b$5}l%_G}LPM;u*9COuvzRO=2hIj&8U3U@q$urLP=vHds* z{&&CXXSgmjOIO_AkzE2+#$F94<*wn81u?>FOiTDsoi)1+pPU=Mq@3i!45&17147-# zcHk1d0>9OL6>G8o?k-qs1V%HR~9m&;Ck)phwSGX`U2L-O&y$Q=3tje+*1@F#x@aB zN5sRI*Tn*wg6XYShS2AGWiGZ_1~D^-{~U2W}@Ic z%;cFW5}#>DqUR&JoLp^wIeU_iLCnz% zX(WbyxoA5svTFPYtJpg+6G%xo9K6XU1_zsS=y+)C{}6Qk7N!bIu+#CQZtL}bwny)1 zSU9P{w=`LIuOnO$Z`5CMK3@Jt?QN7*2dz9~+9Q7L_`8XPQSJB8T4aA{m)3uT0x{|B z;&ERLmWWf<@*p;)f7UvSmv}e_WV7z>%2QGmzK`zObX-)Adaki&dHbErm7a0gc``}C zIb26l?Kl_RQ+y~7Q!ZJ_lxqZ$DN_A$rrHM~=QU`!$AVXW?qAX{Dw49My+R#U?%rZ> zuX38Slfa`ClRzb{lP%RhMtc+5sX#5d{k1U{pE2lGokuZA)n#Fvxy8=sGlJX&i0*pv zEM`QH?~+477?sa^?m&{++R%>q0{oW4E8Tzi{}&+%!u@c*8?f8EqVVfX+^$20cCDN* zP+*Se^#%2d9I^#!P=^R8{%4w6s%Gw_-7KSrtc*o?!Dgcs@B4z9Z`WMxk;1?=Vcx~- z<#Aex8@|3Nk|*M_%U@@86Nr9)e)WOFUrCd^=+b^bmtSV^@@!noyf;n|I0Z;h+u!VI z&Cg*|4N<^j_0-`akl(oTH}M;q1mkAJ09nZ?e?~(EDJdt$ak@d4`J1~hS>DC>r}s3J zYP>W*LN(E_piDU~+Dp=gwwr+`s(Xxzja+(nWEuych->HE!QW^)4I%n zj{~4=93p`A)RxbsNU9M|TLR+~sYK~ITqbDKcwhc%Rux*6xYq><=BgE<=4=Y@cHJIe zcA>J|d8*_MV)G#9aF488bH66nN#VE^s(%(nA#>;xaap5cE&IT4fA!}lu4MUx{-P(! zrZGbHI5~C6`GKl5l3Jd@7l)}mWI(RoyVcO>$+PV* zsjA?5s+>n)y72M2^f5DyuSv%iljQ)5Mm%34ST#iF#2oBaU^2-_>SW#*uHM0>Qyv)i zQq**omJYdCy@Ma%(m3t9nrgV(B`#YdV$l;=XmXtuj{tgB?A(#wUuc|CYdUdvZGXL^jen9 zR=s5?7L%M&bYr}cl8o+Hh=k=Uzx#ny8n1|RJMrvkCGw<9Rv3tV6KI{}I(da5YV+9< zItkIlk2^-B8M&(`U$CW0pQ75ST}ahPa$eJH@$A!~iU<^TAp!ydk0ZO$`AJmDpKAN< z>}F!KPtiKV9Mn#viaIG1&2H^*LO~KNIo-M7uwkE=y5SP5QPxpx9I=zP8s7Pc??uiush!Qb3m7?AHf7u z0V=Mj008HTdqpUzy$F(nnKQsb6iKY&HTULqatLXh-ZLQq6lMf z*~8m)sUpukK=L<;rh0L%OCO&w~vzo&%@P2!(Syc?IbU zrcENJjSIqhM>2R%yiS(s#@k()ofBPPiQfQ40J|tBWp z#g*I<5>doSkV6UvA^kk$CR<|mpluCCzkmC7ZfaRHCaHALFN*#V3}A?xATZ)FgNfRf zOI&u}vlZMe#&%35nEfGI%F4i#$P1Z~ogv5W`3H`3Nv4|+=R(03bYjo(M>8&YNIs8F zy^vA8a9QrR5oq%_-%8FX8QqbBJrT1dp0;Y!HQL`-d&17mWH*19^Ss%v;v0C`De9)S zkF9hHRSlLN)4!5kuT^fg zECGisJ}tn1Hwghb1OTig}Mc@tta{yu+^^Lb4!%@VMN8QF*YH&?&LA1ObZl_)BerCHsPMD|1I zCO1jG--%lgM#giq-@rx;b4Q$m(o0$Ky`VeE<3M`ALxOZs2GjQF)%3Kt zg1zrE#Q@eXWxiuS-&9psC$MM;eiA2dPL@1z2~cz-MqZg`V#p`%LTF6bFY=@ehzK+) zh`gBNTU$-8Eu;5wBe0~P`B)ba&{XbExLWcWE&b5trl*G4B4G-KhI(P)3O-aJ_M1&u z$a%COeI}CY{XoF@`ORw>NW*XiCzd`c?MpkN%9m{{P?;7D&Cwi6Tg3S^c6C8ci?|CM zKil=(lwrY9o>y0Er1dLZ>7sR;iqIUn9%`4fXs&Y?A!Z3f6sdgc`Kb~!MP;IJ!-4*m zH)>ww>0Wdv00(v#_Fd`ZA45Bi|2!Sza#rB$ZP8;Mg=yK9z+K3_GhaG6E*6=zOMtDts`Vc_3<`6dhSU__EO zO~GSAr?_lld>m*fy1u^NENU1g2QFImhe%03z%z)rb@u)fF!o0m&|%PKj@#?~n9kcc zRfcb^V)5;@ka{nfB#akVuj?nh*UUi%5OqG{bSag z*IfiR1MuF#rYG$xWGn24dx=*i&;8~>W3_E57G;VSR9H=B;f*8jNxEBx;YeRPT)lED z>1YFO@(UP=<4z`C3wK`J?QizV{`*4Kwr9xrAoi6TyGi62eELdfn4$JNCbu)Rcfp6# z3&;gF$QlC>a^{Gq?O??tI|UxtReCe3kLgs~j&=lHfA|AOV!1t8qqy05ks)z-O(1Ue zX_q9qLW@j4e&lveptow08&-V4cG=s>csEIyDw(32^(rnO@B5w|$0{)C;t4)Bv)23- z%|Yuar!G;9qkET?+DGd2eJfw~zmt4YgDdkUcPH%Qu~Bt$Nv6UlYSU@y z_+V*3nK40L(y~P3TeR)?&#EC1hRa4}rh0I{( znx|(p8uxeo2{j8x%zt6V8_J06z31W{UX9qpfJuBBf(vpC5%VWy&>xU z6mClJ11i?|U*sf;B3k#c>&VnIcp9J1P*h7LNBZ!|M~931b22nS(MUZX%^0rz6+>%I z_9vBhEd?sXSVYD+7(O|Trq!kXJW5A$--)x&0*Z#tX6tDmEfzosank>D@`160*MB*W zc;aNYCOT2|E1vv$$A1luN^zqV8;e+7L@R7t8!`I33?+QnY#3AK*7jdC+@@?9cs;Ps z0Mlp{YHgw-A|lws7^xe@9M(=Ev?zrnbPma)iHVOtwwk%M8fsUI)wOTgZ~k$r;$>tM zu%pV6nP|H$Ygf>CO<4CGEj@p!~=0^Ya65I@TgdXoF=F5pb)&N(@`Aw zH^HL4N#ca;te->JvMRaZZZZpeqI>9WnqAIwKc-xCwd-zfK-opfu*3g??DZ4*P}V07 z)S3MIe~D18pnx^#KXRQIRt*iA^#4EmTP3{_3IWhOobcWn)LpMxDz+s`A5v95k8+za zUz3U)jE&o148^Gb&2)iHPz56u%;G0*Y{OsqZ}5!7R?>gS)j1grPh-#>NMS$DQ_C>= zUBf0OaNu!JMx5)O1eXUwj0;Zr;EUo(%N<(u+k4w?^NWfR&A%}ig)jv|kT_Nl{p}SF z98$3SE*RnVWa5CxcARJKtz+QBo1OplD*)B8o42S*#!}|x*H05A{o!yB0DCsfeoA6Q z0J4MPV(POc~U!_nEgg7f56bGCqX!3 z((b9>`n9#2D1y-_$2WCab)j0t@?a*V{N+`fYmf?%NB|K&M+pSJ1{w_dUloZ%=nHlb zd`+=T4Znw-3G5h1K-YM}VEvHo&T?FOS`ygF{>80AkVS2`oIUQ>>GQC%`u&jUu&PW{3me@u~-%cu0`!{8+4Z>3e7EuC*-RDo%l1)Z>DKE zz?Sx*lVck|bwJuGUNiBV98L8i_DuZz*$Y!H$R@aG>RDu6Rx$M*!9kTSP_lCr*AX z0OU47`xf#zSStu7AxEO3XbI;tpm~CoE!>e<;Ksb=?IJ87kb`C;DtDX(3xo)Dqalw< zaIr)ik@%N;=t|^q)Icips`*(xhf@)$i-0oT_42|3;#x>%W@gLY#37=9&NM3x^FSAc zlQl@;&)<1czZ#JHcw!>AAOqtUGxe=xoL9N`9{h^|$ivuQ_Rd}Gb`p|ZE&$+A7cp4= zjFg12NLW@xXlT5^K~N1xe-OT-%-#a*`&p%n^+Kyl6&qm&`UF4=Xg^tAS_t4%XZpQmSq5IUTjYn`{ z=j7S&IZQN>Tt~a6aBCK&9jc{HtmVO1J3DnLz8bel9xhUl(Yc(39tNk`D@*~w5pZ2W zp5o-{FEkO*+9j@W13)?|L2NBY8QjuH&z4tKCfbo|kRQgytw1=z85$go4`joOnwp=t z1%=<%M0y{v8)FJ2;vNKR;KH>Q*I08((1*D(n_sFt9M6=P1#y%5-WN#9!ivR8yt1!c zt0W03p%3Qp7h#0ceeNO2>!E$~VrYkktCK#$wxBE5u2CCT#^$_52!a(7i>kL<(x&-o zs3(5C-nfJyRUY=-3mgfYKO$R?omd_J0^T z4NkJE9tju^Qr*UbzaQ8Gcu6?XhF_2ubjy_aaz<~uH~aQ6a^3~n!<1B1i*#zlp8tn& zkR8fG%0zEBMamdBwr&ILJhpn8=da2hmTw<{;0a8ZBHYrl2!)5Di-BzYrMUkoj|`+epQId<&3J6sqkX0e(mg#dQJ~5oDUh zumlZl6*+l(`qYj6eT2dyy%G+A9exJb+dfCm25W;r1zg>0#tsOjffDC(^LBa&^D$Dh zo_cmRb~1?hEtk}pHm5F-1S2E5$1+Cg$Hg-` zF*beTk(EQ0hwdhER>}Mrr;!f%J$XkeDI-6e*kyFx4on$Y3%DCxMFUCq8$KUhW|pMx1i)_`cr<)Agv8#mG`Eo8^huIu*o`DUC+$PKH01hlGBYG zw(~`*QzSnt>(ZZI^*?mekF)DZJCo5l#c)zKrL(eXt2f#b2*pjJRYmBv>o~FfMdh9T zCT`!R*7ovVPmgtI*N#-cWvS`_k!Jn%sXCF8fD=E-SX^Wf54DTnnDmKKj3}~ zW+lOf=5z_vhsVS&Qo|Ag!xL_ZKA<;51J~#4O^`E;54?p*1Rl>Ov6Zx6diN&B1?mtR z6YDelImB`rw{-g2qOod0%6S(d@gyW(JjL^eJ0{BzWA5xZcFU0T)7_px?^_BpXq8rY zax}<#I$XWiP{pW{V z5FKJJfD5JB8sqm`N@KkA0v4iWIgq7-ITvkO=tCAlf;MYiMFufvNoJC^DhnJ}GgzMK zZ(0!Jr61rv=(A9q9}`J>4g8SYXAl<$bkh-#v3eqjK<>%P*qyhE)ZYJVFC=-4)X5$P zI6j^Y=oJT&)(E+$V^EA-gWMX_R;c;nyd}zzMyQaL)QqPep?+ho> z7YO*D_-+KASSSY0o_v>9sC0piE{Np7wVwpZg;5YtT7uK!SN*9MV*Foa?TvS8l)oG_X^~|yR>GFLGm0w*T3lbnk=k)-r8)*eIL!RRl zn2~aWAx>Pobs+U0TG4YLANO`WI zSc+F_Y-f(J0SF_(_0eDi!9GqQjv)=B*Csb4&2s`*q+%@4y~)0g?yTbYI;_uBgw4-v z2Sz<_o@(88qDmIbM(al*U;p{3ldFekNB_&))p}e9Tn-#vt?w_9W0osK?{MjHsX0}4 z{R$RUS-iMpE6L^idxFx@yqj4z=xlu)d^CZQ>@pomI~B3jVLy;x%62{CI#8nzGR$be z-&fC{B9S?f{9_0?9r}vh{Bn0yJh8uSH{zN}((X4<*UI16;xSg*h+#4Ak?3rfW|6w( z7X4vH`*)2kqXCfD&IWl+uB>vn`h_-@ZO85|!=AOX^+JU`@KEx#H#iTP*IXBuNU#MW z!kAr$GMXy+^eMb})cmTvPw2^2;OT$0;eUvncH{bW^z>4?9bd2#iQ&NHmFe2uHraoe zWwLJIY7H^%%Ny1FnN#)MQjmF~!z|FkEW+vDb9i~57`ZojBxe|qMv(c?7S>WHoKq(E zDgW>*Cy;MQIhMssV0DO$vN$a_kKk@5AzrmYl{AC5og8*+=HrVeZn?1yW^;enmoEeh z{5UXB+I@s7SY$75U@V`i(lO)XYhhHz=N0`;54rT^xYtFOF8xaQpC$t~I&xz~_geF_ zKsh*jO}D;wBz#F)if$mr*wUyXs} zbcWo~?Fd`Qwy^K}p?{4^XZ*$RWd-f_`_S19fc1$<%08a=vR7tK4mU{D=uR@V#fYcm z9@dFw7o(Itq8oJiB$22I2A>4<-R>)HfH%f4|r^%o(UV{=cY2tV!t?EDsv|_y8>g{&Y4f&`w9; zZl3q(3GDOBkzN+0@`cZW-pcCJ7HVVDbD@1v7v6t{_yQ}(-2SVr+xLRQs`+D;Au))(@OQ=YZp$b!Id;wJ2m(5qcO2GG|5@2*W%7Yuv6uKoJD|+UQ0cz5JJR7LfCMl z@5r+~Coap4PiPn;-rlGGpn#P^tM;&)-b|i-F)bdF0QVo_#wU@&fRhGyvUYo%&>%T) zo@>weG^H}Q^)~+~4j;bJlZ%`@4j``%LLXqxQdDv{{7#vChXkxOT}kl4D6iKbJ|8W zNHI^{w-7bH+aRvgWDozW$DBk@OwP>n4^yy>LnZCq`^>f*$PapArp2Xc!hUA%V$H&v-8%^HK66n$G7 zQFsm<10nPoVMXr2ecdemdqShE4p1qni9YjOF2YGKT)ZNtLRyTO@-Yk*nDYZqo9CSe zUc4Dl%!qeSG@$UzeReh=B)R>z9s>J9Wx~~;esnN6q;UI=y0{gFf!r3eEpBpHb~L`^ zGU{263fG2*t~SYE_XwNOCUb3Wa~Ka^Z}aV&v8?+N<8O-0D1E$$r3}ka{y(*kKX>e; zu|D{xy3og~)GoAxAOY@n|B=^buW%flm0JQ|m$E!vf+j&=|E^Sh(oaC%n}nh@s4_8U zfU!#pe$gHEj!6b?T>yH}*{N&Asl^N9$Z)Oc5qn!|u1kqb;h+Epbv)Q0t=Bjf4g=Nv zi>{Cjui}t#`wl0)#~^Uu(9g&0`+cMOx2S*huJU3Qa|I_mg2)6CDC*exZw~6x8F8y^ z&I$(pgUu4FPW;)!4g?wWEEW>u;*vbtfNxM(i;PJq7?|@Dg3>o`popnMRt8bVqw0)R z030BOG7mSGF(umrF>`s7?1@G>)uHG0kz0y(%`w+M!(W-V@msMIp)O$3aiX!?(1+-5 z6fkkF$`EZt7@iKt={h5!1&00QZ;vp=Q_k5_=u|m{Vga-A8vO1~eTv+N?Z79^v!|kU z=Z3v*7&~BcT$CWaq&p4^mpEiRjHlEGZ<00dx=xV;QJO$`lq zJR1O@T+Wa^nbdqsU|RiB_M-U#IwvjaC6}yMrnRgi+wr11HIl-+voAUmXcZ#4A|r0+ zYx%EF{Bbl==hO2Q39CGQ!av%QnUuhjhh%*2l}dijNwN7k1x?>Jtm%WKm}G5a>ajOv zKqShKs9aDN_`clZ@RFrv!-Te6j*Qwenxes!7Oy z!rDBAnxgsM@jQAr8a<(4)Kpj7Eg);Ucis&H6C2la$7iA7$=ntx(hZp}WltwSPZ3!J zO;o=r=qzi*#DAE$Z2PmO#Ciy7Wh6A(KB!uG;b0*Tarc9DLOK7v&er73;&s=S+1=ZN zHL)y3dXoM)W8?(#zhEgbYjYgDYJWiKffk|6Z5Q_OGjnf1JMG1^5<^|d^@1GJ`i^0R zy0=%z;*<-LoHcpu@~Tk2))6JysZ^ac?~R@|)+hgv0gg>IIMX&GEz%GIt^!)_$8&#Vf8T%4RG!^< zH^>&B!6aJsJMU>5rUM#i3yjFvd8!nLVRsj|Mx=BwSrRgJ*j#@`U}=Jlf9iRfEr2Fa zovQ{&?L^XPjJU!$+8ioznP?dJ_K5B4;Cjg7q;LI((msujYWtVmXIeaof{|wJH&b-vmtREXI|8>72v`@^kMvdcm%xg5 zzRPwX{GkTapH{fG{R(OTK^4zE#rQ9Xx(_PdLtbRBd~DR55Mec4-$pz0EJrMg60RDH z8Zd59EIpOY-~E{%hyJ#<>l9I5{StRlvD&b#9{W3I9)P7NFGzN0v19=~8*kvWCyp0E+Myvtq4=?*=}WsZVN!!xFo;vIVJnJO_M1$Y=oJE+Ej_lw zuK8LFX0+|8`TU_|**@EhrC{{N0Df;XoYVIY!_zk69#ge|MePwJ5}D5`&c6pt4S zDrpPrA*>F&$$8!woO8|SQ}s9ZyN(mVDG<#~m9%~3{l=WBe+S!1`Ijw{OB+FcxY zZL}zzKJXdT=;j<@u{oU*ivtmhnUM&WdP_Vw@$o32Kopl=IJ?w1#iFC-D40rJd6NEN zaF-Xow14{f3e&5Q7h`8p~IW_W(LLb2&hw8u{`va=Qm=l#(uRS z7Mk(9LL+>6>gQvvGR}s{?Drw39mm&8*;x_2>r1T*Bezxh8az_eEgV!fq(;^G5i*(o zAL+@Y^kwy?)@__bCkO{m=?lZ{Ne7><{FRd}zY7TUx*E@fTk7K)ww5+IUiyUK#9!kJ XrL|j5knZLM3gNQ0IBH%(b&LK#V|O=E literal 0 HcmV?d00001 diff --git a/GAN/7.png b/GAN/7.png new file mode 100644 index 0000000000000000000000000000000000000000..691e2e31e98363eeb9f7e1fb5b9dcb15d5140156 GIT binary patch literal 42477 zcmc$_WmHyCyEcj-Aq|q!-SyBQCEeXE-QA@KNJ)1i-O}A%A`Ma^-QD#~-@W%Z=lgfY z*gp<`SmS|bt-0pB?z-;l4pUN)L_vIq2n7X&A}uAR0tE$q3CR{JwmDY_^PHfE($4-6hVbSI8me&B?MQ}FJ*KHT--;(*RTQIgu~0b>a9oJ4Ko3Z3w1NwwNLcc^Q7NyfIJ2JZHHbCdk^a zhDtxHm`E34fz_Y4|64tru9P@=qsWkof?0Xzr#1~<{=(KTt=L1fP`_U6KYm)@BB`cV z5*~&Y4-jCCN73o++6>Q+e*^aR&LC%mbXIax13{a*aD=r@%hLiTHCONE-JjPXWIB1) zuaH$?({n$Ke=bKy-<-M&_zacfAHdqqu$TYukUDUSAyQY$WQk-i1s&ht+YLQQs(wgR z&S%sUo~@C&p%j0`k`%r$Btg7M8TJ@?EzH`^^nZO3BN3xV%r+QplxJrsAh4%6?Mwe# z9ffkgQ9edqgFjka+k`i^aO!X(=$k?)U>p6^KA7RX+FFW!I!{R&4Pd2!`b8j5kX_}i zm*R?c`r|t+ECa^qtelFp(MbDg4u=+v;IR^SCs&*iZfxySXC( z7LUmyV9%pvN{|ukwl`$BeBa8uWSZl>QYw`w4`yJ}Y^0ww{>$98#OC_t*y!xTl=MF= z`LX~k?dR3d!+c0TBk5-nr%QgZAXb9gSez>=J5LK6mJRG{t^4@4cwYVg`hu{TEvB$S z?ROvcX11ADcUyO4ruen#U?cD7xkH-0+7I9utU3O346I8I$vjHMhG8(Q(u!SGLQF#& zh5KfoV%1?raqGf^^A(Z7-jp=|JMh6GJM=az(~IPIwbC)?xMiEdA-ltef}T`!JVB*2 zuJT|PY)STixO_4Gx9ZQsvadU{_e^ONL?RUeSNlfp;4Rqwg{rF?JAQJA+7>P%HY`fi z;s3K*O0bkfqbWVIJN!li;YTm2Gn0#*kaZlF8KTiSHW-~Zt^>cEujt*!GNeZGVA2UB zcSydG!E?0sTB8c5|HG6_AUL~MTmfA!m#<=!*UN)79&eCdA=G>thSlb@^!lV>sWb`W z60&I}UkiPVj|P*I^TtlVvVUL}$IhSpl)V`?y<_!-@fTuUhQjk0msC9lKEBt}y_=7Z z&)c_er3VXsBOo9&1-v}}$`wuLEF05R%fC1Fl(RqV3{YC8r=^q}-TMVWjEllQ{{jrl znjCD+gwI0P-LefeeE^~nlMkzplqzJ_(KX2|kovz`Pzp9Sr=J+?<2?0ES3Umh3w*3 zSZni&mr^t^AdYRjyVxl!E!A*H_`9*;u+macTzuR4@>CUR#F$+FDK4uh+Q7g-v&w)- z(6=cyRoluKF9g21T8~$R;lqdv!eio+^))(&w=CcN5E?YFxn@?cumlTSE();)s}O=L zJAVQWcn#5_)K4!WGhV+MU?MDL33lw38Y&Fh(*`$UCv4`*$?7vHRTScyT3W7mC%@bh z-YK~gO)xP#Z6oWoNg1}hb}Qqktra^xJ>C6XZ{zOXke6rDXumRofRBgAWAQVCMlma9 zqK}K5oP2-2YRne4pxR^*)w#&b%#4W7)$;yw@4HF*qmy*kUO&^<>q-Z@y@WC-dwYA6 zfk-lEIUU&i%wPG^@y_m2UT;=cn$LR@iskHVrDha>m82nQ&Qb}$ovhZKHdjO8ZQ=Yn zM$tdJy9vKgH|rQpg9A{&<9BE5WliUHFlew%eT}K$yt%biZ!`aMe*Wh1?jlbznwbgD z!%Xyp(fWrbKZ1mW-C|lL&1BbQhTcR5%@8yads9;}1#JzDhQoxry`t>nwa%)F3L!Xy+D+1#fTmd#mh z`;^LQX{8htm|0twVwK3r$&LN(k3c~|kq$C5rO$2{O=elEF+(b;by#j9gFw-+g@w(W zZyi>f)crV}{PpRVQn6;Wu|4NktLZ`_0q=y2+d}#D5!7b$@wBUhdCj~Lbbw?`{WkOl)kiyGCmrezGWE=~WqkJGSOS z{*f?2%JqCapK5*%rE`)?Fjg@o(pfYT^!2N*mX=iV$nE`oT52k%{W1?FrI>+1hckRw zWTfqMp}d5|z-*aj!1LWs+$+4#pIY3I3KfDcT^n31e)q#VyEN~xt*=kr21*Zs*K2h@ zDlIMDKRH?ZVcZM(P^sH!fAqV4wivQ`{JX`CLE1X*4^`)t{5LJk)A^^Ad9EuaAq%P? z3ker`lUl13e+%g%Z7Q$RKO&v}Pec0eu(0xri)s1LOXVtFtHZ@Yr?kBu=?x!8#ATik zQ+Br1<<_Z3M0)o}HTB~j2D&g~zSqU}=g*&=ot+c;hX7)34i~3u%w+$HlEbjx94o`X zbuBj^ma5l~)zzqSx)IG1xsfH#a|D z-yyaLzjTT}Zq7PA&^}`y&Ec<-xIgNB?a)JIyqK{MK(kYorqS9;<#t$IZTA`OZ1p(7 zA%a#f)BuiJ3SO>9f5d^bS=%a{4j@c}|R}(}%gzmCg3fCmbEF9GZd-0Wa z4Sg@fmTI5~LA_8s0%udSKs|);^Pz#px2)9Rppd}S#d%kP_bCSqs_bfof4(QX^lK{= zL>w`=@;Kl7`}>HKv+n=G3j0#2mla6Ct`kN=f5yC@#yCj(2@3*`D zOTKIzO<~D;^Ju9Nm~>2X^3BZ+O=DRodNHIPQw?8??~irbgb%5uVCGt5TrGY(M)_HR zOq4mjzF8BU9V!W&ih!v_ZzTTVa&vG%pmuejvxfyXHXU*FN?U3J78_oE{z%M31P&AV z(!os0TVmqlKYxr&Og7fnoemeOixjizX=#!1SdF$u691z8^20iDWBgk!c@CcxNIh~D z;ILd45i>*Nbex_sh#4jU+NGE-ns6lXSWt{RY3jefwrHk+sqp@DlfxoIBdlRjc_+QPBIB zze^i;gv@O#pY4Bhnzi&$8r)C*81(qNDzWLSoQrMC5oy6qa!PkFI`zo~w_-be23vrt zFg8}%(ebogyB3v@hxD(FTB^>QQe<*@)@KUR?eoU1R2>p?ltT3Za~Wm)kiooxsNjI- zS42d{Pa}f9Qa8_B{ID1M*fIBv90_GF$EyY6>g-hNArm|CGWOeJsmI61n~J!&xSE>t z0Qa%?ku%2l`1qz2i(8Ae7FQz&PiZmf_vt&`=@@9bmJJ5WAGI#{TF^Gu?9f`e#*4dU zbxk4utwCzr*GEfV;L)f_0s{k)QBeAS7r_-HTU7eo^t5@wY7%Nxe4MXhX(~xcz)E?K zU#XurH2%Yrt=&#{_)Cnc{Ynd`qeq{9>^2!VcQJ8s{U%4_v%meDF44pS_RCF^AbNCl z2@?@zHU&(Z0(1sEo_!q>t+$>XnVwe7u=26a8F~NhhIqY$fo@~E2}e|N*TY!LT>g}5 zq7TX*+8#f3NHBm?4M#vJHiL)P&$;UU?k?6`_^e9V%$lkg63WqSDyg!%vQUm-4;2rU z(qh*=RREcePcDSOqbikY*7j+tsnN>HO38c-c=#shUOv>3Z?M>zO{PA-)aXitQ45oN z9T=7p-rn9`US9s~o4m90d9LVJMn*;mJ3B6uj_dXqKIWg964kfVaKVmDXO*xy*sM&NPt^3D4pVWw2U0Cb!N{r4>_f$r0jt~I)D{Q;j zY-|oTH!lyWI-j3z*8XOg%d4igRv!y>uKXMwZJG4CQuHPYBKR_$7nvmoPhFKML9k<= zo**+k-{U_Afk5)TNI$N=|8JCx3N|rKo>5-)nMXpT@BzuADZ4;P%o@H zeefFrjceMJ)~=6r@(Ue>ohr+cA0lMUoGo>?`s8x3^_`n*j}MV*VwtBkl<(thtXe_- z95O0u<+7W0jp;CeDu~%_ZEbx=2r6&Ys3~B4eM9AcZC><8%oHn|QXHHp5)cF+)w<9y z>b!3EnMNZCe?J7wJv325Qj$f##dS1^so+V&ihjD$VeRXkB=cN)BG0kH`7{-=E5;Mm z9;2^~^psx4bh$Epd|a~Ct*5!K&h6^;#fv3dlaY^(fqCy&)v1~dnnpbDKUS0;C?acFi+H;aEh?2RvxwYowQ`6Hfj*d!7N=7LT`q_8B z9pEQ1QGH!shCIU{c!tekt%K0m-NwI{Ky9OHG;DF* zn}4)K=jY(&W?3M{!?U!urbkC;uwRiuR>?3e&KLbqzne*^$Up%{zRLMpG-diZQCKntn-V=MkqmWG8WK8e6rhWM)kR zA{(p*ka<(`u-J0J03|y{}j_xXAVK5SL zK(_O(jDyFNG&5++IXwJSsLjpYqTgCYpqO1qtq`=*y6ANwQ?@Xwjz9JKWTkazpS33| za&B%;j9WHhf+xD<Ht3j^nyvg+X_S{uWwgTo-=v1RfgzPOXcaM*siPX)HbUwbu{w8#|f<$%DhRMn(%V`NUIT`%W z$9i^#HAyNfdwq2^)w{&fNq3(0ohVF}4;D)V#N9KA%Z%U$JaGwR@WDqCCI zjLb}NV)pb2n*$ypS~jD?Nm}??I&pty_R8@K-o;d>8{3=9X*vt9%!CB2sVEvJhDXOJ zUj-SN7M~kt?zNU-Ljc~L%T%kJ>GIT-NuGGj3;47e+(Bih*57*6~a5mB~` zM4dZQXEU#`z|aP@-bG8B3+b7~98w3Vp#d8W^S6Bo z)4T1b9ZXgVb!r!p>h6dn&o+pEsX*rG9Db2wuQ$(ak4`va00CY@LqkMF9=!o&9}8%?9QFl*Ci*uB<0pEWif(MWBuTk`hw#6msU+?;9m@t_qq3v~izbZg`*)!-6dKQn62 zL;kn!nwkY7o+o*Tt{A+>yG=t(KTT{SvY)MW=P2sx>Nvhb$jHb5jq(a405e@;$N8%) zf9W$c(ia9s%jyIhJZqmIolkHy3SCv5AD($IMplVeJ1s;%SoYVn%=x1wdY$!894`{) zlxPYNwpilqxtSi-jZytv5u0AfdrG$Lh|OGMa4MhhT4X-Re=- zAy{iiQ142|!(YqAWwz`9`=uJxhJvO;F;ju+$s<^8Mtn|x`#=HQ$6J+_2Wi)z6O8gU zD_*59-s$dHTB8hcbvJn3cKPK9cfxY6F_NOMzdzO&i-d&b9v|<&OB~dczK4VpQgj62 z(I`$o8BO00OXQ&?|I!(kZO2TBwe~O5MaF-{uCMJ>UM1TpCwg|PRgUOIx#OQX!w%6l zUoAKkJln-hZ>&cbwJpI%8p*{A?)=vD*DozC8w2qB=Zi<;5fx)4+sL>Yrr4?sQa(YI z$`i!Iz9J#fko;=BfDVUd&SJp$5RSC=dXhsPGuQED`J>t;tg02gs68bT5>kjU7s%{B z_9Hs|Jn#y1h_=WW;kk0$rJr2%=jUT~kGMI^vD>qLusclrWCqu3o;Hix##ARw)b zlWqe6lqVbz$jIpE5=aeuf{`KuzWrB$nh!f@S=iBGKZ0|O`3hFAtjCT!dz5|EbFwGS`$oeAFWi2ByrNN;(N=oP@`cgy` zbAn(&QU%1=>YqiV*WOaoy%`&$#mttB{`2V7g(=T4AqEx+=Ww;X6;#=Rf`TWR2Gg5ZT1u%@Io<|#KmaoW%oTR2wx$Ld8CgX|Wke^um^RAr z(KdU6y0Jggo*!IgaiHF4x`(U!VV=Mjmj=tCVW*_q6lKefR^K=T^G8M|_>pkKN zvlO{?YADF2Hy(4(sV*?!{|hlCdybiGPm;oyW-+hk9+@q#tES4R$UZXD;1i(?49Hp2 zHzIt`qu_Q)!>dw2%o?#>_+bocFR*h@Pr~qUbUUcXEXG)+hDIZ%j!%K*I$iZ!LJ3oPq)rt7L!w$0AE6 z9f{vI;PlMJ77{FZ!mikwToG!H0V=%He7yJv>v41h?qV!Oe|0eoJnC3#ufW*JWZvL( zks?wyNNjV-y$UuK{UzJNm3gAU<~#pHI>QhbyhmkxsLwp649p z-EUaz zzy8au&s7?4i4KbGAl21RnOZm8(qupNx%)RMZ#)Gh6+~PTCr`P@1_iFK-u)T-2n zcOocVVh=^_H9x+Pn-72ZPfAV7`Hp%v@%#|k7pKlvdm27bJ5QMMV;M4)@0+Ps?nbXF4|v3yUJ2EubHI++G8!mL0gSo0B!9 z-t^Se*d)Iqg-jXZJEyjr*Aq{Z(kGt__e;1kCiB-q=JG7Vvrc@hqt~P{h3oBmshC14 zSqYhaEe*+n6eHhp+Y@49k{d312q5=H5)0f<70BjEd~0!B4-7?T939JeBN?THh}dV< z^!=+^0i*0s!p*H_ArurVO-))Zs*UL2#rAaafs&Hp4lmINJ)dUU59=vxCUDJt1;Jrq zVRv^s*~9fX246`yA&M1Go$1V1(A-L`)r+l!%Ef1SO?J30&L)Fal{YVe=)YL*Ui`5w% zUi=3xc6L=unEVgq#~;$7YiephG#DEiLbt~akBW`Ouu_ea@G>=}w2DPys0Fo32ns1VHatc1~1-PuVSt;Ozzo@e+>eh+_eFM!lt#!fJsfyX8Y#63y&4TE#(XXZG`dF7=z$s{YV*BQ+eRDkLv%<{agKf0OKx5K0 z2>udwd3gzJgM))Z21&v`3=mhau(0cq!@Rt_EiEmkRUrBJ^-HNn-}7qN9R>!5h=|B} z=k@E?F-$#K+?&kg{BZ<@j*^7NFZ7czaTn6#qsXJ-@nj`(lQW%GBio8LT|XF`?R01l zN=Bpy-aV=GZg}olJIfsHa~3^c9S@D&qG?x;)IrClOs&RX5>a~4SrOdc-eP69s3QEg zr_bH=h{gXoU_fTZy0nd4!CuK1&HS?sLJ94%-Sru!JdeWl;5v__PnHQ(yu@rD#Xvjb z@#*R6>WYde6R}JGOt`t3`=1H>uO6;ZNgUZytqyG5p(j@+z#`2{wy=;-PqcoC9>pcr6Dgl>cnW@8q zFz$X!L})Ld>A}HCj3fc$iz48Tid$AqLhSbRRLbP57V!SXZJ+QI7h#;z`Fsz$722EZ zcc&Mf@ggrqILvxd)|cI1;DL#%l4IOcYnbuDVB&d zV$tu}VM`=sWp(^rX9bEbP^|%y1qTNwE-DtG$$mw%5~>8t=OzS~r8rkqL_HA&A!k%i z6fjjT1CjU+t8II~>kj}u6qGkb37tLBSY7Sp=B5vV)^CVK&NCW1Cgz9Z?}vwnpu~Oy z?~c8_bY4_q|Hn-J3lt!OKhuAi;Yn#T9VsHAYz>U#vpJS3OVM~r5huNATT=>c8K#Av zIg*3CVr@>);0`50C9++hmZzN}M?(%;?_CUd7KtuFBqk;X0g;&B-F6*+)fyE!TanY@ zr-ZmN7uTQNA-5|xr(9W*V9LIgl_wB|JD;x83knMQNO<}O2NhExTXPk<8-vj_AExW9 zREGz4d}7kmeQrWS&UL z{Xkzd@vF_7Cw?*lCTA1zuTu!PI*9iqzIhuNs7V2B!kC1?8rPR~2V4CP$CzFBS?_Av`O`abpDZ92tbH4Xz=>&#_sTrPaZf?pZ zGnbTWTb7mJAPq8~t7?pDN$N1MGrvLXU z$h{Fo%Q~M|DI4zWLp#NMo)FWLAqW4NO56%NV!srJ-m{=`c>Y)Ry8L&kWl>n!5F`X~GQ4_nqpa)BXb$D86rUqPs z0J@ELSmjyZw;Cj-HAzPLpz+&E?pzsm80s>r!< z;}=4C|9jGkBxSBOr~A=aJ!JS<*sJbK28WVOZ<TD0|*DyZCoI5*V;P*tpEDGJetNU)wnPmR$7I$BbJ7sA{eY z*Q<5D+GV|tJs2HHDEfm;bu-QcD~?WX;@^g4gFT3L%h5v~B_soM`n9IQg8xY!a6vnC zq&LXnQ*;>}tX;!2jgG|nfrPUrY*g^Xj+ULz@4wQ#lDEzTBl*mFv%S?NhN`+hRENiZH;ggYBPItS0cr7nbRfy>br_zE=s{Zjt#8l zZJocEBR%Pg7k_wxbkXj*!1Qd@QDz$bKlhW9fZCc2(d{WdvePO1B_n+{PwI%*2q(jj zCecs$Q9(ueW`RpH+-=*8yis%rQ|H=e5Hp2uJU5eusf>Q_wJ11>4kY0Gsf_>rR9$_6 zflad`5u3kjc#jzWi0tbf_z8Ap9ZNZkg}eKdr;NX&X~a`UG+b5$E&T*%R8Q#u+I&Jp z!eHu6$p0LIOpmXYl=xv_OJRAxtWM=|Juc^RAIVl#H$Fu;nP~u9SS8ZTCM`K1S%p; zU?`iN$fd|Yixfzz^8fLIoQU)RpCDx2<%0jJL zpH9O#3cWRpSVquX>q5u{U1xX9cDFTZ&@vwDb9zz*#hxWOxPRQgW7mn zMQYMjz3&XPrnzlP=L`^G;Di-H9io-ti~6^gKH#zPzqWBWI*e~pDb?)TK6uo%b>ve7 zfp?Z720g_zqxY?u`kBWu?xb}8H2AC15G7an_nH9ms|6< zWb$)Y$z9VZ{mQe_mX^c2EO@loM{uB=xW~;A$pY9H$O%w#m9;vemNjhKJX`#*Sf;|2f;P7_6}(DQ zlVV^ol%ScX;OAmB@Jj!CmEZp__vwgBOY=TnZU&kjYbz^hK4t`!FP`U{((dlpIU-*uiT=TKGH1k5 zuie}2YJV26)rhF5bJNrDuC4$Q=(xC`Wz)f=+rS7o=cNX_xF}SBJWK1=kv5+j``J?U zo8uLV?E1R8p59*2d8XKtA`1;#Kl23Hn0|+^m#^>pyLeCJYJ6!)L~za=^_phq=jU7? zs{>8nKqk;#LqkDPS5}U7ok16i^Yrq1dVVoKxfX)vdIFke*hY&$8fl?2F0T=%?VWgpIpXhr*nn_9pD+w z0Xa6)Q~+(@uYj@r&*MtS zV!Xq@(@GEi?R?YA${{byhocUw9+C$(2~>nLAeTl$>P@W15R)=BH3hmU;6P#tqoSf7 zZca|-DwaqB9?ABa9=V%6PF6p|z?%c{7uZA~I6DVRLr|BHm1O{2vZ$!&)Fd!+5l>G~ zpgbA=3N{~zn{>d3*0_NDwwbR4Bvo=@;Wp^z|LZ00;XQFXxwsGrc)NnO2>_Bp29HSE zWn7f9nQ-FgPoJO&2+}tXqloxdLAfC*DcMAn zeNC~J-qgecq;LTNFZk@{fH4r&*4Cb4yN?!4V-O<*m6Wssc-{8=JXK@ssu8_r=dJz- zT%b4s#e}b5r%`J~1ygfO{!EsjA76*<2Wx`r>S`dHv2b+!0jQJgY{PDMCZ>v4FmN$A zx&Yta*N1e#+rBv6-<$x&-P4=5)ERtk|FTOa9v+^tEP+-a1gSD;FE#A!0FPv|E*W7( zb^$p%5NQ<`7Y~h&j*g5V>ZU?}CZ!>9CTp}^RB5!=mmb6_DT(nF6;adZ$;ME;#F{DO zJc7seRS>Dk5?y%W@Sn?<5V*v$8L=4;4GmQ<(*XUzVBespSJG-1=jT!#LqkJ&?B-)b zu@qE9@|&Gw;n)noOqMHj8v%bjckYBIShD^gw2D8S)0){}C4Mu$xx@H|XGy!)G1TBI zA0+(mA;fBm@^2KNmcSRX@)g@Z&Zqz&me!tZ95t^FZkl3o;YVxF_)3WbEdxSBKvOl> z?nh#wo0zT3J+YAd*S_6BzCymfzGLI#!|)y+H^4xp`S>s?_-MT3f2|F!tyyYU_1jN} z!MIh>dk2{s42Vs@a0~GgSaAp$@iiAUh&Q(aB?3MHK~X_Lrhw0Nz{^8+{&Ws>&WKt# zVgY{Aow&4&44>;R`W-hjvx0$vKR|%Fxw+78Mqx9J~_C*P)R^riXn!bBsd7cL_vye@_xq(lrzf#6#jPbN)`%2*WyDH4c;9w=c$| zWI7HxU)NFll}`0Hrx7j?%d7_74si#Pu1K%;=Hh zi4b!mL>ictYPwFLUJDOH6$saQZH@+rPA)fYK5tlvMCg-NQS52WlL7+zp9%)p)bg_4 z`3@jWq}H!`{hzdM^CS&@XUr0%#M1^L@42EkZD3_qmDJb7>Xn679yN@-n%mlom^dkeDWv)mt|gan)uosZ9h^M{=s zRY3}#%d_V@%fW}tIm;p0TRSyAAs?@<=9xA*DxIvy)bVXLM$vsO6y8J}dhZ4u>TPTJ zbCayKLVDPn&0oh=NoE%pS-)+6OhZb%%bj7pgqrRB@$P(8m$XN9pH$rcoSr(Ws;WA% zhyX8D*uyGj*rE6N&v4i1s|tHk&Fm3WQ`N^kJ~&|p=NsBlRyjn|B1e?huRh76&#)!9 zmfH|MTpy+LdsIe7j)4g906cZCKQ}$UQ%zBC?}S1=x>{A9O_g2N(CBRn#@kqIq(?&b z3a;9;>+Gp~4}8g#J-1t@1QaKW2(0ntU;Q z5Ce;x1gmD>ZqAg&H zaESSpyfqr=P!kVCpz|(KPw%BR$SkE*` zEwNU3aW*-E4Iz=A!Ucvy9#Or7b-#XcmX(%l95_2&?*-_7_Dm#Oj&vgU+k*eP4Tbux z<~vked*snbT>{s=s^~`H819<8Kb;lZ5xy@@`~!YJF23WutN7wWoL_bYEA4C`kzVBT z5t8SiT}6_=v@S_4<#z55*O&E~IgB)KD2O>Q#l&?7FGd;Df0)&4W{1dj7xCwL#fFFh zy~U4Ws)dDxHt(x_$x=CYcdimK!%lwz(9Q!4L=q7X?bC(YNw0!(m52s0?V<$zJx2RW zf@_+eS;^X>ok&0|<7vlDHIAEWFoAv?G>s22vJ3(##;TQ|pGZWu*m3LF%b`ZL&{s|p z&jL|SMVY(X2#=GUi#l}zxFr%bmW#7lkP_^Srx#UL5@TY1FDRhe+r&arOC7;%MiFET zj(S!aObO#fA&a*xBLxNhseo0Q%1O%)r>Z^sZlxl1Z2!H^u-EF_6QPo-0;s?>6c9{S;)$dH;P`2gLSk5a>a|LM_r)egCyUvq7g34E;ei{`)0KAOx~QcXt@ zf{2vHqeYN;v$#e=!3t2D;`C(}RzQnX8+YFbC;6kcAH&iOvguNk~r!-MdOU^ZsZiO+U;(Gc|ctsy}DDc+4RSl}2#cGG}g6|3?2e z;#w9{|5o8byB>B5Avr_QzE$IBzWv5Wez^Pq`x{?>)OeqY-t*l1*=s3@6np$Y!s(rW zAewfM-5-|bsb7$nS5_*@n*z_W1D^4Lk~%+L^`9q{?bATe*9aLwPYKeUdDts2K&n`1 zsu8-#77wInpFKFuCb2JNunIVI%g^$S^|#Be!5lMujLpa_F8WSl)Yxe-*)SUMI)J~Z zpLFQz@Ty3>-F%jqZSb|w67I$4IIks>03WwK-?$qmGT&9hh7qOefa=(T?w)T+Rdk}i zV&fh?6M4PPHv#pQn2pUBK zJvnL%`RSv1wu$^Kir?XN$xtGv;ulGo-Ljxhj7jsVqvbymSQ%YduJxrf63kZ2-E|84 zWy(wqBy4lB#076DE*;G!GV*~ik!&%3hV*Jb zjPsCLP_RQmumCpYzsP40JKNjZ-f>ux@}ZBKBi$~_*^8j9RVs`c4zzNYF6D<5%lW#? zlohe7x?t|Si&{|qzNTxdP_tL-^=7e}>3|Dq&#m}W^L@zLaX)nD>ul``NfOpfl>tRl zBu^GhzxH^FnaxD_-8!56$0KpO5B9&uwHoC_ev;~!6^`^jd>076d3S0qki9Ncy=rQB zFUFbANM&{oq|H8;yCQXQ2~%+jGv^|SC5&dJ$h{BH5X3rU)L*oTHR{`dt^~a@1VqHR z#KgqpWKC670wMp$zOc7jo15Xmn`fT+D~|g!ba79wp!@2St?Cg%6??%bjCiOXuLv0-v)6OAZq zf(+tRaFAqtpD8PGD7DbLcg!!faiX^~Yx2&WWg%;9bjF8=jhlNbT7%*y$pG>3u;s`* zQdV=E>t~q%@`8y-R9Hx^#m!1h-I!w|k>&>n%+^;j=9TM10^cR*$1k5Rem#`wjPOnR zDU1vc$=uVcXZ)pi2|31tKKI@v2+0;{=CVjHFGMky;Y*Ub1L{p6o@w{Fi3$zH|BXFD`J&U~__%0qH5s4@Ajt1Z#Hw}?ja50%f4U}%6 zFm-WpAt50FY1Fv`>|gC(HS^e)z0A+JW}AtG`Ykra!`IF?p%4C9vjL4$13Uae0Xzuw~c2ZQ-jz zRy>E-rpnpUYdP63w^BPtu*+sSl{?*E>$c1A`yMMcG_Fde~S zNMb?gNJj1l>KdG%IkvAEqr+PfPIhX?=O*PH+16F) zNCknsQ?*d;?qb4W|A*;t91#4+qk-|Go@Vbi-QC?l{4XUdOA*fQvaK0FrEZeUtpCx( z7qG>}S*;)4sa`9tDM3vlNe1Rt(!Dmi& z=DcyOsOomy?fUELQ?Cgwl_5*cjz0zV=n6puz#{K+l&_tY*Tj1-+31GI_pzmsCuA!)}E~v;TGypAFp_fOc!t^1-;!8dA_oq z$`8wbTkre4LEp<7$+N;pFKV0^CLnqD4Hni5$CS<=hdVhE`G-9Bl)Q!%-z#foun{1z zfCd*J4ycl2-!@^;gH_AF~l4o!LAJv*iqeJPK8Y*#4rndPp!HhqcW z{UC*rm?|rN48tp)^u2QnDbJ*im|2hoHdHP38v%EvPQ8q>G8-jjzHzSu)2lca>0n7$ zQy}5dtklD>$KsL&(@8+Q9xNIk6iL8+48q8}cklY#5C`rH3kxyfF$E8s-3~N>d5R<& z;~)D!Dug8sjRN`pjf?d{T~aTat{ekCX*7lwFY~1W;*3%$$;wUs2eMQx?9&^GmyN3g zH$U$~n_{(n^j*DIhGZ{ZcAfJFBx0R#_+HrB1uvX+0+_yTpU+Z&Vr3+1z0U();p?ic zMis1bDkS8e+FzGvl-)`q4syp&rO8Q7M1KJyB%p)hlUi>AsO?U z(esx&a@=n)p7W6y#EUbaQ~HjkE@t+e^POk`?!rpjj+#G6rUPlQ+SX>c7`cQK=pp3j zbxJ&Sp7qJ_2Zx8lHU(i|zCZ#K)$pf0!N6V_ppk}#r-P7CV|2Os_;fUrM|l8E#_xSe zEA9AKAXqba8L*1yTcczF_G=Q~-o4?L5ErkvTS}sxywSin>Ska%w43@0$&yZ3_)=gs zqERbPvE^KdcB&Y`;q@N-wt1(eoM`%o?l6?{;v1Za9U9Yqw_=Cm-*!IhRpwqK{CLjQ zA}i)u4Xt%pBPSNkESJ~I9uJ>(5qhD8Z1gTZTl{`jJ~m*0`RQ=ZU!vJq4T2V*Oo2vl zJ{6rW%gO%!@7ym~axPRv^rAK6U_e12Yd5(ffOx0X*zoWxLP()JSxBm4r z^UvcK4}`wq`yzdlzr0ibrgbhr0Zn%W*p0)Z zqwM!y(0AiNh}_2mCO9a4o0x(ULck9tB^@)j9sN1hrk{7@U4++STU|Z%#vERFQy%1w zcRYJ6bTkw)$>F_ZC%JwWjw{If&1sEUltHgSheNGXZJ3rcB75m{ax;HfEpD_9Yrp-l zrC(__XStnOvi;qeJHPm(<`N6OPRqz6n7aTHh)T;eT%UZy6dWdcnju(DAjcxD7$Xx6Ap~(qUAS84=4i^nBZ zTKFZZ` zWx49AkiHnyM6#n#PY*W?^x^e#&FCtgm7~QTx_G7>Gvoh&!Ad!8CO-+{?p1?#FFcwT}#-{sc!{8+c5i_%vuN3sL^8j(wi zl>{PPhUOgJF6rb*y{i#dcz3;J5?$mi={7FQcD&cn7$7q2Tw35Ez zC8eQpCQ>weeI=`JHodfzzKK9ZMRoS}JwLw>Xb$9?W8T@RsKg1AqPwhmV5)$eNkc;| zui+9yE|L^JaNx^NJRO@Kx0988Am^a5BU2&K)x{-I=#d_az@4cvJ3Q%}eruy?-wudS z;3tRlIo$TuVqeLW%5|sB20wIQ{czb)$i)L}p2EW2zd_la*~Bm|x07diXsKa2(_m8z zpz{u73(GfcsH>yI2Xk%D`EuwlVnE-1^Kqq0qLqF)^g$^eRwJp9hU-xI*j9zzFNzrP zxyX3M+`zq+b5mUwP7A})zxIVLM%lG-XfUC@H2 z&YO=tJsTyk&G_44r4|#j2X2p6w7`zws$Jn+&x(Dc_Z~#^G;j|bdVVIw^HvPjR4#-Q zgKaxeWJEZB1gJY>RTOn~AAn9JI9p2eSq&bjXJ5T~W%s)dNNuoxDmZP8V5<;b+&zM9 zEuNZmv-5#eoRuvLM1r`ux|9ZmtM`ueDD5KCWjJrXY@K(WeMGfg=oZjCC3Hk#bvhrf>2}o6o`|PtrU7rTfbOWEtgt2D zXtzDJdZfA81`)zpw`__-+Hk@I024<9`uX!%0oTwh19=8(X*5uPXG6?JKskVjcE*qc z<{;tt&d|=+fi??>gy?ZPa?bg^&hs7bVWzSO1$}v}bYceJs-@S<1lFU0Ao^`O-SS%Y zYw9d99cnPCMApghtUXg~-?=@peMfo!d(Xq)oat|@udhPQ;)RzJzOuesMMjG~^EDH< z`}q-9jOtarkdaEGa&za_ZU5T!Z1|%z>g^HdH$#sVdfDVPnUgE)@pwyI)e0^%j|V37 zX)pmk@U6foTocqoov-mV1heeJh&Xu1f#qN%+?kmfFq9SUmOe2y2ISrMk9X{Jdl?xSh=k$` z^)bGdU_!mJlKGCFg2DtOFQ)v;-^qoB1CK@%qpBVFW*u&74scR2+YJqAU_G4lpxf%! zPy%?Zm3_$->{+kBgf%ypxJ3FdYHq*Q_z=>$;zacrdrH>8$aJIl5d60->3;m;PuQ>Y zw2_urzbLvK67UrKB6AyAhC(mTn}ZJ4B=eNokPo?gl{t zDQTp;1Vp5y1!I@#$@x?ngl^YMzOgQ=mR0n%qku7`$tN89fnb7(bc*#NQfQ_^t31Z;Xa zAeWjnYEa|E*#_5}+ajYj7q1__gDUl&O;6}qkk)tZu}x@9 z|7n;nEG&DlF}XRH<=^8E3C+?$Ye|%8ml;t+M8tZ5lFS+J-SdqZ>d7f>z3p#kk$s7U zY$nZp!Gd&)()xVjA&TslEvui!2+RGol5SKb8~x(0Af2?|vu1;MVG)5#Z7V*Y`}f9muD;D867kIJEZnvp%PyU@PrdC7z3St- zFBjI9Nnen3Y_}VI>?zcJ*nP0my1=nyVY_BLE6mPuxhsHdq_^$olP5Xb;=Ip3?C<}% z=K&cE*D&<}1Le8c9{$@{e4h~FqeNFe5OCL~}x*wE8MfuzQDU_Qj;2p`A zu71N|Y5AoqM1u8i8cCWcc~+Kxe~|C>&k@pQ+Qm9QOyH+e@Y@l*5RdbVe5IjTshkS~$66t%gUbOx_nDBYzJ2>v!J-?Y)w;Th3NC&n zCK+E?5(@l-E+L*@^luQ8jJKcvX!(F3cHp(eFRl0?Z#{+J>!c^{y7lM_QJ38JVL1mN zbQsAUA0NI+=wN)KH=0B7U)Aqn!hBMmJ~#5V)y=8`|J=2?-(ey8LUZ&=UtS*D4yArL zXOJyyXdu4L(eM#$ zjs~gaeh)x=U!hAw?N7-c(e5PqHJl+3=>2F^ebDp&yOrCaIwgfZ+8NXoLvTlI1~J0Q zVNo4nyFXWJ*BtaCtBhJ?(Z!5-^xKSCs5q$9=&*W+jRdaDCyKv+?p|mx#_(e=ExV~3 z{#U8rM;lu$@M~50fbO5&DB|u}#UNp>pQx}%c;oxZg1#oT7>i~5n#aHD#w`_zw|ZZ+ zDw`hv`|XZ9rm&Gq_M*&=`dGusM>Qj4Z6Pfw_9ch)2ObKVZ6z%hG0wp8%OO40ucePE z&q#zl{aI(T;}kq4FR;wqZsdAR{97%*vHDj|WrPbUAgiD_7@MZ-oj2iC@B=^w?b(C{ z5~u}a+Ntf*O;o;0RqZTO?Jrj~4{=YGXv9)=$I(=KKjwRZ5D+l&k$n2&@S9!vy+sT? zz1{7pKj%9pfprl@rKR|8)LuuB;hUSFY4?qd?SrmT>eJ67j~)T}v6-)5(b3Q}bZ<{F z{k431T*CN&%+HH^97=qTRXi8=0P=}!~J4HoBm5dtmkQRJcogK+5 z1keuX%#ww0yd1|`M5%R|3dWCQW#pdOV7LG*iLH9b|5f1RSG$3pPVh7@yTy@DyJO&Z zPl|YMU6%H$_vu?%`)9@fYIu2H`@~Qlihi22%Wp6Eh7`NF@YJ*QPY3jg<_BWN52bl6 zo{pu-G(OxD-rdvDi8~vxen$ElOa*KbyFiEE1dY=5owY9H+ZVK-yWUw%T!=E)o0^YH zAD#!|DpRvpJu}v97oE#8Y+fTT8zvP_ydrQ}n(~@TJFiHZ<(jbnuR=We*mhW8{y$+0 ze_|!JdUlVEr1W$Jvd5U+e8Buak4(6Vp;J^;G`w)R7A`DB%@)?^L8&x(mm}Ia6tP$r zUc%hh8&cB{DjWUW#6-VH2Low=6XCxL!s_~Bzujj&2+1r9wDj(4VYqaahD`;frCTd2 z8i%Hd_K;uJR#d!P5uklRnea_u&<%DyQ*W8m48lOJu#BEwljZ6B&CNf&am1maAMI~0 zGp|+bBSqo%u`#U zkIDO0Z3o@M?QfH3pXLic=2@R!VK1*^OAHT8p)bAhexfO+dMxZz(H$WsOe@Q~9PUQ7 z-guv2#|va(#=7WBYLWg1q~7AL5h$Kmo7aY6A~Nm~I5DOO`NH%I*4HRgMbq0jNN$)- z(P-|}Tshw|dwhNo9O;6YD{yl6w|MMFa`=OS$)qtq`A@$WUhRi-tJI>E>clW}-RZo>Tch$Y&sCS@@ zdN`UR&gGS*C514_qON5*Ao|4g-p6wN&fF@zE*lzWXJ_P~@ZjeL1}%+^uD>P%)>{Ij zL2 zaZ;GE0#b0?c&;=;CZ0{1b}Xr+H$U%?+fL&6yd58N7?ASq(=Fm`*ZGcyIfPp=?IFVT z#qhJVt=Cu2?4EbXF2<&*uvt7kL%*%fL>!-~Dm+`dQC}>`zA%6N3^R9xPlta(L%oCa z$Wm*{m-qwGzfu|f_UCc^>j>Qk#vOaLoWHluDLY919%t`W$}0X~h!y|w_G~%dUAaz0 zwD}+@HJ*)w40InH`gQUO3hB^DjaO1&co71ca_)=Br`ACS67s$%A8!k^+0)J=aXzJ! zo0sQduv0OUGX6&Nxj;P^BA|Mnc~<9w!OXXrIQXD&!5}CBx7zc=m|*i{g1NZlem*ek zF-lvfCnnMW-v(nF^qk{(;mqk@(5~fp!tBq(lYez>c4&IKsbc0lh=inWZEe`XEtvL= z$k_no{*U~`D1@ILQ~X|)awp=6^wSIfvgW+#?CSR76BRPCte^(h#o^^a2bHK-ooS0x zvswX5QO^@F*?93hQTPQ|C>5pASp#uOXTmTtHufsG3b^ap-#%JIa?L(sJ!frMtndl4JE{y0I2U0l6a83ROWR9gj7? zaeAYCbNF4XDn(k3?WpGrA&OcRrdR@^u5<3H0xAx8nll? zn+vR6bnN|t_T5FQ*uOs8G4VZd6~y(a_bYtpe!INn>CYcu=j?+oL7-01^8Fs6OwR+a z(`3#aCVZ+=zq&(Rs7U`R-)z2xPhqa88Go&xa+xu#JwNG03)nDLhl|)f3(scNiOq? z#3!;q3SkMf5~ZMl1SGQ$7x~4Q;!vJdAQ>JbJvTZndP(Uce!IgHQ>U6TqH0`R1PhCs z^M$5`6prPWs{x1z3$04T``p$E0r0F2an1bq+utZmP|@z{<|`)pjG+@9brBRVltQM)|6Gi>nBd|9z}tB3g4UQX>~56P&N{ zNz|@?HT6BJ>`&tvni;WlPTK=F3)eqeGYyOO>7%SdS&kP@vWi|`J7cX@SRmnE&d`mYG_SklDAB>nG_{a5e4Qt`y&oW~vdUQ)7O zYSJ-N*)0>*)7o=`%Nf{*?gz7{4)XoQCHlzuHZc_>X-h8J{k)s+idZSwUBHVAd^k*b z!9ENKjTme}Lyk5!sBeRcx`cmbftgY`qE$_Ne4u`Po`0kNy_Hxe_79PfU;0Ad8)d$J zjlVN!;@Z#1c&~m1(q=OLuR-@^jtuQHdejZ@AV-!tVbRD*Vr)qRzy~#@5;MCH3`M2cH+8IFIPI z^Y6bO6%CjZ)2>iRGt<(-8Whv7*S{mFZI0qFGNk1eu(2~*s-I7h2xt#5@|x3i&te#R zR{sc9#vjiu=|17-kv?o?O~vcd%I=>2&Z^A??TyLCjI=a~%K{?%`39`fSFkw0RT^Q` z-qmRY*wc5^mH3%gmc^K4Mg!UGQy(OTib{9^MqO?l+_agWe}uO}dZ8z{*z(Bj_pwpF zIK5blS&-?Gxjf4Lmw*rYx&qV^>a~m(uSP-3Qs^|YOXYWecTdRgmI94hA%)AN-FlR4 zQ1&-a#L9F`+I>1J2gnfo5m5lEfL^;)*C+RcV=@cSEuP%e+4+sQAdFb?Xm5622EE=^0j7*et zOMd?zIubivqvvgMWb`&_qW?NLI#nJ!6XSl)f(_DY=eLaQPR?n=dX4++UK zf2Hbf>Ri2PFhm9!-t{{xj9-XBioL5{7?U47TxmqW`~;$GLH3N zt4OlSGAohMx{3u6s@p$K(^G`}N(NpHi^f_8@so@JenY8T2L}gLxcF9SUF=q-SQ_3M zqhfwH6oiDx6@YVW+s%|q^2n z3U=_QVH)07XA5xK_-xu42nAHcJNbQ(V%yL0IzM&{ubT(6h!SK7Q?#uSt+;!qNzauJtm#l#SlluAs*H@lEm z?G#Q&s|!vp&<37vgbk&gBM~&^hsCD9AD8RR$*;U zeu4Z@-n~KrnWx<7ULxv}6JKU;+^59ebRu+aj*d|IIkD+n8Q{ys5>bfs?JaR!2@zr3 zdTa2jtEl5oE}iWSU*EJi&2nzPc0$;Bpdf2qVtIg(nZ;gaoE_kL@@M@iisX5rUs(Ky zUUQqZEic9I(7Ax)zjpoj91_u5+UsVN#_l8Y1_O_kyWPPvBac7#$dm~&vZ+D^r zx3U+b%fP=)YB3lqJTfv!zDpV$+lH^6P$NHh_ylxWNOW{`d<8D0D2cg8JS@B+DpP@K z$FKjBo(Y|pw5}`vof_YAtI__2XXX8J!4&==ClW<2rcUZ4=f{_2rP*uYONX9h;u!}I zS8L|2=UmY=@G>ay<4E)i!g7*FCSJSh`$$OL*V3X48tSd_Fqcl$jrrcC>+Nbzz8}D@eFL%uIGzy&B&>n>1t_!>3 z1c$mXGIn8+x96HUj_=PiefiuQ;XG4*gwf&s2WNlr^7{DPqjP_8GswJ(9|`_CNfabx8Yfx zb-cgnLAkK+)>xsi^-^HC?$|AsJ|s9e`1_9^QheRwjC8Jt!$85mI9!pI-~**yL9|;XxJ357!%zGN7%x3eG-W!@ zP1AjC)$`bXR`u|Z#{I1FP>zIL;L$Vxgxi1o?zipLMlF8h$_lua^?JWeRqpj){( zxxJ~ozD$368Rx7#m|*zXA@K67Nv}2-5kssx%W7It=EiKz8apZ^?bRb}!JUBva*J@KG;G_~}1 z)f%(N?R4pON+cb~hD|wA6%|qESnGDNj|4cPb5Fdlh22+!)$97+(ZoMeR!*~h%Y`ZY=V?#%6R>>`ji6!a{ZPZn`&@Z#uJtMv4^T1V`RsceTIO`}NQk z_p1iBq**gi`jY|#@qrO#!n z-SUk5T;7TnAr$w;C>k^t4_dVk^E z#Ir#E<@EB%w9gn#<%PlZGTyn)1y6=%=IKs`iUsQ9e9JtLr*5vh6grws9+N-h^#AF< zfA*I!qS@~JvarT=2T76(VA|zJ78VzFt6Tk);$wU-x&#I9&sJJtVdZ-Six)^AwUswC zC|4OT?98+(r}N4j?hrn}BFGGq_a*~S z>KhtD9Yd#NqyN3oK7?agElY3`6tV!DZJ2rSMaC-Na%2eTo#T6|2q%5;8I`aJtkI7+eEZ zc81VvMmlu7W*^Tbm9}*f0ny-<$EY#H9(Aixr5NSx7RFlU!T%NS=UjnYocNbflwx@3Qel4}6rt+SiW@Rs)1;)W3NdRkP$}Gme9C_=hcJQnM9nrN?{&afJ*FkUc!K23sZ~ z?T6&ry^2E6pXk3X$wan7luo9EWX2J&n6mfnAAYI5Nr z%NIZY6OXhqKQ+Uyz2K-aKBDACLAgq*Ki=qArm7ztj%;~rz&!b=b1Z8RwIQI3n*62D z^$-bpt-APx#CkB73DV|fR5~f@kz@wGw>ME`@Agy|Rm+!t@%`ft_|0qv+8V&J}Y*T9T zPNB3dc8jH*M|o&W#4FCjqY=b-g@^t=$@A}yHsJbqK6E^4yQgxDk2+CF)&i9ENpwe|-n&UKPY;fcW@jN4jLtXu zUI&Z3sm{-@_G*pM>&T%J!pl9~BX^{TBwSl+!%y%%Pa`Q&BqZ`(Z}XO#^s#AwM6tiP zF?>}}s$W1NL`te0gwnbY5P$tCmUDUIS)1@|-TR5&jnbr6Uk=-epQYQ;vsK-iHLo|h z4L)x+CC!1=5Kv>>+}yYf8}Cs)cn}N*EMPXbvhd^6#u zu~f_R+2f|~&e1J@W2r*Q&C*kEq?a@w0hBR=T2e`nr3T8AhLd3%Bl#t*dL@`}ZtaM2$CJ z$F20f+ncH5T%Lb2ondX?Dm4}zTgu_#w^B?^(b^Ka6ngLgL1Xs8XX|LEE~F*4>RRdH zD4pzsWZYaL5@v}tQFA2stMjv8yT^|^x;oKY2|HhGXt%IUjWLZS{&$Y@IEs?1BC7UPOWIf2kM8LkL+|O%_xk!_d z&9o$w|7GZt!Fl(=dBy`@<#mQia2&ia!wbn)`Gf26*ZOO_lNBn)C^iqmp5X)TaK@o8 zT0EhlS*4}^Ru=)_{+J$s$iRVr`SU*tb%#UKm1RFa@#A9#sKnH2K7GF3$MC(ubf&AW z{^{e>P8HB$YsXsl?A>d3V#P(fO=afNT+JGXY}0Mc{jUsWxnj$)S4XI|cF8|?^&BSh zuF~$+xNIn*qM`~W6)Ps!)YS#gVBEj&0j@bwy!Ln4#<8P$zq@Y~8;fxl$F1fOLla3B ztJ6Tq213A>?ry{z*PMk!t0|-$qqOHtm8(c*D!x`?#{tpJEQh%RmVGW(a_BGj7*JoM zk_rP;Ejo$UqPsht(T>ee*dvoUEBx6Dt&Dn!d@9UzcU^@d{9M6 zdI%Deu@X@%GiZ$GEX-7hFW%<*AqAm0PnDpZ?Oyn<|I)A?A?fUkUI;|ioQVr|!9B=G z`kcoI+02<(Fd5>dr8fAtf)5*bk(MckF@=#FJ+;sqNJ*3q#T0t`&ozhXLv@^Vw-gEk z*fs^cQRltMmz5|UQOi?|r5ZoTrg@y;zQ6MLDqN{T}QN zRGTgIgm+PO^Idh$R0ySAg5>T6It>}3q4yq{II`i82Z2-Ho_g~Y`DRe$2Mo`wXm5096P4*IU$mZV!D&y@2xp|rL&HM^xx zs2kIhk`CsehV-gAUGSI>>*D)(+++nIF_9h3u$4GlG{|6Vu1M#X&8NLRemYT8{3kfG zP!8Fm&&i;H`}NjMlE%qat>C#u(1_m_qNp#s{fr{35Yz!OoNa!$#&0m0tL{H|Ae#=H zZ7g(jARsf&)B;OnwcgrAK~?o35PX5G4ZQVF@Rkhzm#o(kiZNj7T~}Kx;&WaNZ<_w- zv5bZlsF?1jprZ0>s$>)pMAIA4FDe#1D-*i1Q})Q}>@+kr74YU5%^r4`@1qc5BnT-s z&lL@FUe|r`@7$?Cov)SO)yb4mWtDLJM}2D&8V3H=DLGX$cr~i>@yGrmFL|lER0O42 zT4o}0vCpjlMSl#X9yT^3wS=wx2>C?EjX9(0dQfABXLoo8YVyaC{3|lc(ucAHPFY%V9neBvUpCBtWW9ZM`u$mYKI-X8NpKc;P6N%Q~Q1V3vbHqxg zZe^vBp5^)bXUn4K@;Ej&HGP>E8nNG5o~2!1hQ!1um#WfVb)G%Q)F}ME)}Q`+He|8o zWOk`_P+~|zOVT2|%O;Z8K5;@MVYqrG8c3L&h68dqZca{VU>eW097~I8V`KA6<~$e< zF=?@_Jwb~A$>NcYu&pbo_`vCT_c4zS>T`E@Njl#Yl(U`W>ihyvv)vfVtK;1lQ;nkD zBuq@!-6)c-d{0q2rtu#dC`aLpEo6%*Z;kncWmM=kogJhjV<5eFaplGETv}9g|Ch$f z?M?sAulx4)g2coqD6>EGfx)R;U+#2deuE33{#f=J-RPfvj_;piTfB7-f8lmCqJ4YQ zjZ$eOVixN4lpr+<~J~9KUnS@7t1QC3&d3B*`!gy6KSXns)HDNdOC|^#ON&XvV@r)@fq(kop zmio(Coi~cnWKzW=?qI=URyFnY>#<0g@={mV1KN69BX*7^2BlyT5l>L=nChKbpJT!$4YJiAyx6az9kneMRr z`j=9ZjrV?Uvs5>1w)m-I4W|$qw++c5LC)RbSFGrvE+0?3))(`3Z{?HMU%MYOk{6B= z#h7ZKB8Ozr$k330Yf(%3xu5|H%as7n_BMB6#2JpMN!x16bJHPIOq>+XQ8l+GZV|EV zGc9KwBHu$oK2_%{C{!m%;o}=O8nzBN9)Il+?-<7rViL`6a}7T_TCovqaNxL5Z#UW6 zepcdOl*L7We&N|e%qg*dXrWm?#-_;G=ySpAQ=j)iQXEES#d7pbEQ!H|eO5O>DY$~+YJ zHB6)PQD-LLf2T-l4Z?irP~RPufQS>Sm6xicV*^VAR8{|==>eswT+~43H7PRzI)ga# zt|qkT9RL`FzFwo}Nr}DdEA(QgV|bNnw(!N}CEHSWm{h*{bbu6x6{k`2G-OdA@AdNb zCcnLJ#TIHJ5;yC8rp`?EpX;5{6xbt8(zNIWjk49^j)|)I>dfWEhl=T-^8~{!Mn*1%6 z6vip0M@3;i-+@aTT>Q}vo?BvKV)60u<*JM!niC5^?g0y7=o|hyJdBIj`F(KU=->cR z^i))hTON&_280}%J_0(~T%*Gjh`}RTnTRKTH$G65fThF9pFdh|yevt9 zD1Q;^Er1vazWhoG3N)vZ%mlz!zxg|BGVvHL@>6}iHoT4ieZvGk_EU9r+#;850x)Ho zuUhvWg&gO;8+rK5XABhS&2f7f@H!b$<|xfOFsNs3#Eun{LOsiAwFgbRG)am@9e(T% zwdseH<4zrVCML*gGyBruqU~hNl6ciw!Pgc&#k88;pw3o<3_Vfvdss|NXpgQsKRCcc zVP3`YqcZ*O2?cjCTfs98k;=ca$E!cXA8SfPrfcfW*Zg_+FzKd)2g zBVqmj-eSwGH3Tn$7fhO#CEdLqJ*1#hokjY8{woud|NlPl|I$575A5sj--5O>K9efD zMnQ1-lvI8hF8C*~YnN+5X``Ku1CPQ?o#mNRa7YLsvGYqyIaYK3Gqb`%yEIHn0|TmE zSVLR8yLV$XKpImnECegAJ5Q6*Px2HU3Bjk)WdnWW4>V?vnq0TP0+>$7rlaMy!%RS! zn3aWzTkE(icFZIOFsI&3cmXUBlw{tEn2L(upcIAaB10)0mlr2Cvh-H1ZEb8?WqCVA z8qBPSwAS#~ftPl_4Gd2Jx%&UCuLQQTq(PIMC!SvcD~AL0J5Y@?Gu?Nlw}D~^7X)1a zaA?-N`|e~O7+(YRKFlC;1HD#GP7WBC4ULT4F|B|-q@B(8zt^4E0rYhEs5)Q;ua5(f zHb>C83+SAqqaPvfDp#cpDd2?<*DX;_2XEH3*U*G6QU)^>f{yI$?D9m}e04rdRx5M@ zS}TxQfM!hQZb$ehy#V7rbMsX=m%!GqY-j!M@dhcTBZR;+J{Qv)NO1GyGhBHV2+9a@elFAdM zS?+_>gT{QR!_N;+H+UB;4Lhu4USxE*pa^!YA?8g`6u}LLv*hIHXmVyo+s%a;8MQnV z?Dbt-YEn~E!J)4_v9KN1U*6quFd$VNg)k8{Q)O}s=RJsg0`fHO-ZBa+806uz@cr|j z9iP!;65ibcz8_p6w2{w;CTu%uq9{d90Uo?F-2eyD@~HwM;EKI`@d7PGN}GxPaWy-b zoxU$DOf0N`mfPyDU*|y9IQUVoG}9rWa(9uWp!o!tq+I9Y&i=mYnQ4LgeegAbyjx9P z{`_QIJe9)$ZfqHDWo0GYgAlG5Y*!x|A)yNZ|Dh{w1Q!YUns#>9LbdZ+-<`K3G^1cB zl*UatK$W0CA?p1yK3)Z#&GH-Eo%?W)6k&bCo(RXgxViRjMhTFjY4yD(!xCuS0~-{u zKPiKI`4pZ9P_}r$U>n-j6~Y{>eRFf3V9NrWaA4u8KT2lR)^v+-35ty!2OI*LaxX0` zYJm+8-sTKk_TN6tK{*4HQi7H%cc}7X?smChv+IkVFkGP8oVQvHr+{&Exv&gD#12$N zhM&xPA*LNRDJHXmhezjaxoVRBJ>pgvasuK4+Y3mY^WYXFu<2Gp9*Rl@qE7)}8EG?Z z=}NxH6?ml&@6S^O_EG5w!~epm)({IJNj>T)_Y3$TS*+ZSNck25utyf$+Jt_f&Q?}c znZO?;Ptn|*P=E=2#iq=&)ZZ8<*mYBP^a%w8G%T#>hzL9?uo{FO-zN!b5&`??G*tFA zpFf*G!~*CF8e>Ljh^wNog#nR?a|LPYFIX-AJ>lV}s|_O>GJR08=0uU1(MdQnsd;<_ zVLX~j{GrS>BwpaFJaFnWjhhslmX-!jbu?GJ;~uYMEgWsjO@Ie?bofF31N$#Tie?9u zF5?Q>IcVs8Y3XAydFZk)Wga?&ejTh+>6=QuT1Mj3@iZPfPEH5NkcQlCw;pqkf?K7m z%mk6-4)O>ts|*-?+~KXhaBsA-m9@>y%>E;$I9)kES}RwL90Dz3?Wa$0g58P0!BX+~ z+BrQPH77Xd=)SnX^g`W-oMU1X!2KV-wV2P_?b#&6a!vm6%5*4+<<4Me`h6mxPrO^$ zV6g(+7)ZCA-n0YK-#=m@9d_{fLRl9a=(ea* z(lFx7YH4d*1^|Rl)U#4m$r4L%F;`3>tafL3tS207e0Z!@)5NW0bv^p}L#NL*i$Hjc z`1Bro2vF&f{>unvRLLOtJ_Tu(-}Pdf?{zagL0BRaw9sh0>}{cZ;^EX4j3z593v2m3 zNVo&6WR?OI18z@VaO?w%Cw>M*QOp7D19JJ*3|0)~ul2lGlYY}*pe1i7amnwhZ&(+oHP8T4(7quL~vE>Eh zYO7Rs=aIs*Mdqt*suiCUX3VygeJ?vr&Ag@AxW-7q=YWX))-|LTGPq-kp($9xi*vDUZdAv zR?;Ley%+?=yN>C2$cd$+W5=64eV_fQ(s9UdRy;1w&!2#s04REdg@xgxWfGskG5KNN zzl31)d5*U!IJrSjkaL~j$2r1q^b@2#+8PK$F*u&64=DVV1CF6;Vr+dwYa;Rd`FC&? zAep2$uL~5y>J32YhIj(7);c3HgeZ9kd~~$5*5f(RXT|H8qvI{9AObp)wKXRi}N8 zTL=X05M+v#QWM5k@qyTb#zeR;R-_Ddqjt7&ebCcXb9BQYZoDbVpN7C~NTUFidf?tt z-3xrNwYQxop_s{Srx5-iB3A3cP%uvswkH5>){waDK>7i3op}IrPJ6<`K(7aF_wa+ zVXdHTDyKivl+e#_UFn9b_^4!{6I`)jvyNx*vwI@c^X@$0 znPT36gX&@}R(t{-1r=2(-MY~P9G+ddJetbXhvJ%8&Z%1n?`*}1xQwH)VMv{Rhi}_- zh;8!6j~`cByZTm&w>-P7N76olqhL}QKmZ%A4?{D!VIpE(2-NuHhE2R#zIAUjHBs)Y zf&kLs=2qAI$A-9#sh*!igUANtLl|GA-y=^+1 z>obI>uEMQ@xY_>>%5548h7MuhD?wa4`2CYNyJ^!Q9vvRT2m$x(+I_G8MdacU<$klu z-Fn&a%a?mo!cD*vbpYg#`oMR&Zy+KFrUP2oHAc(j2P&p-Q1dip7t>+K!+aL{ zVrchM6$y`Md@vh^IWLtSKbxEiq*xHs%^e+M8@_dS7ebknVA9*u^IT8w?adWwC843+ zdxZ~9Rj8OG_u?T=Vq~Rkp-E$?kP*ts-60)>mO1N$kPQlX{V6L-x&ZgABpYm&@T@DC zQ$`TAIw-Tz#;g8WDTTcg6+pCJ{GW#v8d~}d_6qb|NdFN;rKEflzrBKyT_(x&#u1>P zy0ga9darrT0S9%03FOc#vvAJ*`t=J58Ck*YQQRwIR;{voJQ=V0*MlGVq8=dsPG;X} z>1noOdEvHCoKttIdU(~K{UOS4=XAhyZgYOYX!)tyzW$!y+~~_emRio%dC%*hVo#P? zAuPAr96!X^Vn}LXBrSA3FCiBuTz>Y%&=)2+0Y16)Dv+NHLKdY}5vI(4bBgKU*$&)z z82<&D9$+BN#W*NPNlTl#f;u?@N{1qOT<5=oBO~n3N}`H7dvyV{ctn{t<4VSQRN(4(bf$k^FQX=u4m_;HzWSWj11dWcv|@rXd9$FcRNFVtgk&+Si6r z1$V1%D6OTXB|V)sHwPCD;fQ1dHn?mI1)5dVaUr87${@gYE;^B}>InJ#M=Ox@7SSnU zvLf%W+x@o`xQhI;l4|Y4=cd;RFNQC_87_WoK7Mh6rBw6$Zxk;2{+RvuPD9@;&DQsC z)jC4^OJAZPv-evaKN=?Gpy8yAk0bf7+l`lN=0mgVoHq&1ltZRS;-Ke8duu%n@e00b zb_}d{c*xO#QJPt%NvO21AggTz&fgPX?F_(Ic4Ev~f*K~Kr}-)rUK22iut1I74z6ck zxaj=~=KPN(LZ!dSXNTJ_L%Du?b0%K%7l~P;07;)NEDhpqSmysa)2sUUK7ER0{0xTv zL9otawZs>A`|l6DrAszf*lpcWePu}_^8$H;lEOKo*13%*$2z>m_9%@wz+CS>i|QO2xP^WR3yE6PD$xoiO8D|!AmieGEqrK6D9fxN`#}Y@!sL+UPJA9_>{Yp7cx52x3alX|z(_A~1)W-u$~HY<>}Vq6jZYJkHk zE-E2VIn2zGG5Req7`bpW)b=fT6%c3>c0RZd$`9@SsNNkN{7ca99B;ld^Cen$DN~DM z<;ARE1y0-NWm)&d+l)a|>xPOa9dDEIWa&Y>hUn3&G*TQpP%3KxZgQR@c-o znPHqgqgpL}^S;?VuVAv`0i`g&wp3N~i;G4_BPQRO&nuY&=wzcn7!$@QOml&Bw~am| z1+c|7poW}78SiwNHwsVV!;WP+m!1MCuOk6E$}4b*7lT}ashcomr_!IO$!P^);i(Tp zdpC50Y0M|=zuX%fv!ywyUkL$As3A%@e{98XJPLbp@3s=Q=W(RMJwRM3iTOYN zT7a1EGHg-rHvlL#wKN&BtgWp{Z#sww3dYSXAn}%TUtP7wRXm*q=&2qI0oJJrO4HLx zzeWYqc%tL^>+He8Va|%<71Hl0anM8&&S^!y!coZQLg9J|s92QzMf|p8FnIWOt@0G0 z9b*u4Y8{5Txd)~i-!}~o%$BwrwN0+&{&xMq)5Pnc{_Mzvw^_C} zZ#xc>>UOLrs8W|7$<(J~j#W1{%(wPgTdg}fPdL?9^tU*2{7!k3F&8&T<{??V4$xq* zr^b^i49&it9(o1_WFjhYenva}>2Cx7?u9bN9x$8+W9Hp~xYEn_A#6h%J+c^&L_ofK$X*BPVu`fR;u z5_&#T((y2zf$a)90&>0)eKyXj6*Z3Wgv5Eex)5|gw6ZwP-7Fd2=)8)`pkuL`AX+7q z&vx2h5DIHuSTw9mqFHf260{{7EY|eEReuQXBu}@cHWP!MvPfxCha_Yh({sv)pcBg5 z=YPQSSCY3SZOx{@qAklzqFK@fYQ1S^k###h>_%C0u1@L1tX&48n7GZSzb$3@+o}#c zWmA}oFI{!In+gA?CV z)4h^75rHmq%fw^7CBM>^L^Un^6HTry0i8HZ&9vbpmY~^>f>{=Dtk)nnlz~~Wx;R<$ z6}Nbv<|dPRLYPfn>xI0cVoiO0@`vCkTb{i*8tJ&tLkmnWmd3>776P1$+^Che)lY)1 z9I3Q!lK@n;;wbZVMbb}P_aj;AcZZjkss16dqB4Dn;w?~hVPj*n6y!D0RD^+&|IMx{ zi-6sOxA$Ns)QT&Nx#E7Zo&M1&ncM>eFr@c8m!qTOphG4=y7*Q>YxLCb%ptfiv}iZG zAH;}QdM76);_GdIm*^DahBj_LAS6Jb9$T-L#iSJGtH_aR+=ldQM8Fs2KhOCVcgH4< zbo(kyySV&(8qUs_U}ZgIz!F3SW5>yeh)~}8Gd|t%DI>BaezMrz9mIac7&&{W4+#mw zSsRmu8Ms;dKoz3%+Bcm_6GdunW`=p zg`)L?j@y*^kO?SN;I5(}AwZs{pb#xSC_p#x9gauqzhS}Cm`dKWKjV5rOG2xNYs99w!Dmz^lMZzN`pbd?%I5}n}Fdq*t zkGmS0ocsiPEea3A84X+j1hGDwKYbK`WNWqhCo;F7@c@;>oD(Tvftw~6LIn&!SG_RE zf8XM=5wYt$*TidUqF@nD9Bp`)xB+DPI>RLpPGRGxocWl_P-6fps=1YTZzv8y{b7+P zqc$P(E-V?qObBy@zy<@(L+uaGar+7B?=k(Xm%=K1H9UzT+Z4yEUeWZOi?a9(5Zj3H zfMP(Lm6Vksw-Bw%-bI@b9^e!g7tac%kTu}EQKXnOIl9-ZW@|q6u_|HhE6U@F^Ru*E zp9IwZmj6*5-=t*aGvHWSR}(628$WcMtJ_hFf0yCl=JxmUTe-t_|D)Q2v?!%f+v-7n zX8Q2S$w1znnZ~Z<@Dx4Aot`PP@!yv@xI~N$K13`-W}0ay5R<>19 z&=m8fWn@Hg@QSgQv$igQ;65Fw&?pGK>1SVuX|f+5Ms0}ccA_&HHiBG+WC4Qmd*Q8V zVm+4b8v8puc(Ivbo~|pb4+G4jV2B+w9- zUSjjanmn9J936p-0p|y^+zE{fja5QILJb+>DEc%t9bKV)3uY~r3H?4<5+;%|&Uo^m zA`0%qj@xh6mu!sD1{1aa`i#F;d^>21+;1Gs#=Sq3#J=;SBEVB%Z)XQ-m=|TPHKQ+c(YP)0Vzgi+Q4fnCD>NhQ z-+gH$mcs9-p~Ari$Q_@d=p^Pe%xmK{2jIuu)-c`VX=T#(TrE?u)O*e1xKD(vT5(UP zICzRMpY%d*6P7x8C)W`mX0?ID$phJz)zmKk9RecaWJv)-q8Bq-X{0sD*LSY@3jak1 zT4QG*W+*5st=zS1X-OkmzV!m{;EPNszS>Q&`oNn)#cHrqgoDzSz}Ee%wJi}cg)Rye zwUsHyMjwx~V%$TY#=G&XPex)-(aK}kRRh@PVb(RE%jDO35x0HljCjAWx8>qf3>X!* z%3@+3@IJLO4PlqIuq;7Tavo(WpH+1awRjU-{-~|km3}#|j9_X*jU; zJ=`M-e^e2*#);9y)N08)`cOrLUDe*6-7YnWTAgbB0e5^E>-jwnTEYN=iy-@+@!i>~ z-1QOxOIoG{YUbEG=S4X=sMnWu!ws0FeMo|LGik_+!4ifqc8R7)5CMyscCA zvku$^&I;!(>iVm6FavHIPUMC;sc&k~wrFZ<+DJxVmQRZ3g&rW(8^II=RV(O`YAWOF z@_aZ~v3|5C{iH-QDTa}3Y*sxqdK;?m0lRz@uDiLj!@7^IsG?H;=~Do$ZH7IG^u5jzH}fswNhr(#cyfh2&5?)c}|q-}C>yUc|ggOpXU zu7m(<>M+OhF9+~xa^0U!@{%T38W(LoWvrQXP?H_F;x8CG2T?A{E1yH>6@?DPK9q+T zWT~UgksE0*2Yz+8UwwTUa~3?NR<~<%+v1ln=-iqSH~We-IqjQi?fjM+n%{%U`VY0V zTZzh<;JNWdNtc^63pbjv`y4FbS2((9HCX7Nf$Anl%JLez6K36^3j2CtZ!(ZFB`dD} zY(L|@&tZIx@hDnHpp*r78UGCtkpL^J9l-678TR2q+@zo}PHLvn9f}*oI=_cOTaQ`_ zX8uq@!|tYE?2M%n2b=_^0q=ttK2R3Qw}AWA4Gk&t7qP^__OX$Xi7oRS4k4FxXEhnf zU02+%Tx_!Px)dLr#aU(9egsCpWWn$UH~I?RW*G5JpFrn`k(w%MQhDe}V1~ z^=nDIDc(#+_cJsVf{+C(H<)x0f}r}PsK{pQl|gU&Y{w!>jV6jCh3ab`PD@}L(eubcUHkT|;}$B_2N@_b2>KmR9l@cgvpI|VxD9j+PE$vS$>T)44q-$O zG{II+jMYbyIhyurK*+h1*2 z!}4yyVYJcW-k~2Nox_|+1drKQ`3lY6S_nNFr9$?3*>Wm_TWHRCLN-%H@5lP@1lxJ< z)T5}#l2_`##7@p# z81|3@2YY)=BL;p_3PPePY~lAHi?&4HgO<}#EgbeZLqePeL+C%1tkbV~kU-!0Agl zcaQXea8VR*#rK{t-A$$598Qlor8t&q0bp5KC79$p0gvenT8Pj(DofV;I7egse;PaQ zN2>e(jf?EPGP623cJ|CTW)g>xm62m4Ga21v?~&u2lU3?inNcXZBRjLAjI4~PWMoqr z->3WY4}8z>v27=cTh9oYhgXjn3=p3G}c1Lc|Hs(z%2IbE))zj*GFg||cdnnw_E>?T!!AxJFv;l#Vm=NsUrRFBTr^2nVpNaV`G~rx;ref7TgL#*)-T7M%}#zxvGmv_u@cke&q6 zh7cVb0;dvYW@hNyel|qjRC-QQgqksy5%Z2A+S}U0*?D$lMKVjWhdy+{^BB?13_4$d zhI3@V$%0PY1=%vqT7xrco8ZcWv~#k^=kJf6Iq+W#hT{2terZ;h(`yTUH?Nve`MhT^@8CzHuNP1xZ6E)&+K;O{ib#E6DJS`7Uf1D6tYhX-dD^}8xnJ}X z!$`3^fpS(|Z{Hf+T37@9QP0YV{!Xh)4mfHsP1Kj$1Y^-H$V+8SfO*gBCCT&#>qLc8 z$(4o?Pcp~e6~gRf<+D0N!t%{n{5%N`c`&%wlM59vt;!ud2-?F16hW;|-m7Ga+9S?Q zId;^M3TaiHGdX1-QgWQ%(k_wQa+pI`?T6pw==M;RztLmcg8QG z{k6zLG^b|>*O24+^_`M$EMQrb+*<7OteiDQ-RYswitnJ2AnQnZEn7H5qd+phgKp&I zBdMzRoP#0|d$)IY6OwJ4LSo{vxDBRs*glkVqj`i&jq*0a*x1;BTpaj(lZgc! zfOt&bCGdgZUN88_DzOHOu!)0JaoEdUF0w+T=p^{$@>$&`1a%PX?##bvS;c7aKa#%F1&p+UtwOgb#UHkOma2`h{iNW7xw#j5?AfzXKhS70&Dh&eY$X@C6z zB_H$K`}A2M)hDX5n(SfY&3)Cq^GC~ZX^JluvxBQ2xmo`;44GO^R{rWTRvc0C*xlyC zznssuMk(KD8ML;%>Ra4Szr=RY<9CvxpJtc*Qq`dL_x=j^TKh9mt!0?47cz2ks*cOU z*4y&Q-tkr&dwVtJMHEF$a(M1VdMg3L>7e5~z#IuU3%R&}Iayd#1nY&9Yjb=wZV^^; z8z) zm#d8dU;RafDY(3%mpZN5+S=BC4r&;^3^u}@1Q~{ah3Lv>^<*1TaDUCgEvdrmnN;^s zoF$2l^X3on-e;_RQQo;~K@}i2OwbVm7kDBj;7fvFjhaasr4loApFdsC?^#l8Z75$T zrkJl56ob=Ez`Ii`vo)ASEu606D+~k70aFA2~%t5YXQ}?DTDa-yFEN@i^zxjS*MK!nAH)!tuLk*H+s}*zNh=R zh66aUFi2)hds^Bzso&fK91iPh2eG9i6lXym(X_y%kV3Ex!AJByrzbM#34LR02~yJX z=;OwV)^)$khtMmT5wC8xl=$DitykW01^sNp?qW70U);b&_5esky1B=EXYb)E7DXbd z*w1LGYHIRv#XrK^#2qBmZn)_X1?xe?c8u&`uHJVS;8-(@h59}Wr;9O&V-`h z{na1x3+9%?G|fMhiFr5smtA@8Y_2B%eVp(@QB(C}j5*af5AQf>SJrBy)_6%V zob32D!_g}Y>`H(IhM-H#_oW>g*H^~nH`;)(D0o@KB!PTgMI|iyV%FqU^C$wX#&`MU zPG;xG2)oif$%X%bD`^oNja%$%V1gXIGCWnvnUpQeWr5#)22sLSWX2=uEGKuN+0&>`?x6VKkHjyzeOc5ag+MQ z7F$Hq3;R%?^DZpbZYsb3nK1xtJ*7 zKrLc6u%uC3C7_!)ug=<2(<5F!Kdxc>PO9}o97W8f?2+9Fa*9n}AJqzqK3u4br0W$`SKjq3-8 z&Ohk#Elikz-0iaPVOL96(|T?C8d!3ysaV%ot)x(_ja?)<+Jt*u3mYp-T8Mly%0Eb~ z>QoMYPgCnF`0CfC?BcE6(a9ga>Qk4phVRyu-O$(7FL0VYDJ0`qbn==>fZzJDtyH?? z09p*6(OUUHD^fF0+vWn{DzqbsTUE4bv}M7%MSf8_9;Fq4EPiK4!DE5g6+@~WNSl4F zw^Be;NJxlChbbDvCaYU)RH17IM~%CZ6PvW_Dc3xh(BI-|0&>mmU5BtqN zY$3%kYpGMhMQNUcE<=U-SSKhczVlk>Y|zP|h13Gz1eL3EbTCi9aYle`@SgbBFa~>@YtvnScvfJxK6#f8)iWbTi(w3rU(R}wJui01KOCmqj={%>~Vmz zd^0E;^_>_-f|GI*z_ySf%T7aG60#kszBbw4e`(4r3N-@OZM^|zgP;=rbU0WGlm8yn z@o(?*Q|)MGmf@$*zvvu{+z$l$v}|?oBJATCl<!NRBOb}t(;-3@L z#)!S;;0zqWE+4{_AdlRzkC#`yXsV$+Wwb@N9q z+))dRQ~4|#M+AO%zcIAB3=`ho)UGAe>s55q>pDfzI~7yE!QLsVwf*9{Bc8C_yzKsQ zrMMJ9R&F!`NLQJ?)3y878*4ZGKM7(4KS7*CAz*p4iS*l0Z|@B-B9I^1W+B5x3i|^QtoE#mE1dlt^Ix98{+9yTLd?zmDGxR;vWS zihMdcI_Ecpapm+hm7;lY=v%9;XQa+5$1p zzvcS#`9h|~X*1FO_oXQU{f3#ApGQGuhs4a}#6){}AHMe#O%!K5>fLlLxsmLTtK|JH zw47!3EYqf=LPco>#Wz4t8~*kWtFV}b{Ac&csS5{%TxX*r0;YB7`=3>{$|Kr3)PFV@ zEIvX$zwi8>FFS7nycU85D=TY{6BP%vQ?hXXg@LX(sW1PH2zjoGw~x;ud>5N87q~z7 zomR6{usN^rTQ&dhW7!kIt_do9)C!c|*Y)%|31U}3jwLL+ zh_Iv;gVBt32N)acdA`)Du|Q1oyg8L5hdzG(ERMRJzEP z|KY)bKR*=#E{J5mcwp9|Sz-jV;9p14u78J3B+LL9-~J!m=EvCh2}8!_3F$2nmFq9wVDoxYr+2a!d8h zfM|qO{0vI~5*@Q?W~xXOLSaey(a}+Scv>=soHqwxID0$0c3ZE}s@#vukNGMa{82;D*eSa22WJRpecYsVp`{hRXd&p~73mY05=3TC_m^(^3 z^swDE7&g8SNUItNMSh$h46hotRSPh>J)ylPne0PjINI7uGTH+5ODCgKh_AalMM;bT zHkT4p_x9Pd^DJby|HnutK3JZcYfIvt_jcVy53|-j;M63>ZLdw+kMx>fz>ozZ-Fvp1 z>=tTX5%Y9M+HgekM30i63kwvRs7kBKm%x?-?IdxBeb^u70%wiDhP#d~QN~>C+M~rp z{SbK8s?t9pIim z6VlUTRko}QDK#~}z(l+q6a)h@?0CNqM+;b6I}1=FR!&Jt39(NfJ`Ui9&hMvAEqocA z(9mOg0@wnzut69Y7=TbACl{BFQs$E6IPBsn69ik1o=2(kSe)_S8cpI(E$lJ)yZdzh z{$zY&XJ;o|0Jb(Z3wH+MV@|oR1DprKAZsGln&KnID81zh0`d?nYw`C4^VI+!68wu&zVUGZ_O`*J z3Fb8)sHQ-?huxbz3ZAV8Ir$w)?wqp>_Ak8!r={jcrs1!a59u4=u}{K%fGc0P&Phf}R>`Syh=KTr) z7NF?Pd0(Vh=!%E?G>A`xlrauo-h;({4qnj?M-a4C>fm5h>v9ND#Bo~gFT3!e-JhB) zSl52}mKR!%dC9Cw<1L89Xs{^K@pyb+M_{EYL{xaeIfb5~_3dqkdQWC9B;?&@Au|BL z+VI#|B&aP347>{x=&ciH_1x`){S6?kA^1UviS7IWW5-!)CbM1|h!-V+*a51f7DNf* zo&xyl6-dRf1&7tA^k@rFUz-W10UL}oyg0mM)3pJz40LkDtXD@++m1U>`M3||*G zk;Z1Wk4AI*T*~EbO*oNho)i2kjW5^ zPe`}Qt1@C@)Rg3;r^Jo?{nzU}K7iZ-c)u2O0iOgh|Mx$igD3$=vWNQ{MKOWSeIUxC z)LF#hX;@h7HdJrV$wHD8LJymn@GyWL=b^ztrnM)Qn)rY OcwN*t)vHE1$NV3dlaAd0 literal 0 HcmV?d00001 diff --git a/GAN/GANs.ipynb b/GAN/GANs.ipynb new file mode 100644 index 0000000..ec18d1e --- /dev/null +++ b/GAN/GANs.ipynb @@ -0,0 +1,1497 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# GANs (Generative Adversarial Networks)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 정보 엔트로피Information Entropy\n", + "


\n", + "
\n", + "어떤 확률변수 $X$와 확률분포 $P(X=x)$가 있을 때 확률변수값을 예측하기 위해 고려해야할 정보의 양을 나타내기 위한 개념으로 엔트로피를 사용합니다. 예측을 위해 고려해야할 사항이 많다면, 즉, 불확실성이 크다면 엔트로피는 큰것입니다. 시스템의 질서가 너무 잘 잡혀 있어서 쉽게 예측 가능하다면 무질서도가 낮아 엔트로피가 낮은 것입니다. 정보이론에서 이를 어떻게 정의하는지 실례를 들어 간단하게 알아보도록 하겠습니다. \n", + "아래 내용은 칸아카데미 정보엔트로피 강의 [1]를 참고하여 작성하였습니다. \n", + "
\n", + "어떤 시스템이 1, 2, 3, 4를 출력하는데 숫자 4개가 아래 그림처럼 배치되어 있고, 한번에 해당 숫자에 불 들어온다고 합시다. 1000번정도 시행해 봤더니 1, 2, 3, 4 모두 딱 250번씩 출력했다고 가정합니다. 이 시스템은 1, 2, 3, 4 라는 실수값에 함수값 0.25를 할당하는 확률질량함수 $P(X)$를 확률 분포로 가지는 이산확률변수 $X$ 라고 할수 있습니다. 1001번째 숫자가 출력 되었을 때 이 숫자가 무엇인지 알아내기 위해 우리는 어떤 것을 고려해야 할까요? 다시 말해 어떤 질문들을 던져야 할까요? 가장 쉽게는 1인가요? 2인가요? 3인가요? 라고 3번 묻는다면 그중 한번은 정답을 줄것입니다. 운이 좋다면 한번에 맞추고 운이 나쁘다면 3번이나 질문을 해야 합니다. 하지만 시스템은 정확히 동일한 확률로 숫자를 출력하므로 이렇게 물어 볼 수 있습니다. \n", + "
\n", + "\n", + "\n", + "[1] 지금 출력된 숫자가 위쪽 두개인가요? \n", + "[2] 왼쪽에 있는 숫자인가요?\n", + "\n", + "

\n", + "예를 들어 출력된 숫자가 1이라고 하면 1번 질문에 예라고 대답할 것이고, 이어서 2번 질문에 예라고 답할 것이므로 우리는 1번이 출력되었음을 알 수 있습니다. 4를 출력했다면 1번 질문에 아니오, 2번 질문에 아니오라고 대답할 것이므로 역시 4번이 출력되었음을 알 수 있습니다. 즉, 위와 같이 질문을 하면 1, 2, 3, 4 모든 숫자에 대해 질문 2번만에 현재 출력된 숫자를 정확히 예측할 수 있습니다. 또는 질문을 \"[1] 1 또는 2 입니까?\" [1]에 대해서 예라면 \"[2] 1입니까?\" 아니오라면 \"[2] 3입니까?\"로 하여도 결과는 동일합니다. \n", + "
\n", + "\n", + "

\n", + "질문과 결정을 트리 형태로 표현하면 위와 같이 표현할 수 있습니다. 1001번째 나온 숫자가 1인지 알아내는데 필요한 질문수 2개, 2인지 알아내는데 필요한 질문수 2개, 숫자 3, 4 역시 질문수 2개가 필요합니다. 그래서 평균을 내면 숫자를 예측하는데 2번의 질문이 필요함을 알 수 있습니다. 이를 각 숫자에 해당하는 질문수를 $q_i$ 라 두고 식으로 써보면 평균질문수 또는 질문수의 기대값은 다음과 같습니다.\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "\\mathbb{E}(q)\n", + "&= \\frac{250 \\times q_{1} + 250 \\times q_{2} +250 \\times q_{3}+250 \\times q_{4}}{1000} \\\\\n", + "&= \\frac{250}{1000}q_{1}+\\frac{250}{1000}q_{2}+\\frac{250}{1000}q_{3}+\\frac{250}{1000}q_{4}\n", + "\\end{align}\n", + "$$\n", + "
\n", + "입니다. 여기에서 $\\frac{250}{1000}$은 각 숫자의 확률이 되므로 다시 쓰면\n", + "

\n", + "$$\n", + "\\mathbb{E}(q) = P(X=1)q_{1}+P(X=2)q_{2}+P(X=3)q_{3}+P(X=4)q_{4}\n", + "$$\n", + "
\n", + "입니다. 여기에서 질문수 $q_{i}$는 위 이진트리에서 얼마나 깊이 내려 갔는가와 일치 합니다. 이진 트리에서 깊이는 $\\log_{2}(노드수)$ 이므로 \n", + "다시 쓰면

\n", + "$$\n", + "\\begin{align}\n", + "\\mathbb{E}(q) \n", + "&= P(X=1)\\log_{2}4+P(X=2)\\log_{2}4+P(X=3)\\log_{2}4+P(X=4)\\log_{2}4 \\\\\n", + "&= \\sum_{i=1}^{4} P(X=x_{i})\\log_{2}4 \\\\\n", + "&= -\\sum_{i=1}^{4} P(X=x_{i})\\log_{2}\\frac{1}{4}\n", + "\\end{align}\n", + "$$\n", + "
\n", + "마지막 줄에서 $\\frac{1}{4}$는 각 숫자에 대한 확률과 일치하므로 최종적으로 다음과 같이 쓸 수 있습니다.\n", + "

\n", + "$$H(X)= -\\sum_{i=1}^{4} P(X=x_{i})\\log_{2}P(X=x_{i})$$\n", + "
\n", + "위 식이 이산 확률변수에 대한 정보 엔트로피의 정의입니다. 출력되는 숫자의 확률이 모두 동일하므로 다음에 무엇이 나올지 예측하기가 정말 어려운 시스템이고, 이는 이 시스템이 우리에게 주는 정보가 많다는 것을 의미합니다. 정보가 많아서 불확실성이 증가하고 곧 엔트로피가 높다는 말이 됩니다.\n", + "
\n", + "그럼 확률이 서로 다른 경우는 어떻게 될까요? 예를 들어 1이 500번, 2가 125번, 3이 125번, 4가 250번 나온 시스템이라고 가정을 해보겠습니다. 이 시스템은 1, 2, 3, 4 라는 실수값에 함수값 0.5, 0.125, 0.125, 0.25를 할당하는 확률질량함수 $Q(X)$를 확률 분포로 가지는 이산확률변수 $X$ 라고 할수 있습니다. 그렇다면 얼핏 생각해도 1001번째 나올 수는 1이 될것같다는 느낌이 절반 정도는 듭니다. 돈을 건다면 1에 걸면 딸 확률이 50%나 됩니다. 1이 아니라면 4가 될것입니다. 이처럼 확률분포가 불확실성을 떨어트려서 예측이 쉬워졌습니다. 위에서 이야기한 평균 질문수 즉, 엔트로피는 이런 상황을 정량적으로 기술 할 수 있게 해주는 도구입니다. 실제로 계산을 해보도록 하겠습니다.\n", + "\n", + "\n", + "\n", + "확률분포에 의해 가장 먼저 1인가를 물어봐야 합니다. 절반 정도는 한번 질문에 1임을 확인할 수 있고, 아니라면 4인가를 물어보는 것이 가장 합리적입니다. 그래도 아니면 그때는 2,3이 나올 확률은 동일하므로 아무것이나 물어봐도 됩니다. 위 계산을 이 시스템에서 다시 반복해보면 $q_{1}=1$, $q_{2}=3$, $q_{3}=3$, $q_{4}=2$ 이므로 아래와 같습니다.\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "\\mathbb{E}(q)\n", + "&= \\frac{500 \\times q_{1} + 125 \\times q_{2} + 125 \\times q_{3}+ 250 \\times q_{4}}{1000} \\\\\n", + "&= \\frac{500}{1000}q_{1}+\\frac{125}{1000}q_{2}+\\frac{125}{1000}q_{3}+\\frac{250}{1000}q_{4} \\\\\n", + "&= \\frac{500}{1000}\\times 1+\\frac{125}{1000}\\times 3+\\frac{125}{1000}\\times 3+\\frac{250}{1000}\\times 2 \\\\\n", + "&= Q(X=1)\\log_{2}2 + Q(X=2)\\log_{2}8 + Q(X=3)\\log_{2}8 + Q(X=4)\\log_{2}4 \\\\\n", + "&= \\left(-Q(X=1)\\log_{2}\\frac{1}{2}\\right) + \\left(-Q(X=2)\\log_{2}\\frac{1}{8}\\right) + \\left(-Q(X=3)\\log_{2}\\frac{1}{8}\\right) + \\left(-Q(X=4)\\log_{2}\\frac{1}{4}\\right) \\\\\n", + "&= -Q(X=1)\\log_{2}Q(X=1)-Q(X=2)\\log_{2}Q(X=2)-Q(X=3)\\log_{2}Q(X=3)-Q(X=4)\\log_{2}Q(X=4) \\\\\n", + "&= - \\sum_{i=1}^{4} Q(X=x_{i})\\log_{2}Q(X=x_{i}) = 1.75\n", + "\\end{align}\n", + "$$\n", + "
\n", + "위 확률이 동일한 경우와 비교해보면 엔트로피가 줄었다는 것을 알 수 있습니다. 예측이 쉬워졌고 이는 불확실성이 떨어졌다는 것을 의미하며 시스템이 주는 정보가 줄었다는 의미입니다.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 크로스엔트로피Cross Entropy\n", + "
\n", + "
\n", + "이전까지의 내용을 보면 한가지 이상한 점이 있습니다. 바로 우리가 만든 \"질문 방식\"입니다. $P(X)$를 확률분포로 가지는 시스템에서 적용한 질문 방식과 $Q(X)$에서 사용한 질문 방식이 서로 다릅니다. 무엇을 근거로 우리는 질문 방식을 다르게 했던것일까요? 바로 각 시스템의 확률분포를 보고 질문을 결정했습니다. 각 확률분포에 적합한 질문 방식이 있는것이고 질문을 잘 해야 질문번수를 최대한 줄일 수 있습니다. 그런데 $P(X)$를 확률분포로 가지는 시스템에서 사용한 질문 즉, \"1 또는 2입니까?\"라고 첫 질문을 하는 것은 다분히 감각적이라는 느낌 마져 듭니다. 첫번째 시스템에서 모든 숫자에 똑같은 확률이 분포 되어 있으니 첫 질문을 \"1 또는 2입니까?\"라고 하면 최적으로 질문을 할 수 있겠다는 생각을 하지 못한다면 어떻게 될까요?(이렇게 생각하는게 쉬운가요?) 그냥 우리가 하고 싶은데로 아무렇게나 질문을 했다면 어떻게 될까요? 어떤식의 선택을 하든지 쓸데없는 질문을 한두번 더하게 될것이고 따라서 엔트로피는 증가하게 될것입니다. \n", + "정리하면 시스템이 출력하는 심볼을 식별(identify)하기 위해 질문을 만들어야 하고(coding), 어떤 코딩 방식(coding scheme)을 통해 만들어야 쓸데없는 질문이 들어가지 않는지(code가 길어지지 않는지)는 시스템의 확률분포에 달려 있습니다. 시스템의 실제 확률분포와 다른 확률분포에 의해 만들어진 코딩 방식으로 코딩된 코드의 길이(다르게 말하면 질문의 수)를 실제 확률분포 상에서 평균을 내면 어떻게 될까요? 예를 들어 코딩은 $Q(X)$에서하고 그것을 $P(X)$에서 평균을 내는것입니다.
\n", + "
\n", + "$$\n", + "\\begin{align}\n", + "\\mathbb{E}(q) \n", + "&= \\frac{250 \\times q_{1} + 250 \\times q_{2} + 250 \\times q_{3}+ 250 \\times q_{4}}{1000} \\\\\n", + "&= \\frac{250}{1000}q_{1}+\\frac{250}{1000}q_{2}+\\frac{250}{1000}q_{3}+\\frac{250}{1000}q_{4} \\\\\n", + "&= \\frac{250}{1000}\\times 1+\\frac{250}{1000}\\times 3+\\frac{250}{1000}\\times 3+\\frac{250}{1000}\\times 2 \\\\\n", + "&= P(X=1)\\log_{2}2 + P(X=2)\\log_{2}8 + P(X=3)\\log_{2}8 + P(X=4)\\log_{2}4 \\\\\n", + "&= \\left(-P(X=1)\\log_{2}\\frac{1}{2}\\right) + \\left(-P(X=2)\\log_{2}\\frac{1}{8}\\right) + \\left(-P(X=3)\\log_{2}\\frac{1}{8}\\right) + \\left(-P(X=4)\\log_{2}\\frac{1}{4}\\right) \\\\\n", + "&= -P(X=1)\\log_{2}Q(X=1)-P(X=2)\\log_{2}Q(X=2)-P(X=3)\\log_{2}Q(X=3)-P(X=4)\\log_{2}Q(X=4) \\\\\n", + "&= - \\sum_{i=1}^{4} P(X=x_{i})\\log_{2}Q(X=x_{i}) = 2.25\n", + "\\end{align}\n", + "$$\n", + "
\n", + "엔트로피가 증가함을 확인할 수 있습니다. 아래 표는 이런 상황에 대한 계산을 정리하여 엔트로피를 구한것입니다. 코딩을 위해 가정한 확률분포가 실제 확률분포와 다를 경우 엔트로피는 증가함을 확인할 수 있습니다.\n", + " \n", + "위와 같이 원래의 확률분포와는 다른 확률분포로 엔트로피를 구한 것을 크로스엔트로피라고 합니다. 위키 [2]에는 다음과 같이 되어 있습니다. \n", + "
\n", + "\n", + ">\"Cross entropy can be interpreted as the expected message-length per datum when a wrong distribution $Q$ is assumed while the data actually follows a distribution $P$.\"\n", + "\n", + "
\n", + "식은 다음과 같습니다.\n", + "

\n", + "$$H(P,Q)= -\\sum_{i=1}^{N} P(X=x_{i})\\log_{2}Q(X=x_{i})$$\n", + "
\n", + "아래는 엔트로피를 구하는 실험 코드입니다. 인위적으로 앞에서 예를 든 $P(X)$, $Q(X)$를 만들고 각 분포에 대해 다른 방식으로 질문을 해서 얻어지는 평균 질문수가 엔트로피 값에 근접해가는지 확인 해보도록 하겠습니다.\n", + "\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "H(P(X)) = 2.0\n", + "H(Q(X)) = 1.717\n", + "H(P(X),Q(X)) = 2.234\n" + ] + } + ], + "source": [ + "import random\n", + "\n", + "#동일한 비율로 2000개 샘플을 만든다.\n", + "P = [1]*500 + [2]*500 + [3]*500 + [4]*500\n", + "\n", + "#무작위로 섞어 버리고\n", + "random.shuffle(P)\n", + "q = q2 = 0\n", + "\n", + "#천개만 뽑아서 질문을 한다.\n", + "#H(P)\n", + "for x in P[:1000] :\n", + " q2 += 1\n", + " if x == 1 or x == 2: \n", + " q2 += 1\n", + " if x == 1:\n", + " pass #print(q2)\n", + " else :\n", + " pass #print(q2)\n", + " else :\n", + " q2 += 1\n", + " if x == 3:\n", + " pass #print(q2)\n", + " else :\n", + " pass #print(q2)\n", + " q += q2\n", + " q2 = 0\n", + "\n", + "print(\"H(P(X)) = {}\".format(q / 1000))\n", + "\n", + "Q = [1]*1000 + [2]*250 + [3]*250 + [4]*500\n", + "random.shuffle(Q)\n", + "q = q2 = 0\n", + "\n", + "#H(Q)\n", + "for x in Q[:1000] :\n", + " q2 += 1\n", + " if x == 1 :\n", + " pass#print(q2)\n", + " else :\n", + " q2 += 1\n", + " if x == 4 :\n", + " pass#print(q2)\n", + " else :\n", + " q2 += 1\n", + " if x == 3:\n", + " pass#print(q2)\n", + " else :\n", + " pass#print(q2)\n", + " q += q2\n", + " q2 = 0\n", + "\n", + "print(\"H(Q(X)) = {}\".format(q / 1000))\n", + "\n", + "q = q2 = 0\n", + "\n", + "#H(P,Q)\n", + "for x in P[:1000] :\n", + " q2 += 1\n", + " if x == 1 :\n", + " pass#print(q2)\n", + " else :\n", + " q2 += 1\n", + " if x == 4 :\n", + " pass#print(q2)\n", + " else :\n", + " q2 += 1\n", + " if x == 3:\n", + " pass#print(q2)\n", + " else :\n", + " pass#print(q2)\n", + " q += q2\n", + " q2 = 0\n", + "\n", + "print(\"H(P(X),Q(X)) = {}\".format(q / 1000))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "실제 우리의 계산 결과에 수렴하는것을 실험적으로도 확인할 수 있습니다." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 쿨백-라이블러 발산Kullback–Leibler divergence, KLD\n", + "
\n", + "
\n", + "위에서 엔트로피와 크로스엔트로피를 알아봤습니다. 이 둘을 이용하여 서로 다른 두 이산확률변수의 확률분포 $P$와 $Q$가 있다고 할때 이 둘의 엔트로피 차이를 정의할 수 있습니다.\n", + "\n", + "즉, $H(P,Q)-H(P)$ 로 정의를 하면 다음과 같고 이를 쿨백-라이블러 발산이라 합니다.\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "D_{KL}(P || Q) \n", + "&=H(P,Q)-H(P) \\\\\n", + "&= -\\sum_{i=1} P(X=x_{i}) \\log Q(X=x_{i}) - \\left( -\\sum_{i=1} P(X=x_{i}) \\log P(X=x_{i}) \\right)\\\\\n", + "&= -\\sum_{i=1} \\left( P(X=x_{i}) \\left( \\log Q(X=x_{i}) - \\log P(X=x_{i}) \\right) \\right) \\\\\n", + "&= -\\sum_{i=1} P(X=x_{i}) \\frac{\\log Q(X=x_{i})}{\\log P(X=x_{i})} \\\\\n", + "&= \\sum_{i=1} P(X=x_{i}) log \\frac{P(X=x_{i})}{Q(X=x_{i})} \\\\\n", + "\\end{align}\n", + "$$\n", + "
\n", + "\n", + "두 확률분포의 상대적인 엔트로피를 나타내는 $D_{KL}$은 크로스엔트로피에 엔트로피를 뺀 것으로 항상 0보다 같거나 크며, 볼록함수Convex Function인 특징을 가지고 있습니다. 예를 들어 $P(X)$는 평균 6, 표준편차 1.5인 정규분포, $Q(X)$를 평균 0, 표준편차 1인 정규분포라 하면 $P(X)$, $Q(X)$를 확률분포로 가지는 두 확률변수로 부터 $D_{KL}$을 계산하면 0보다 큰 양수가 나오게 됩니다. $Q$가 $P$와 비슷해지면 값은 점점 작아지다 $P$와 동일해 지면 0이 됩니다. \n", + "\n", + "\n", + "\n", + "하여튼 이 분포에서 임의로 5개씩 샘플을 추출하면 $P(X)$는 6 근처의 값이, $Q(X)$는 0 근처의 값이 추출될 것입니다. 이것이 GANs과 무슨 상관이 있는지 GANs 관점에서 이야기해보면 $P(X)$가 진짜 실세계의 확률분포라면 $Q(X)$에서 추출된 샘플은 쉽게 진짜가 아니라는 것을 알 수 있습니다. 만약 $Q(X)$의 분포를 조정해서 $P(X)$와 유사하게 만든다면 $Q(X)$에서 추출된 샘플을 $P(X)$에서 추출된 샘플과 구별할 수 없게 될것입니다. GANs의 핵심이 바로 $Q(X)$를 조정해서 $P(X)$와 같게 만드는 과정입니다. 어떻게 조정하는지 구체적인 이야기는 차차 하도록하고 여기서는 $D_{KL}$을 목적함수로 이용하여 확률분포 $P$, $Q$의 차이를 줄이는 최적화 과정을 실습해보겠습니다. 다행스럽게도 $D_{KL}$은 확률분포 $Q(X)$ 도메인에서 볼록함수이므로 꽤 손쉽게 전역 최적점을 찾을 수 있습니다. 볼록성에 대한 증명은 CSE 533: Information Theory in Computer Science [3] 세번째 강의 노트에서 확인할 수 있습니다. 기준이 되는 확률분포 $P(X)$를 평균 6, 표준편차 1.5로 두고 평균 $\\mu$와 표준편차 $\\sigma$ 를 설계변수로 하여 최적화를 수행 해보겠습니다. 우선 $D_{KL}$의 볼록성부터 그래프로 확인 해보도록 하겠습니다. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "쿨백-라이블러 발산 그래프 그리기\n", + "\"\"\"\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "#A normal continuous random variable.\n", + "from scipy.stats import norm\n", + "from scipy import stats\n", + "\n", + "def cost(mu, sigma) :\n", + " P = norm(6, 1.5)\n", + " Q = norm(mu, sigma)\n", + " x = np.linspace(-10, 10, 100)\n", + "\n", + " return stats.entropy(P.pdf(x), Q.pdf(x))\n", + " \n", + "mus = np.linspace(4, 8, 100)\n", + "sigmas = np.linspace(0.5, 2.0, 100)\n", + "MUS, SIGMAS = np.meshgrid(mus, sigmas)\n", + "\n", + "#X,Y를 순회하면서 cost를 계산해서 cost를 reshape\n", + "Z = np.array([cost(mu, sigma) for mu, sigma in zip(MUS.reshape(-1), SIGMAS.reshape(-1))]).reshape(MUS.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnWV0VNfagJ8ddyeuREmQAIHgBJeihUKpQql7y618dRdu\nBSqUQqm3FCnu7hYSIAmBAAlxd9c5349JKJdGZpKxtHnWylrJnHP2fs9k5j17vyokSaKLLrrooot/\nPnraFqCLLrroogvN0KXwu+iiiy7+JXQp/C666KKLfwldCr+LLrro4l9Cl8LvoosuuviX0KXwu+ii\niy7+JXQp/C7+1QghyoUQ3TUwj6kQYqsQokQIsU7d83XRRXN0KfwuVIoQ4i4hxNlGRZolhNgphBim\nbblaQpIkC0mSkgCEED8KId5T01SzASfAXpKkO249KIR4SwhRJ4Qoa/y5IoT4SgjhctM5EUKI9Jv+\nNhJCbBBCHBdCWDWO8aua5O/iH0CXwu9CZQghngeWAB8gV26ewDJgujbl0hG8gCuSJNW3cs4aSZIs\nATtgJuAMRN2s9JsQQhgDGwAbYLwkSaVqkLmLfxhdCr8LlSCEsAbeAZ6QJGmDJEkVkiTVSZK0VZKk\nFxrPMRZCLBFCZDb+LGlUXDdWr0KIRUKI3MbdwYLGY+FCiGwhhP5N880UQsQ0/q4nhHhZCJEohCgQ\nQqwVQtg1HpsrhLguhLBq/HtS41jdGv+WhBB+QoiHgbuBFxt3J1uFEC8IIf685T6/EEIsbeE96CGE\nOCSEKBZCXBRCTGt8/W3gDWBu49gLW3svG9+3i8BcIA9YdMs8ZsBWwAC4TZKkirb+P110AV0KvwvV\nMRgwATa2cs6rwCAgFOgDDAReu+m4M2ANuAELga+FELaSJJ0GKoDRN517F/B74+9PATOAkYArUAR8\nDSBJ0hrgBPCFEMIeWAU8KElS3s2CSZK0AvgNWNxo5pkK/ApMFELYAAghDIA7gZ9vvTEhhCFyJbwH\ncGyU6TchRKAkSW8i3/WsaRx7VSvv0c0yNQCbgeE3vWwM7ASqgemSJFUpMlYXXUCXwu9CddgD+W2Y\nLO4G3pEkKbdR4b4N3HvT8brG43WSJO0AyoHAxmOrgXkAQghLYHLjawCPAq9KkpQuSVIN8BYwu1FB\nAzyB/GFxCNgqSdI2RW5IkqQs4AjQZHOf2HiPUc2cPgiwAD6SJKlWkqQDwLYmmTtAJnITTxOWyB+u\nPzXeaxddKEyXwu9CVRQADjcp2eZwBVJu+jul8bUbY9zywKhErkRBvpq/vdEEdDsQLUlS01hewMZG\nU0oxcAloQO5HQJKkYmAd0BP4VMn7+gm4p/H3e4BfWrm3NEmSZLfcn5uS892KG1B409/5yHcZPwkh\nJnRw7C7+ZXQp/C5UxUmgBrlppSUykSvnJjwbX2sTSZLikSvQSfyvOQcgDZgkSZLNTT8mkiRlAAgh\nQoEHkO8IvmhtmmZe2wT0FkL0BKYgN/s0RybgIYS4+TvlCWS0fXfN0zjWVODo/wgpSRuAh4D1QohR\n7R2/i38fXQq/C5UgSVIJcsfk10KIGUIIMyGEYaOTdHHjaauB14QQ3YQQDo3nKxNG+DvwDDAC+Yq9\nieXA+0IIL4DG8ac3/m7SOMcrwALATQjxeAvj5wD/E5MvSVI1sL5x7jOSJKW2cO1p5DuSFxvvOwK5\nsv5DifujUWYDIUQP5O+XM/DZredIkrQaeBLYLIQYetMhPSGEyU0/xsrO38U/ly6F34XKkCTpU+B5\n5I7YPOQr7yeRr5IB3gPOAjFALBDd+JqirEbumD0gSVL+Ta8vBbYAe4QQZcApILzx2IfITS3fNNq8\n7wHeE0L4NzP+KiC40TS06abXfwJ60bI5B0mSapEr+EnIzS7LgPskSbqsxP3NFUKUAyWN91MA9Jck\nqdldkCRJPyGP4NkuhBjY+PI8oOqmn0Ql5u/iH47oaoDSRRetI4TwBC4Dzl3x7l10ZrpW+F100QqN\ndvTngT+6lH0XnZ02Fb4QwkMIcVAIEd+YTPJMM+eIxoSUa0KIGCFEP/WI20UXmkMIYQ6UAuOAN7Us\nThdddJjWQuiaqAcWSZIU3Rj/HCWE2NsYNdHEJMC/8Scc+Ia/bKhddNEpacxgtWjzxC666CS0ucKX\nJClLkqToxt/LkMc43xpbPB34WZJzCrBprv5HF1100UUX2kORFf4NhBDeQF/kIWg344Y8IqOJ9MbX\nsm65/mHgYQBzc/P+QUFBykmrAmQyidzcUiwtTTA379wRa9lphVhYmWJhbaptUVqkrLiC0oJyXLy7\noaffPpeRJElkp+SDJOHi46hiCTsvtdV1ZCXn4ezlgLGpUYfGyssoxNDIEJtuliqSTr3kZ5egb6CH\nrUPnkFcZ6utlZGQU4uhohWkz/9eoqKh8SZK6tWtwSZIU+kG+tY0Cbm/m2DZg2E1/7wfCWhuvf//+\nkjaoq6uXxk74WFr53SGtzK8qSgrLpYl+L0jrVurufRTnl0pzAp6Tnh73vlRf39CuMaoqqqXXZn0m\nTbBaIK3/YqeKJezcFOWVSHf6PSM9Mvh1qaaqtkNjLbptsfR4xDsqkky9yGQy6c7wt6VPXvhD26Ko\nhXfe2ySNn7RYSk0raPY4cFZSUG/f+qPQkquxMNSfwG+SPMvvVjIAj5v+dqcDGYbqxMBAHzdXW1LS\n8ts+WYdJvZYLgJe/k5YlaZmVb66nvKSSZ5fch347Vvc1VbW8OWcpZ/fF8czS+5n11EQ1SNl5sXGw\n4vllD5B8MZ1fP9zU9gWtMGBcTxJj0yjILlaRdOojO62Q4oJygkI9tS2KyomMTOLgoUvcPW8wHu52\nbV+gJIpE6QjkCSmXJEn6W8ZfI1uA+xqjdQYBJZK88JRO4uVlT0pyJ1f4iTkAePrqpokjPjKRfX+c\nZPaTE/AJdlf6+vq6et6/fxkxxxJ4YcWDTJo/Ug1Sdn4GjOvNhHuHs/7L3Vw9n9L2BS3Qb2QwABeO\nJqhKNLVx6Zz8Pnv09WrjzM5FdXUdS77YjYeHHXfOHaSWORRZdg1FXtFwtBDifOPPZCHEo0KIRxvP\n2QEkAdeAlUBLqes6gbeXA5lZxdTWtlbYUbfJSM7H0MiAbq422hblb8hkMpa/sgZ7ZxvufHZSu67/\n9LHvObM7hic/u5fRcwarQcp/Dg++OwdrB0uWPPUDDQ2yti9ohu69PLCwMeP80Usqlk71xEenYGpu\nhFeAs7ZFUSm//naCrOwSnntmAkZGSrlXFabNUSVJOgaINs6RkJeg7RT4+HRDJpNISc3H369zfmiy\nUgtw9rBDT0/3cucO/RnJlXPJ/OfrBZhamCh1rSRJrHjlDw6uO8X8N2Zx2wMRapGxtfmzk/O4dj6Z\nlMuZFGQVUZBZRGF2MfW1DchkMiRJwsjYEFsna2ydrHFwtaV7L0/8+/rg5OWAfFOsOSxtzXn0w3l8\n+MBy9v9xgvF3K99RUl9fj16D/Yk7eU0NEqqW+OhkgkK92mUm1FXS0gtZs+4048f1JLSP+nYu6nmM\n6Dg+3nIH9/XreZ1W4WenFeLiaa9tMf5GbXUdP76/Eb/enoy+Q/lUjM3L97Hpm33MfHwcc5+frAYJ\n/07W9VzO7DrPmd0xXI68Rnlx5Y1j1g6W2LvYYudsg7GpIUJPDyGguqKGotxSrselUZhTgqxxZW1p\nZ07oyGCGTgtj4IQ+mFubaeQeRtw+gD+/2s3P728kYlY4RiaGSo8RPMCXkzsvUFJQhrW9bka/VJRV\nkZyQzd1PjdW2KCrF1cWGJx8fy8gR6o1c/FcqfHd3O4yMDEhMymv7ZB1EkiSy0wrpNaB72ydrmC3f\nHSQ3vZBFX85Xevdx7lA8K15dw5Ap/Xjo/blqXSnnZxay97dj7F99nLQEubvJ3d+ZEbeH49/XG79Q\nL7yD3TEyaTvcsbamjuSLaVyJTuZKVBKRuy9wdGMkBob6hI3vzczHJ9BnZA+13o8QggVvzuL/pn/C\nrp+PMO3hMUqPEdDXG4CrF1IJGx2iYglVQ3x0CpIkEdzfW9uiqBR9fT2mT1N/gYJ/pcLX19fDx9uB\nxEbHZ2ejvLSKqooaHN10y35fUVrJH0t2EDYmhD7DlVupZCfn8cH8b/AIcOE/yxeqxVQlSRJn98ay\nZflezu6NQSaT6D08iCkPjmHAhD64+bYv4snI2JCAft0J6NcdHhyNTCbj0plEjm2KZP/q45zafg7f\n3p7MfnYyI2cPUpspInRkD3oOCWDNZ9uZeN8IpVf5vr3lUS/XYnRX4V+MSkbfQI8eof8sh62m+Fcq\nfABfXyeOHUtAkiSN21w7Sn5WCQDdXHRL4W9eeZDy4kruf6W1Hih/p6aqlnfv+RpJJvHmb09iZqna\nRDKZTMapHedY/fEWrkRfx97FljmLpjD+3hHtVvKtoaenR8ggf0IG+bPgrdns/+MEG77cxccPLGfj\nV7t5csn9BPZX/e5MCMHdL03j/6Z/wv41J5l0/wilrrewNsPZy4Gk2LS2T9YScZFJ+AW7YWLWsUSz\nfyv/HK+Hkvj7OVFaVk1uXucrgFiQK5fZ3slay5L8RVV5NZu+3cfAcb3wV9Lp9M2Lv5MYm8oLKx/C\nVcUKOPbYZZ4c+gZvz11KWVEFzy1byE/xn7LgrTvUouxvxcjEiEnzI/g28gNe/uEx8jOLeGbk2yx9\n+gfKiipUPl/oyB749fHizy93IZMpH7HjFehKSoJCTcg0TnVVLQkX0ug1UPdMmZ2Ff+0K399P/mW/\nciUbJ0fdUZyKUJDTqPAdrbQsyV/s/u04pYUV3Kmko/Xk9nPs+vkIc56bTPiEPiqTpyCriJWv/MHB\ntSdx9LDnhZWPMGrOIPQN9FU2hzLo6ekxas5gBk4M5df3N7Dpm72c3RPDG6ufxr+vj8rmEUIw6+kJ\nfLxwBWf3xTFwfG+lrn/w7dntcvhqgsvnU6mva/hHKHxtWRb+tSt8X19H9PQEV652Pjt+cUEZALY6\nUvekob6BDcv3ETLIj+ABvgpfV5xXypKnf8S3tyf3KmkGaglJktjx/UEWhr7Esc1nuevl6ayM/oix\ndw3VmrK/GXMrUx75+G6WHHwDgOfGvMfun4+odI7h08Ow6WbF7p+Ptn3yLXj4O+PkoXvRXwAXTl5D\nT1+PngNU94DUBBUVNcTFpZOWXkhyijzhU1tm5H/tCt/Y2BAf724kJOhsQnCLFBeUY2puhLGOrMSO\nbY0mN62Axz6Yq/A1kiTxxbM/U1laxQtbX8BQBYkmJfllfP7EKk5uiyY0IphnvlyAa3fdLD0R2L87\nXx59mw/nL+Ozx77jelwaD380TyXOagNDA0bPHcTm5fspLSzHyu6fUeH5/MlrBPRyx0zJ3A5t8+HH\nW5EkqK2tx8vLAXMzI0aPCsbLy0HjsmhthZ+YkU9O40pVWwQFuZBwJQuZrHO1eSwtqsTK1lzbYtxg\n04r9uPo4Ej5BcfPBkQ2RnNgWzb2vzMC7HaUXbuXCkUs8Nug1zu6J4eEP5/Hh1hd1Vtk3YdPNig82\nv8CMx8az8evdLH3qh3bZ3Ztj9JzBNNQ3cHTTWZWMp20qyqq5EptO6GA/bYuiFFHRyeTklPL+u7N5\nYdFkwgd0R09fj81bo28sNiUNtpnVmsKvrWtg27GL2poegB5BrpSVVZOeUahVOZSltLgCKxvNJPS0\nRUJ0Mpcik5j20CiFV6dlheUse+FXAvr5MOupCR2WYdt3B3h5yseYWpqw5OAbzHp6kk5mIDeHvoE+\nj/73bua9OI1dPx5m2aJfVKIAfHt74hHgwuENZ1QgpfaJPZOErEFG6JDOpfC7OVhib29BWVk1jo5W\nDBjQnVERPXBwsGTX7lhAs+YdrX0rzE2M2HIkjgYVrWjaQ3CwvI9LfLxOFvZskYrSaiysdEPhb//p\nMCbmxoy7U/F6N798uJmyogqe/XJ+h+zqDQ0yvn3pN7585kfCxvbiyyNv4Rfq3e7xtIUQgvvfmMXs\nZyaxdcV+fv1go0rGHDa9P3HHEyjR8k5aFZw7fhVjE0N6NCaHdRY8Pe1xcbbhv5/u4PSZRPlrHvbM\nvSOcjMwiLlxI1ag8WlP4NpamZBWUcjqu/RX+Ooqnhz0WFsZc7GQKv7y0CjNL7dsxq8qrObLpLCNm\nhGGu4AMoOT6dbd8d4LaFo+je06PtC1qgtrqWd+YtZcNXu5nx2HjeWvusyuP3NYkQggffv5Px9w7n\n1w82sfPHQx0ec8ht/ZDJJE7vutBxAbXMueNX6TnAByPjzuF2bGiQUdgYdvvwQxEMHuTLyVPX+G7V\nYa4n56Gvr0daegFWVpr9zGrt3bM0M8HOyoyNh2IY0ls7Xnc9PUFIsDtxFzuXwq+qqMFMB7p1Hd9x\njuqKGsbfOUTha757fS1mlqYdisqpra7lrblLid4fx+Of3MP0x8a3eyxdQgjBs189QH5GEcsW/UJg\n/+5079X+mu9+oV7Yu9gQuSemXQXVdIW8rGLSknKZMGeAtkVRmI8Wb6O0tIrqmjpumxSKk6M1dnYW\nXLuWw/+9uo4eQa6MGB6Ej0/7Gle1F62t8IWAKcNCOHY+idwi7W05e4a4kZKST0lpldZkUJbqqlpM\nzLWfaXhg7SmcPO0JDlcsFDP6wEXO7otj3otT2x05crOyf+7rB/4xyr4JfQN9Xlr1KBbWZnxw/9dU\nV9S0eywhBP3H9OTcwXga6hvaPL+mqpbykkoqyqqorqxpd6llVRN97AoA/YYFaFkSxVi3/gxlZdV8\n/OFcpt7Wl5jYNM5GJ6Onp8fddw3hh+8e5Nmnx/PYI6M1LptWPVszInrRIJPYciROazL06iU3K8TF\npWtNBmWpqarD2Fi7IZnFeaWcP3KZUbMGKuQglclkrHpzHU6eDkx9qH0f9Lraet69+0ui9sXy3NcP\nMOH+f2ZTFBtHK176/jHSErL4/s21HRqr76hgyksqSYxp3VacFJfGui93s+S5n/nooZUsfux7fv9k\nG2lXszs0vyqIOnoFO0dLvDtB/XtJkqira8DfXy7r2DEhPPrIKGysTVm77jTHjl/B1NQIaw1VUb0V\nrSp8d0cbwnt6selwLPVaWk0EBbpgaKhPTBtfCF1BkiTqauu1ng15bGs0MpnEyJmKbbOPbY4iMSaV\n+16biVE7HlaSJPHpIys5s+sCT38x/x+r7JsIjQhmxmPj2fzNXs4fjm/3OL2HyYvYxRxruZNV5L5Y\nVry+DqEnmPPURBa8fjtzn5mIEIKvXviNU1r0ATQ0yDh34ir9hwd2ippXQgiGDw8kMSmHI0cvU1pa\nhYW5CXPuCGfKbaHs239Rq42XtB67NmtUH3ILyzl6PlEr8xsZGdAjyJULMbpbMOpm6uvkW3MDQ+1m\njR7bGo27nxPePdzaPFeSJNZ8uh2PABciZitfIx9g9eItHFx7kvlvzea2hZrfCmuDBe/cgZufE0uf\n+oG6dioJe2cb3PyciDt5pcVzLp+9TkA/b+7+zxQC+nrTPcSdwH4+3PPiVEJHBBF36mp7b6HDXIlJ\no7ykiv7Ddd+c02QC83C3I2JEENHnUjhyNIHLjfH2Awd0Jzk5n7q6ts1r6kLrCn9YaHec7CxZv197\nq4jQPp5cS8yhvLxaazIoStOHykCLZQJKC8uJOXGFoVP6KbTqij5wkcTYVO54ZmK7SgMf33KWn975\nkzF3DuHO/0xtj8idEhMzYx5bfA+ZiTnsWHWg3eMEhXXnSvT1Fo87uNlSkFVMSkImpYXllBVXUF1Z\nQ2lhORlJuVrN1I08dBk9PUG/obqt8OvrG3j19fWcv5BCfX0D48f1YuCA7iQm5XLwYDzPPv8bb7y1\ngYiIIMy1GHCh9RgnA309Zo3uw7L1x7ieWYCPq+breISGevLzr8eJiU1jyGB/jc+vDE2dlYSe9ra3\nZ/bFImuQMWRyqELnr/9iF/YuNkTc0b7GzDVVtfQeHsSzXz/QKbb1qiRsfG9CRwbz20ebGX/vCKVb\nRgL4h3qz/4+TFOaUYNdMhdVJ9w6nqrya9+Yvx8reAgsrM0oKyynOK2XiPcOY0Y5mKqrizKFL9Ojn\nhaWOJBq2RE5OKXEX01m7XhAbm8748T0ZMtgfFxcbGuplDBrkh54Q9OnT/qgrVaB1hQ8wfURPvtt0\nknX7zvPifZr/cAX3cMPIyIDocyk6r/Cb0Kbei9wTi62jFf4KNKFIvpTBuUPxzH9jVrts9wCj5w5h\n1JzB/zplD41JWW/O4rnR77J1xX7mPH+b0mP4hMhLVyRfTG9W4QPc/tg4bn9sHNkp+ZQVV2Bpa46z\np+ZrvdxMfnYJifGZLPjPJK3KoQjOztZMuS0UC3MTsrKLWfbNfuxsLahvaGDRc7ojf5v7ayHE90KI\nXCFEs6E0QghrIcRWIcQFIcRFIcQCZYWwtTJjXHgg24/HU1ahebOKkZEBPUPcOHdOe0lgyqLB8hv/\nQ0ODjKiD8YSN6alQdM7m5fswMjFk8oKOOVn/jcq+ieBwf/qP7cX6pTuorlQ+TNOrMaM8+VLL+SZ5\nGYUc2xbNkc1nidwXx4nt54iPTFQonFNdnDl4CYDw0cFak0FR9PX1GDk8iNq6el5YNJkhg/3ZvTeW\nwsIKMrOKteqovRlFDKo/AhNbOf4EEC9JUh8gAvhUCKF0kPjccX2pqqljq5bq6/Tr58315DwKCsq1\nMr+i6DXawCUtFXxLik2jvKSSfhFtfwkrSqs4uO4UEbPD/zEVG7XFnf+ZSkl+Gft+P670tTYOVljZ\nWZDeQohl3KmrfPLED+xdfQIhBKbmxlRV1PDNy3/wyRM/UJBV3FHx28Wp/fE4e9jh6eeolfmVpUcP\nV2pq6snMKiYnp4Qhg/3x8rTnm2/3a9XndjNtmnQkSToihPBu7RTAUsiXYBZAIaD04yzI24k+AW6s\n3XeeueP6oq/h4ldh/X34btVhoqKvM35cL43OrQxNTs96La28Yo7Lw/t6K+BEO7j2FNUVNdz2wKg2\nz9WVVpOSJFFaUEb6lSzy0guRNcjk1VQlCXtXW1x9nXBwt1dbX9qW6DUskIB+Pmz8aheTH4hQujic\nm58TGdeaV/hbvztIxKyBTLp3+P+8fvd/pvDRw99x9kAcEzScqVtdWcv5k9e47a5BOvG5aImmz21D\ngwx9fT0Ghfvyf6+upby8hvVrnkQIQWFhOXpa9LndjCps+F8BW4BMwBKYK0lSs0H1QoiHgYcBPD3/\n7ryYN64vL3+9jaPnkojor9mqeH6+TtjamBF5VrcVflM4pra22nGnruLq44i9c9v9dHf/epTuvTwI\n6Of9t2O3Kvim32UymUYrXUqSROqlDE7vPEfk7gskXUhps/WgoZEBPr08CZ/cl0FT+uEX6q12pSSE\nYOYTE/h44XJijlwmVIEd1s04e3cj/tS1Zo/ZOllTlFtKZZncnKpvIH//jU2NqKutw8BQ866+qKMJ\n1NXWM2iMbptzmv7vTQuAvqFezJkdjrW16Y0HgZ0O7W5V8Z+cAJwHRgO+wF4hxFFJkv7WLFaSpBXA\nCoCwsLC/2SRG9PPDxd6K1XuiNK7w9fQEYWE+nD6TdONprYsIITAw1Ke2RvM2QUmSiI9MYsDYnm2e\nm5GYw9VzyTz0/txmlaEQgvSrWeRnFJF2NQvX7k70GRGkMeVSWlDG9pX72fnDQbKv5wHg09ODEbMH\n4R7ggkeAC46e3TAw1JdHREkSeRmFZCbmkHkth7jjl/n1vQ388u6fOLjbMfPJiUx5ZCym5uorajd0\nehhmz5myb/VxpRW+k4c9RzZE0lDf8LcKpTMfHcvyV/7g3fnfENDXGwNDfWqqajmzN5beQwMJGxOi\nyttQiFP747GwNqVnmG52t0pNK+Dy5Uzs7S3R1xc3Aj8Abpv8V6tOXdMjqvh2LQA+kuRFvK8JIa4D\nQYDShbgN9PWYM64vS/84TPz1bIJ9NJtKHT7Ql737LpKQkHWjdLIuYmJqRE1VncbnzU7JpyS/jB79\n2+4peqSxDvuIFjJxz+6NYc1n27F1tMI72J3dxy6z5du99B/Ti3F3D2tX+KEiZCbmsO6zbez79Sg1\nVbX0HdOTO1+cTtj4Pji20drPzd+F0Ii/lF9RbgmRu86z//djrHz5d9Z+uo07nruNqY+NU4viNzY1\nYui0ME5sjaLuywVKdQnr5mZHQ30DRbmlOLja/s8xJw973vzlCZLi0rhyPoXamjpMzY2Z9uAoHN01\nHybdUN/A6YOXGBjRQyfaUt6KTCbx5tsb6d3TnYrKWmxtzThx8hojRwQR0qg3EpNy8XC3u/EQ0BVU\nIU0qMAY4KoRwAgKBpPYONn1kT77bfJLfdkbx/uPKh6B1hAFh3dHTE5w6k6jTCt/Y1IjqqlqNz3v1\nvDyKKUCBmuTHtkTRY6Av3dzsmj3+5xe7mHjfCMbMG0pJfhnVlTWkXs7k1I5ojm0+yzgV24yrKqpZ\n/eEm/lyyA4Rg7N3DmPnUJLxD2t9ty9bRmvH3jWT8fSOJP3WFX9/bwHevrGb7d/t58YfHCRms+mSh\n4TMHsPfXo5w/eJEBSjR9t2s0wRXllPxN4TfRvafH30pWa9rEBnAxKpmy4kqGjNP8zkIR9h+4iLeX\nA889O5GysmqSU/K4GJ/JwYPxmJkaYWCoz4mTV7n37qHaFvVvKBKWuRo4CQQKIdKFEAuFEI8KIR5t\nPOVdYIgQIhbYD7wkSVJ+ewWyMDVmZkRvDpy9QmZeSXuHaReWliaEhLhx8mTztk5dwczcmEotZAVf\nvZCCgaE+3m08DHNS80mMSWXo1P4tntMj3I/aGvkuxdrBEidPB3oPD2LsXcPY8+tRrp5LVpncJ7dF\n8VCfF/lj8RZGzB7EzwlLeG75Qx1S9rcSPCiAD7a9zH/3voYkSSwa/Q5r/rtFZS0Lm+g7KgQzSxNO\nbI9W6jobRysACnP//p1qaJBRV1tPXW099XX1NNQ33PjfvDHvS84dudRxwZXg+O44jIwNdLY6ppeX\nA7m5paSlF2JpaUKvnh5EjAzC0sqUNetO4+5my4xpLX/2tYkiUTrz2jieCai0Ru3ccX1ZvSea1Xui\nWXR32xEeqmTwIH9WrDxITm4JTo7NJ6loGzNLEyrKNK/wky6m4xno0qYp4fRueZmM8Ektr0CHzxjA\nxwuXc2hCUwGXAAAgAElEQVTtKUbNHcyA8X2wd7Ghx0A/cpLzWlyFKkNdbT0rXvqNzV/vxjvEg08P\nvEGvxmJi6qLPyGC+OfMhSx77jlWv/kHsscu8+vvTKjPxGBkbEhoRwtk9MUpFNjWFxTbnkD6y6Swl\nBWWYmBkjxF+hv7aO1qReydZoSKFMJuPE3jj6Dw/EVAd6PjRHgL8zg8J9WfX9YUYMD2T0qGCcnay5\n/95hvPjyGq5eyyHAXzcre+qWgakRJztLJgwKYvPhWBZOH4SNhea6wgwZ5MeKlQc5efIaM6br5lPa\nwsqE0uJKjc+bHJ9B6Ii2FWbknlhcuzvi4e/S4jk+PT1Yfvp9Dq49yfnD8ez++Qj1dQ14B7vRc0gA\nti1khCpKYXYx7965hIsnrjDz6Uk8+ME8pWzeHcHc2oxXfnuKXiN6sOzZH3nz9k95d9MLGJuqpofB\ngPG9ObE1irQrWXgGuip0jWVj0/vyZhT+r4u34uhuh28vD6ora0GSaKiXYWphQlFOiUYrsyZcSCM/\nu4T5i1pL/dE+c+eEc+jwZWJi04iJTWPoYH8sLExIup6LZxu+IG2ikwof4N5JYew4Hs/6/ed5cLri\n/VI7iqenPe7udhw/cVVnFb6ljRkZye22mrWLitJKCrKL8QpqXcHU1tQRc+xyix2WqitqOLD2BBPu\nHYG+gT6j5gxm5OxwinJKSYpNxczKlKCwtp3CrZF4IYXXpi+mvKiC//vlSUbNVbwjl6oQQjDt0XGY\nWZry3we+4d07l/DmuudV8tDpM6IHALHHLius8Juc4FXNmAJDwn0ZNrU/A5sJR754+qpG4+CP7ozB\nwFBf58MxjYwMGDM6GH8/Jy7EpLJ8xUFCQtx4/NExmGi5dHlr6KzC93V3YGgfH9buO889E8Mw0WDD\nj2FD/Fn3ZyTl5dVYqClapCNY2ZhTWqTZFX5TIwwPv9a3qpcjk6iprKXfqOYdbgfXnSQhMonJC0bR\nUN/A9bg0UhMy8erhzoDxvTssZ+L5ZF6c8D4mFiYsOfI2vn3arvejTsbePYyaqhqWPr6KxQuW8X+/\nPNlhJ6irrxN2zjbEHktQuFS0oZEBBob6zSr8O5+bLI8ZbyZk87kv5uPipZmaOjKZjKM7Y+g/PADz\nTtCfWF9fDx+fbvj4dGPG9P7U1zfoTEZtS+hWkOgt3H/bQIrLqth8JFaj8w4dGkBDg4yTLSSqaBsb\newsqy6tvONY0QWaSPFbd1bf1NPfY4wkIIeg1NLDZ4ye3RTPpgQgA/vhkK+uX7mTnD4dYvHA5v7y/\noUMyXo9L46VJH2BiYcIn+17XurJv4rYHx/DgB/M4vO4U6z7d1uHxhBD0CPfj8lnlekgYmRg2W1ff\n1ccRF+9uzYZAege5qswU1RaXzqWSn13CiMmKRx/pErqu7EHHFX5ogBuhAW78svMsdRrMLO0R5Iq9\nvQVHj7XcNEKb2DjIHXBF+Zqr+5OVIlf4bVVQjD2eQPeeHlg0U862OK+UM7sucO7gRXJS84ncE8OC\nt+/gv7te4e31z5FyOZP8zMJ2yZd+JYuXJr6PobEhi3e/iouPbtVfuWPRFEbMCufHN9dxTQURSIH9\nu5OVlEtpoeKfAUMjA+qUTNg7vTumQ311leHI9gsYGhnofLE0XSmE1h50WuEDLJgaTm5hOduPt7/N\nm7Lo6QmGDwvgTGQSle2oTqhu7G+E2P0tmVlt5KYVYuto1epqr6FBRkJUEj1aaGpubm3Gq788QW5q\nAYvGvUdFaRVOjQ8QOydrUuLTsXawUlq28uIKXpu+GEmCxbtfxa0Ns5M2EELw9NcLsbK34LNHV3S4\nNIZf4+7lepzindr09PVabUxeU1VLVXk1NVW1N3aP1y9laKRuU0ODjKO7YhgwMghzS90zozZRWVnD\ngoUr2bQ5StuitAudteE3MainFz18nPh5+xmmDAvBQEOpyhEje7BpczQnT11jzGjdSgCxb4xgKcjR\nnMLPyyxsMYmqibQrWVSV17TodDU0MmD4zIEMnzmQ0sJyCm+qwrjv9+N49XBT2qkpSRL/XbicnJR8\nPtn3Gh4KOjG1gZWdBU98fj/v3fUFG7/cxezn2p9Y6B0iT5BKvph2w4nbJi04X2ur67gclUTsyasU\nZpcgSRJW9hYMGNPzRm9bdRMXmURRXhkRUxVrqqMtvv/hCNk5JTealGsaqYN10XV+hS+E4IGp4aTn\nlrD39GWNzdszxB17ewsOHdbcnIri4CxX+HkaLFtbmF2MvXProZJJsfJG8H7N2M5ra+pIjk/np3fW\ns+/348gaZDcSn2pr6qgqr2baI+OUlmvzsj2c3BrFQx/dRciQ5v0GusTwWeGET+7Lr+9toKiZJChF\nsXO2xsLGjNSETIWvkWTNx+2vWbKTH9/fhImZMWGjQ+g/OgR7Zxu+fW0t3731J/V16jdhHNp2HhMz\nIwZEqDdPoiNcTshi4+Yopk3pd6OEgibJKShj4burOzSGzit8gOGhvvi5O/DD1jM0qDhzsSX09ASj\nInpwJjJJ53rdWtmaYWxqSG5mkcbmLM4vw6Zb6+aW5PgMDAz1mzWprPt8Oz+8uQ49fT12fH+A/0x4\nnzfnfM6pnecwMjZkwn0j6D1cuS97UkwqK1/+nfDJfZn5lG7HbTchhODhj++mpqqWX979s0PjOHs7\nkpOieHhufV0DBkZ/dyzu/v04n+14iVmPj2Pw5FCG3taXqQ9E8MXeVzi547zSdn9lqaut59iuWAaP\nDcFEQw5iZWlokPHZkl3Y2VqwcOEIjc9fVVPHoqWbuN5OH1cTnULh6+kJFkwLJzmrkP1nNOdIHRXR\ng7q6Bo4eS9DYnIoghMDJzY6cDM0ofJlMRmlBOdYOlq2el5qQiZufc7NmmcjdF7jnlZnc++rtfLbv\ndT7b+xqhI4P5/aPN7P75CBY25krJVFdbz8fzv8bS1pxFKx/R6Zrpt+IR6MqE+SPZ/eNhSvLbb5Zz\n8rQnJ61A4fPr6+oxbKYaqYt3N87sjaUot5SKsiqqK2qorqwh83ouBob6ai9gFnU0gfKSKp025/y5\nIZJr13J48omxWKixImpzyGQSb6/cxbW0/A7XF9N5G34TY8IC+M71FKu2nGLMwACNNEgJCnTB1dWG\n/QfimTRRt0LFnD3syE7r2NNeUarKq5HJJCytW28knXEtp9lEoOrKGjyD3Ig+EIerrxPmVqZY2Vsy\n84kJDJsxgE8eXkHfUcE4eige77152W6ux6Xx9p+L2tx56CIznpjIju8OsPP7Q9z54rR2jWHnbMOF\no4qZHCVJoqayFpNmyhU8/tGdfPbUT1jamWPvbIMQUJBdQub1XB7/8E61Z9ru2xiNjb0F/XW0dk5W\nVjE//nyMQYN8GTFc82bDlZtOcODsVZ6dN5IhvTtWLrpTrPBBvsp/aMZgrmcWsve0ZlbcQgjGjArm\n3PkU8vPLNDKnorh42JGVWtBhJ44ilJdUAfIom5aQyWRkJ+fh2v3v4ZAmZsbMe3Ea6VezWL90B1fP\nJVNbU0d5cQUVJZXkphUopexLC8v57f2NDJjYh8GtFGjTZbxD3OkTEcz27/a3u8CarZM15UUVzcbW\n30pNVS2SJDUbZeUT7M6X+1/l6U/uYcJdQxlzxyAeeucOfoh8nwFj1dsMqKy4ktMH4hk5JVQnSyFL\nksTSL/cghODZpyZofCe559RlVm05zdThIcwb36/D43UahQ8wOswfP3cHvtt8ivpWwstUydixPZEk\nOHBQc2GhiuDm043qylqNROo0Nc5urZhVUU4JdbX1N8Isb0Ymk+Hi48ispyZRWVLFp4+u5K05S/jh\nrXWsem0NE+9Tzia69r9bqSyt4sH3W63rp/NMuG8kOcl5XDzRPjOlpa08H6O5+ji3UlHa9kPb2cuB\nnoP96TM8CO82SmioisPbL1Bf18DYmbr54D5w8BJnIpNYuGAEjo6a3UleTMri3VW76RPgxkv3jVHJ\nw6bTmHTgr1X+S19tZdfJS0wZpv5wSQ93O4KCXNizL445d4SrfT5FcffpBkBaUu6NqB11UVMpr73f\n2tY+N11uXnL0/HvhqKYPqneIO499cg8gT9CqLKsiONwfUwvFqyIW5ZSwedluRs8bik+vv7fJ7EwM\nnTGAkO/2U1VW1a7rm5LbyorK2yw2V14sfyiYW+lWyYJ9G6PwDnDGN1j3wmlLS6tY9s0+AgNdmD6t\n46trZckvrsC1mw2Ln5yKkYo6wXWqFT5ARH8/Ar0cWbX5lMYaeY8f25OkpDyuttAEWht4+TsBkHo1\nR+1z1dfJ32fDVuoZFWbLQ0Sb63Xb3Mqk19BAwieGYmlrrlRbww1Ld1BXU8c9r85U+BpdxdTChM8P\nvcXASX3bfT3IzTVtUVogz8i1sted/qppibkkXEhl7O39ddLpvmLlQUpKq/jPcxO10qpwZD8/fnv3\nXmytWvedKUOnU/hCCB6ZOYSMvBK2HruokTlHjwrG0FCfXbs1W9OnNWy7WWJpY0byVfU/hJqyQpua\nWzdHUaNpyeaWbe/1uDQid19g3+/HObLhDLlpf4URnj8cT/LFdIXlKC+uYOu3+xgxexBurZRe/rfQ\nZI+vrmxb4Zc0+qBsWom0qq6sUcgfoCr2bYxCT1+PUVpYPbfF+Qsp7NgVw5zZA/H1ddKaHKpONO10\nCh9gaB8fevm5sGrzKapr1V9AzMrKlGFDA9i//6LO1NEQQuAT6Mz1y+pX+E2OYUHLq7CSQrlCsb5p\nBRl7PIEV/7eajcv2kJOaR/ypq/z+8Ra2rtiHJElkJuVgZq24iWHPz0eoLKvijkVT2nkn/yyawl8b\n6tre6RbmyJO8WjP97P3jJDM8n7xxrjppaJCxf1MUYSMCsevWerivpqmpqeOzz3fh4mLDffeqttWm\ntumUCl8IweOzhpFbVM76/Rc0Muekib0pLavm2HHdKajmE+RK8pWsVuujqIKm7bZEyxFB5cWVmFoY\n/495ZvM3exh0W18+2PwCUx4cw8T5IxkwvjcJUddZ88k2Ji9Qrkn2np8OExjWHf++HQtN+6cg9OT/\nF0WifAqyitHT12s1lyI5PgNTcxNsNeCcjD52hYKcUsbPClP7XMryy68nSM8o4vlnJ+p0bfv20CkV\nPkD/Hh4M6unFj9vOUK6BAmf9+nrj7GzN9h2aecAogm+wKzVVdWRcz1PrPPqG8nC5hvqWFUtladUN\nm3ITvYf3oCCrmPq6eqwdLPEOdmfotDDue20mF45cIv70VYVlSL2UQVJsKqPv+metuDqCMhG5eRmF\nOLjatlqL/1pMCt17umvEnr577RmsbM0ZOErBOkAaIjEplzXrTjNhXE/69/NW2zznr2SQklVIdsFf\nUXaaCLHutAof4Ik7hlNaUc3POyLVPpeenmDyxD6cO59ChoYyXNsioJe8Fs21ixlqnafJdFDXSv39\nmqpaTMz+N9pm0G19uRp9nffv/ZoNX+0iISoJAEcPB1ITMrG2V3wrf3TjGQCGzxyorPj/WJp8K4o4\nveW5Di3vpupq60m6mI5/qLeqxGuRwrwyTh2IZ9zt/TXWdlIRGhpkfPr5TiwtTXj00TFqm2flppN8\nvf4Yn/52kB+2nmHVllOAfCctk6lX6bep8IUQ3wshcoUQca2cEyGEOC+EuCiEOKxaEVsm0MuR8YMC\nWb0nmrwi9deGnzihF3p6gu07dWOV797dERMzI67EKF4itz00OQdbiwapra77W9imo7s9H259kTHz\nhlBWWM7Wb/fxxNA3eP32Twkb10upMsantkURNNAPhzYqdv6baKpx01x9nFvJSc3HqZmQ2SaSL2VQ\nV1NPQKj6m8bs/TOShnoZE+fo1sN70+YoLl/O4onHxmCtpvDV7IJS9p1J4ItFt/POI5OZODiIrPxS\nPvhhLyXlVejpqXd3pcjj9UfgK+Dn5g4KIWyAZcBESZJShRAa7Tzx2O1DORB5lZWbTvLKAuWrLSqD\ng4MlQwb7s2t3DPPvG4aRllcn+vp6+IW4cfmCehW+mWVTP9SWTWcNDTL09ZtXPMOmD6D/mF6U5JdR\nV1tPZVkVvr0Vj6EvyS/lStR17nntduUE/4dTXSEv6mfaRm2Xmqpa8tILce3ecrTJ5ajrAAT2V69/\nRCaTsXPNaXqHd8e9maxsbZGdXcyqH44QPtCX0aPU14DFwswYLxc7SsurcbK3pJevC3bW5mw/dpEt\nR+KYN6E/+npCbWa1Nlf4kiQdAVor2nIXsEGSpNTG83NVJJtCuDnaMGt0H7YciSMpQ/FCUu1l6pS+\nFBdX6kxBtaBQLxLjM9Ta7tDMQr7aacrWbA5JJrvhRGwOUwsTnL274RHgQmD/7krF3l84fAlJkujf\nTJPtfxLFeaUUZhcr7ISvLGtU+G30Xc66Lv9Kttae8lJkIraOVji1YvZRBdHHrpKTXsSkOwepdR5l\nkCSJz5bslpdPeGa8Wn0YFqbGeLvY8fLXW0nMyMfAQB83Byv6BbkTcy2T6po6tc6vCht+AGArhDgk\nhIgSQtzX0olCiIeFEGeFEGfz8lTnaFw4bRCmJoZ8tfaoysZsif79vHF3s2Xj5mi1z6UIwf28qK9r\n4Eqs4vHsymJqYYy+gR6lrZjN9PT1kNRkf7x48grGpkYE9G++sUpn5EpUEite+g2A2upaovfH8vM7\n6/nprXUcXnsSaNuJV9ZYUsHStvVKo6kJWQB4tJK7EH8mkeCBvmp32O5YfQobewuGju+p1nmUYe++\nOM5GXeehhSNxclRP1vrR80lsPhxLeVUNC6aGM2VYCF+tOcrRc4kYGOgzqKc3FVW1XElV73pZFTYJ\nA6A/MAYwBU4KIU5JkvS3+EVJklYAKwDCwsJUph1sLE1ZMDWcr9Ye5Ux8KgOD1Zdyr6cnmD6tH19/\ns58rV7IJCNBuO70efeU21/ioZHqGqWc7LoTAys7iRrZmc+jr66st8/nSqav4K7kr0HXSEjIpyJI7\n/y+evMrGL3fRb0xPHNzs2f3TIWQNMsbeM7zVMUoLy9HT18OsDXtzakImQgjcW+jSVJBdTHZKPlMX\njmrfzShIXlYxpw/EM/uhCJ1x1hYVVbDsm/2EBLsxbap6EsBeX76DisbiddEJ6QR4OhLS3ZluthZ8\nu/EEJ2KTqatvoLaugX5BHmqRoQlVrPDTgd2SJFVIkpQPHAE0Xkt47ti+uDhYsXT1YbU3SZkwoRem\npkb8uVH90UFtYWNvgYevI3GR19U6j52TNUWt9NA1MjWkVoEUf2VpaJBxPTYV/37/rNj7gqyiGzHx\nF08k4BfqzcynJjH89oGEje/DtQvJbY5RlFOMraN1m6vy5IvpuPh0+1sUVROxjcXbeg32V+4mlGTn\nmtNIEky+U3dqUn21bB9V1XUsen6SWhymeUXlFJdX8dlzM/j8+ZmMGxhISXkVkfGpeLnYseT523Hr\nZk1YkAdLF6nfR6UKhb8ZGCaEMBBCmAHhwKW2LiqsqKK8WnXx88ZGBjw5ZzhX0/LYdlS9JRcszE2Y\nML4nBw9dorBQ/dFBbdFrgA8Xo5I73Bi7NeycrMnPajkc1cTM+EZVzdY4ves8qZcVDyPNTsqhpqqW\n7r3Uu/LRNNUVNZzbH8e3L/7KsY2RWN2UEJWblk83BRLSCrNLsFOgcF5ibBrde7b8/sWeuIqZhQm+\nanyP62rr2bX2DANGBuLkrhuRVidOXuXgoUvcPW8w3l6Kl+dWBmMjA8oqqtl4KAaAYaHdGR3mT1VN\nHUeir+FgY849k8KYOKQH5hro9qVIWOZq4CQQKIRIF0IsFEI8KoR4FECSpEvALiAGOAN8J0lSiyGc\nTWQVl7J4+5GOSX8LYwcE0NvPlW/+PE6FGlabN3P7jDAaGmRs2XpOrfMoQu9BvlSWV6s1Ht/B1Zb8\nVloqmlmaturUbeKj+cvY8f0hhefNaCxY5x6ge9UUO8L0x8fz5BcL8O/rw/j7RhA86K/VdUlemUL9\nAXLTC9p8MJQVlpN1PRe/VuLrzx+9TMggP7XWoz+6M4aivDKm3jtUbXMoQ3l5NZ8v3U13n27Mu3Ow\nyscvLquiqLQSK3MTHr9jONfS8jkcfQ2AIG8nJg3pobFAk5tRJEpnniRJLpIkGUqS5C5J0ipJkpZL\nkrT8pnP+K0lSsCRJPSVJWqLIxA6W5vx5No5Dl5I6Iv//IITgubtGUlhayY/bTqts3OZwd7djULgf\nW7ad03p9nT6D/AA4d+Ka2uZw8nSgpKCc6ormV/GWNmbUVtcpVLlRGb9gdrLcue/s3U3xizoB1g5W\n9BkZzOh5Q7n96UkEhvkCckftopUPM2R66yUHJEkiJyWv2f4DN3PlXDIAQWHNO7zzMovISMwhdIR6\nM15tHSwZNa0v/Yap12ykKMtXHKSoqIIXFk3G0FC1D7oGmYzXl+/g+AW5mdXf3QFPZ1uiLqWx4WAM\nFVW1+Ht0w8HGXCO1wG5Ga5m2jpbmBDg78ObGvRRXtK8eeHOEdHdh0pAe/L47mvTcYpWN2xx3zB5A\ncXEle/a2uaFRKzb2FnQPciHqqPpCRZ0bk3ayUpqPrmqyR7fm2AV5NI8ytX/yMwrR09drs957ZyMn\nJY/35i3l7Ts+Z/Oy3X8VqBOCgsyiNu3J+ZlF1FTW4ubXeiXHS5GJ6OkJ/Pt6N3v83CF5Y5++I9Wr\n8PsO9efFT+e1WtpBU0RHJ7Nj5wVmzxpAYKDqq66++e1OPJ1tmDJc3q/D1sqM20f1pqevC+m5xSx4\n53de/HILJkaGBPtoNuhDa+++EIIP50ykuLKadzcfUGkdiSfvGI6hgR6f/35IZWM2R5/engT4O7N2\n/Rm1p0S3xYCIIOKjU6hoZzONtnBrLBGbkdh8/X13f2f6j+nZph/ByNiQ2mrFVzUlBWVYO1jqhKJQ\nJV898yP+/XwIGuhL/KmrrP98+40H4atTF9/oQdASqZczAfAMcmv1vPhT1/AOcW+x8UnUwXhsHa3w\nCW59nH8KVVW1fLpkF26utsy/r/UoqPZQV9+AqbEh90+RZxEvW3+Md1ft5sMf9+HjZs/Tc0fw8vyx\n3D2xP58/r/meDlr9FgW5dOPJsYPZFXuF7ecVa8asCN1sLXhg2iCOnk/iRIz6oleEEMydE056eiHH\n29mmTlWEjQxC1iAj+pjiBcmUwa0xSzOthfr7vYYG8v6G59s0vRibGbdoFmqOiuJKLGxajzPvbJTk\nl5KfUcjcF6Yx94Vp3P1/Mzm7N4YDvx+jorQSIxPDNsMWU+LleRderSj8hvoGLkVeIzjcr8Xj0Yfi\n6T8qRCcbkKiDVT8cISurmP88P0ktlTANDfRxsDFn18nLbDwUQ0JKLg9OH4ypsQGLfzlAUWkl/QLd\n6eOvnQes1pdND4wII9TLhfe2HCSzWHX9We8c1xdPZ1s+/e0gtXXqs7GPGB6Iq6sNq9ec0ki1u5bo\nEeqJpY0Zpw+op/eumaUJju52pFzO6tA45tZmVJRWKnx+czV6OjuFWcU37qm+rh7PHm48+/VC9vx8\nhO0r9reZOQuQGJOCvYvt3xrO3My1CylUldfQe2hgs8fjzyRSVlRB+ITe7buRTkZcXDobN51l+rR+\n9Omjvlydwb18SM0uIjE9n9tH9cbFwYoX7h2Dq4MVl5PV36GuNbSu8PX19Pjwjok0yGS8sm63ykwj\nRoYGLLorgrScYn7frb6sWH19PebeEc7ly1mcO5eitnnalMNAnwEjgzhz6LLawjO9glxJvtSxjF5L\nW3PKlAhlra9vwEDFTjVtY2VvyYT5EeSmFWBgaEBDfQMu3Z14cul8/li8GUPjtpOSrp1PabMe0YUj\n8l1zr2HNK/xTuy5gaGRAPxXWjmla9Ghz8dMcNTV1LP50B05O1jz8YIRa5+rt70oPbyfik7I5GZvM\nlVS53+taWr5WWiXejNYVPoCnvQ3/NzWCyKR0fjoWpbJxB/f2YWQ/X77fcup/6k6rmgnje2FvZ8Fv\nq0+qbQ5FGDw2hLLiSi5GJatlfN/enqReyVYoEqcl7JysleqopK+kk7czYOdiw4T5ETfKFTeFQ3oF\nu/P5obeYcH9Eq9dXllWRcimDwBYib5qIPngR7xB3bJspFyBJEse2RRM6IghzS9VVhpTJJGpvqgej\nSHMWTfDjz8dITy/kP89NwlTF8e7FzfjNZo3uw8O3D8HQQJ+1+87xzKcbGNrHh4Eh6q9G2hq6kd8M\nzOwfwuHL11my5ziD/Dzp4aqaSnrPzYtg7qs/8fnvh/j4qWkqGfNWjIwMuGP2AJavOMjF+AxCtOQA\nCxsRiJGxAcd3x9E73Ffl4/v19kTWICP5UgaB7cx8tXO2oTC7BJlMppAj1tDI4EYZ4H8KQghiDl9k\n769H0TfQx8nTAUdPB7x7uuPbxxuvYPdWr78SdR1JkghspbZQdWUNF09dZcqDo5s9fi0mlZzUAuY9\nf1uH7qWJxPhMtv56HH19PfT09XDv7sj4WWGYmjef3atJLl3KZN36M9w2uQ/9VNzUZPHP+8nML8HG\n0oyevi4M7uWNWzf5A3ZQT2+CfZzRE4KcojJ83TqW3JVRVMJbG/Z1aAydWOGD/Evw1syx2JqZ8uIf\nO6lSUXyqazdrHpgazsGoaxy/oLqY/1uZOqUvVlam/PrbCbXN0RYmZkb0HxHI8T2xallZBTaG9iVE\nt98R7ujpQF1N3Y2m522hrM2/M/D7h5s48McJ/EK9cfV1oqyonENrT/DV0z+y5+fDbe5o4k4kIISg\nRwvOWICYYwnU1dQTNqb5ImVHt8gbiA+ZHNqhe2nii9f/xCfIlX7DAggd4k/KlWz++8IfnNovz3rX\nlomntraej/+7HQd7Sx55WLW1gjYeiiH+ejYfPjGVPv6uFJZU8OvOs8Rey7xxjr6eHhZmxh1W9tkl\nZTywcj1x6R3zAeiMwgewNTflwzkTSMor5L87VJeFe8+kMHxc7Vj8ywGq1VRG2NTUiDtmDeD0mUQS\nEjrm2OwIwyb0oiCnlEvnUlU+toOrLXZO1lw6236F79IYxZN1XbEPrqW9BaX5ZTpnE+4IUftiGHv3\nMBEZDWgAACAASURBVG5/ehLzXprOY5/exwfbXubj3a+wc9VBLp5oPZ8i9ngC3Xt5tBq9FLknBmMz\nI3o147CVJImjW6IIHRGElZ1FM1crR2FuKWYWxky/byhDJ/RiwMgg7npyLCMm9yHycAL52SVaiwL6\n8aejpKYVsOj5SVi00TdAWUyMDBge6oupsSEzI3ozOswf927W7I+8SnFZFYnp+ew+dZm6DvrU8krL\nWfjdnxRVVvPtAx2rt6NTCh9gsJ8XC4b3Z83pGPZfVE3mqKGBPi/dN4as/FK+36q+DNwZ0/tjZWnC\njz8fU9scbRE+OhgjYwMObz+v8rGFEAQP9CX+TMv/l4YGGdnJeRzfGsWaz7bz5tylHNsSRX1jpJR7\ngDzRJb2F8M5bsXexpba67kYp4H8CDm52RO66QG7aX2n1tTV1mJqbIMlkWLaiyGuqarl48iq9h7ec\nKCVJEqd3XaBvRHCzEU5XziWTdT2PkTNU00DcztEKVy8HPnzmV4ryyzAyNsDB2fqGiXHbbye04oeJ\nj89g7fozTJ7UhwFqqCQb4OnIntMJ7DopLx3m59GNIX18KCip4PTFFMxNjegb6IZhB0pWFJZXsnDV\nn+SUlrN8/gx6e3QsUUvnFD7A0+OHEuLmyOt/7iW7pEwlY/YL8uC2ocH8svMsiRn5KhnzVszNjZkz\nJ5zTZxKJj1dvn9kWZbA0YUBED47uiFFLtE7PQf7kpBaQl9F8T5x9vx9n3dKdnN0bS0VpFcNnhLH3\nt2Ns+GoPIDfpGJsa3Ygjb4um0gE5LWT4dkYe/eReDIz0+eH1NXz97I+s/mgTu74/yKcPfYt7gCvO\nrXSCij91lbqaOvqODmnxnMSYVHLTChg0qXlzzaE/z2BoZMDQKaorB/zQ/02hm4sNHz+/mrXfHqSy\nvBoLK1O6udhQmFem8eiUmpo6Pv5kOw4Oljz2SPN+jI7i6+7A47OHcuZiKhsOyouj+bjaM3lID07H\npeBkZ4mPa/sbypRUVfPQ9xtILyxh2f3T6efdcd+gTip8IwN9Fs+dTG1DAy+v2aWycsdPzx2BuYkR\nH/6wT22ZsTOn98fGxowfflJ/M5aWGD29L8UF5UQdU30yWK8hAQBcOP6/Zof6uno+fnAF+1Yfp/+Y\nnjz43lweeGs2Y+cNZfqjY2/UdNHX18OrhxtJsYq1ZXT1la9o0q9oz0ymamwdrZnx5EQi5gymm4c9\nxXmlZCTmMHhqf1768fFWWxZG7onB0MiA3sOCWjznyIYz6OnrMagZ+3xDfQOHNkYyYFwvLKzNOnwv\nyVeyiTp6hZLCCibdGc5dT4yhMK+Mp2Ys5dMX17B/UzQz7h/W4XmU5fsfjpCWVsgLiyZjrkbH8dDG\nSMCElBze+HYHiRn5rN13HhsLkw6Zscqra3jk+40k5hbyxb3TGNhdNZVMdSZK51a8u9ny2rRRvLp+\nD98ePMPjY/6fu/OOq7l///jrNMlWZlZZZUSUvSINIjN7FNl7c9syE2WvbCKVhAgtSUqlor2jvffZ\n1++Pbm60Tud88r3v3/Px6OHhnM/7+oxzzvW5PteUfCRai6YK2Dh3DA5cfQknz1DMGMdMwOpnGjaU\nw5zZQ3DxkgdCQpPRv9+fT8PSHq2Gpi0a4bVjIAaNYbZHikpvZTRTbIxPXpHQNfmny2BKdDqK80tg\n6brjx2vlJWzEfErC3WNPMM5kKIgILBYL3TS74K2j/4//10SHnu0gJS2FpC9fgVmMnsr/lOatmmLw\nBE0MnqD5y+sCvqDGrpUBbiHoO0Kt2uIsIoKXUwAG6PRCc6XKRVlBnhHIzyqC7izJf09Pbvsi6G00\nCvNLoareDs1bNkb7LkqYaT4axguHIzk2A2bbJqDFT62f/wSfv3yFg9NHTDLSxECGs3J+R0ZGGqM0\nu6J7x1Zw8gzD7ecfody6GdbNHi22zDIuD6tuPUFkWhZOzzPCiB5dGDvef6WF/x3jAb0wqb8aLrp/\nwMcEZkb4TRimjsG9O+P8o3fIzGPGXfQ7k400oajYGNeuv/2fBBtl5WQw1lgTH9wjUJjHrO9bSkoK\nmqN7IdAj/JdMoM5q7REbkoy0hCxEByUi2DMcHg/9EOAWhnEmQzFxic4P5d5zoCpKCsp+tD6uCTl5\nWXRSU0ZsSBKj5/G/pLrvRF5GAQJeVB97SY3LwNfodAwyqH6+UIR/HLJScjFmRtVDRtzuvUMzxcbQ\n1pV8PrDbowCs3GsMG8e1MJw1GC1aNUFSdDp8X31Bu06KGDKu9x9X9uXlXBy3fI62bZphBcNZOdXB\nYrHQvlUzrDEZiT1metgyX3wXEpvHx5rbT/ApOQ3HZxlgbC9m06v/1QqfxWJhz5Rx6NiyGbY9dEVe\nieTpeSwWCzsWjYNAKMTxW+71opDl5WWxcP5wRESk4r1f/bUsrgm9Gdrg8wTwqIfZu4P1+qIwpxjR\nwUk/XpOWkcaCnVNgs+4mHtm8wAfXEHyNTUdXjY4YNa2ikdT3a/29t0u4iP2H1Id0Q5R/7L+miEdS\nWCwW0uIz4f3oA/yeBiHiQwzYZRyUF5ejqAYjxNspAAAwvIbWyW/s3kNeQQ7DJw2s9F5uRgH8XoRi\n/JxhEo8Y5LB56NZLGcF/uw179O2IyQuGY/DYXnjtGAin68zOuhCVy1c9kZ5egO3bjBgvsPpOTTpD\nRoIALZfPx4a7TxGQ8BWHZ+jBQKPqCmlJ+FcrfABoJC8Hq7kTUVDGZqz1gnLr5lg+bTjehSbglX/9\ntBQ2NNBAB+UWuHa99rzq+kClZzv07Nfp77FyzN7UtHT7QEpaCn6uv1qjRkt1cMR5MzacWYxJ5mOx\n4thcjDUZ+mPI9ncLv2PP9mim1AQh3rUORgMA9B7aAyUFZUgOr79B7X+KbzHpsDK/jMvb7iI+NAkh\n3hHwfOgHe8unEAqp2ipbIoKnvR96D+2O1tUMPeGUc/H2cQCGGQ2o0uXjds8XQoEQhgsk7xIp30AW\n+iaDEOQTA+eb75D8d9aVxuCu2HxiFmI/f6vXCWxV8TEwES5PP2HGNG1o1NP0LiLC8dvuuO/GXEcA\nAOAJBNhi5wqfmCTsn6qLyQOYa3fxM/96hQ8A6u1bY/vE0fCJSYLtW2bmyM7W00Rv1bawuueJ/Hoo\n7JGRkcbSJaORnJyDl26fGZcvCoazBuNrfBbCA5MYldukeSP0H9kTvs+CK91Mnl71QHkJGx17VO4z\nzv27BoLFYkFLty+C3D+LdDPsr1NRPBT05n9zHZnE5dIrKLZvgeUn5sPAVAdG5uMwxmQouGwezqy9\njpjgqosDYz8lIiUyFbpzqw+Avn8WjNLCcuhXMfxcwBfA9dZbDBij/qPVtSTweQL0HtgFkxcOR25m\nIV47BsL+sic+ekfByfYtGijI1esErd8pKWHD0soVnTspYomZ+P7z2rB7FQwnzzAUlrAZkykQCrHT\n3g3uEfHYNUkHM7Qld7dVx39C4QPArMEaMOjbA2dfv0dgouSWnrSUFHYv0UNpORcn7ngwcISVGTmi\nJ3r1UsbNWz4or+eRi1UxemI/NGrSAM/vM9/jZ7jRAKQmZCHxN6u7x0CVX2bbJoZ/g+3eRzi86AIe\nWj2H6w0v8Lh8aOv3q3ALBcbXuq/WHRXRSU0ZH92Yry3406QnZEFVozPad22D9l3boGPP9ug9tAeW\nHp2DJs0bISUyrcp1r+74QFZe9od7rCpe3nqLNp2UoDGysivgg1sYctLyYWQ2RqLjZ5dz8eKhPy4e\negL7y57oq60Cg1mD0LlHRTaVw1UvtOukiBV7jCXaT105c+418vJKsGObEeQkdFdVh29oAs48eAud\ngd2wfOowRmQKhYR9Tm/wIiwamwxGYN4w5hNJfuY/o/BZLBYOTNOFcotm2GLnilwG/PldlZWw1HgI\n3D/G4E0A8ymMLBYLK5bpIDevBPYOAYzLr40GCnLQnaaFd26fkZfNbIB6uNEASElLwevxr09c6tpd\n0bFHO6REp+Hkims4tcoWfL4AhotGo51qa/g4B+LV3XfQ1tOAjKw0fJ8EirS/oZMGItQ7EkW59RNo\n/1PM2WEMJxtXnFx6Ca62HnjvEoigN5/h7/oJxfmlUO5eubCGXcaB+4P3GDVVu9rq2m9xGQj1iYLB\nwpFV9ihyvuyO1h0VMVi/+oCvKNw/9wZBb6PRV1sFKfFZePHQH8pdWmH8NC2YLNfB8bsrMHPZGMj/\nwZbWnl6ReOMejoXzh9fLBCsASEjNxe6LrujeqRX2LzOsdSKZKBARLFw88DgoHKvGDcGS0doMHGnN\n/GcUPgA0biCP0/OMUFTOxrYHrozk5y+YoA11lTY4cccdefXg2unTuwNGj1LDQ3t/5OT8eWU1af5Q\n8HkCuDLcybO5UhMMGKMOL8eAKoOpPs6BaKfSGoccN2L5kdnoN1odurOHQXfucPg9D0bj5o3Qf0xv\n+Dh/FCnGMHL6IAgFQrx/yqzv9E/Ta0gPbLxkju4DVJCRmIVQ7wh42PniwYknmLlpYpUdML0d/FFW\nVA5D0zHVyn1+3QvSMtLQq8I/H//5Kz6/j8HkJToSFUAV5Jbg/asv2Go1B2MmaUJvuhbcnYORElfR\nJqPo72roP9nOOjunGNZn3KCu1h7z5jJjdf9OQXE5Nlk7Q15OBifXGaOhvOQ3MyKCpetbPPQPg9ko\nLUbSzkWh1k+fxWJdZ7FYWSwWq8bBrSwWS5vFYvFZLNYM5g6vMmrtWmG38Vh8iP+K828+SCxPRloK\ne5fqV7h2btdP1o750jEQCISwve7NuOzaUO7SCoN01PHsnh84dRgtKApjZwxB1rc8fH7/z5QtFouF\nL+9jEOTxBdPX6qOZYkVanrS0FIryShAdlICJSyrS5UZPH4zM5BxE1tCq4TvdNVWg3K0tXt/532R/\nMEnnXh0weaUe5u6aivm7p2G19SKc9tqPQYaalaxzIoLL5TfopK6MPtUMMikpKMPLW94YOUULim2b\nV3rf8cIrNGgkD/35wyU67qSYDIw01PhhvWsM7oo+WiqIC6+oKr9wwBm+fzBeJRQSTlg+B48nwM7t\nRvVSzcvl8bHtrAty8ktwcr0x2igyk2Z65vV73HoXjHlD+2OTwYg/1mtIlCt0E4BBTRuwWCxpAMcB\nvBJ1xzyhUGzlOk2rD6Zp9cZlT394R0neAbOrshKWTR0Kj8BYuPkxN2rxO+3bNcf0qVpwe/0FkVFV\n+2jrk+lLRqEwrxRvnERzn4jKsIn9odC4Ad48/PXpocdAFeSk5iPt7/m3/m6hOGp6Cebaf4HH5qH/\nKHUQEYYba0G+oRzc7Xxr3ReLxYL+4jH47BMlcluGfzMsFgsNFOTRpEVjKNTQjz7CPw5xIUkwXjG+\nWqXgesML5SUcTF9b+Wea+TUXXk4fYTB/RI09ekRBY7AqxhoPAJ8n+PHbVR/QGZ98Y/E1PgvZ6QUY\nrl9/AcffcXYJQlBwElYuH4sOHVoyLp+IcOyWO0JiUrF3qT76dGXGXXTZ0x9XPAMwQ7sPdk4a80cb\ny9Wq8InoLYCqG6f8w1oAjgCyRN1xbG4OLgSK79f+a/JYqLVrhR0PX+JrXoHYcr4z31ALGt3aw/Ku\nBzLrwU88b+4wtGzZCGfPv/7jA8/7DlJFD42OcLR9y2iKaAMFeYyaooW3TwJRUviPO0xOXhaTzMfi\nxa23WDZoN24dckJ3zS645HcQ688sRsPGDeDjHIhGTRti2KSB8Hr04ZdAb3UYmo2BfEM5PDz5lLFz\n+Lfz6PRzNG7RCONmV+2u4LJ5eHzxNfqPVkf3/pWruh+deQkpKRamrxov0XEQEaSkpNCxa2vIyEr/\nUFIDR/ZEWkoudi66AsPZf8YtAQCJidm4fMUTgwd1hdHE+gl03nkRiGfvwrHUeAj0hlTfyqIu3PQJ\nwplX7zGpvxr2TdH9411EJX4GYrFYygCmArgowrbLWCxWIIvFCpQjwMrvHVyiRcvF/p0GsjKwnm8E\nAFh/95nE/fOlpaSwz1wffIEQB22ZG7X4nUaN5LFsqQ6iotLh9iqMUdm1wWKxMNN8DNJTcvHuJbP7\nnmg6GpwyLl7b/ToHYOZ6QyzaPQ3HXLbgwrsDmLHOAC1aN/vRNfPVXR+EeEfC0HQMSgrK4PO49nTb\nZkpNMXHZOHjY+f54evgvUZRXgl1GxxAvYtVwfFgK/J4FY+pq/WpbKby+9w75mYWYvdmo0nvZaflw\nu+cLvbnD0UpZMgv4Z8X085O5fANZDB3XC0ptmkF3auVir/qAy+Xj8FEXNG4kj21bJtSL0vQKisP5\nRz4YP6gnzKcMrX2BCDz0D4Wl61vo9ekOixn6jAR+6woTTi9rANuJqFbTkYiuEJEWEWl1bdUKg9p3\nwLbXbghIFe8RvWPL5jg+yxAxGdk46Cy5/71jmxbYMGc0PkakwP7NJ4lkVcV43d7o07sDrtp6o7iY\nuTxeURg6vjc6qLaC/SVPRuMU3ft1Rq9BXeFyzaPS00Pj5gpQbNfix/+JCDKyFSlzgwz64e3jj9AY\nqYYOPdrB5dJrkY5r5iYjyMhK4/ZBB8bO4U9x18IRwW8+Q0rE/PTbFo5o1EwBU1ZWbZ3zuHw8tHaF\nmpYq+o2qbIHa27yAUCiEyfoaPbK1kptZiLzsYmR+y0NZCbvS+EL9mYOw/ki9hu5+4aqtFxISs7Ft\n60S0aCGZm6oqopOzsPeyK9S7tMGepXqM3FAeB4bjoLMHRqup4PgsQ8j8j2bbMrFXLQAPWCxWEoAZ\nAC6wWKwptS1isVi4ZDQZHZo1xfJnT5CQX5vXqGpGqalg1bihcPkUift+oWLJ+Jkpo/tiRD9VnLP3\nYbyNMovFwro141FUVI4bt/5s8FFaWgomy3WQEJWOAE/xnqqqY+oKXaQn5eDDy1+vP4/LB5fDAxEh\nLT4TAr4AJQVl+BqbjqETNBHqEwkel49pa/QRE5yIEK+IWvel2K4Fpq0zhIedL2I/iT+I5U8TH5oM\nl4uvMcF8HFT61F4FGhkQhw/PP2HGhgnVpmK+sXuPrJRczN0+uZJSyvqWi5d33kFv7nC07ST+tKXI\nT8k4s9sRe8yu4fENH9w65Qbv5yFgl3EhJSWFb4nZKCthQ6We0iF/5+PHBDg6BWLqlIEYPIj5MZ7Z\n+SXYbO2MZo0b4uT6KWggJ3lGzvOQKOxxeoVh3Tvj9FwjyIlZkJZaXITVrpK5MyVW+ESkQkRdiKgL\nAAcAq4jIWZS1zRs0xPXJ0yAjxYLpEydkl4nX6GuFzmCMUVfFiefeEhdlsVgs/GU2Ho0aymHPJVdw\nuMzOU+3WrQ0mGWnC5eknxMSINgSEKXQmaaJNhxa4d+4No1b+sAn90aaTIhzOuf0il1PGxZ7pp7Go\n7zbYWT3DX1NPYdWIfbh3zAU2624iLT4L4X6xGD9vBFq2bY77x5+IdFyztk5GM6UmuLjp9n9iEhan\nnIvjiy+gmVITLD5gUuv2RATbPQ/RvFVTTF2lV+U2XDYPdiefortmF2iPrxwovX/yOYgIczZNkOjY\nrxx5Ch3jAbB2XIsRBhro0rMtIoKS8fzvNF9/jwiUldYef2GCvPxSHLN8ji5dlLBs6RjG5ZdzeNhs\n7YziMg5ObZwCJQmD3ADw6kssdj56Ca0uHXBm/iTIy4pXFBaflwuTR3Z4l5Is2QERUY1/AOwApAPg\nAfgGYAmAFQBWVLHtTQAzapNJRBg4cCB9JyQ9jdTPW9NkuztUwuGQOBSVs2mi1Q0acegipeUXiSXj\nZ3w+xZP2IiuyuushsazfKS4up+kmZ2j5yhvE5wsYl18Tbo8CyKDbVnrn9plRuU+ueZC+ojmF+Ub/\n8vonrwjKTMmh2JAkCvWJoqK8EkqOSqWY4ERil/3zWT8+70Z6Cgso2OOLSPtztfWg8bJzyNWW+c+H\nac5tuEnjZedQwMsQkbZ//yyI9BQWkMuVN9VuY2/tSvpNTSnYM7zSeykxaWTYejld2Gkn9jETEfF5\nfLpwwJlC/GJ/vFZaXE6f3sfSXvPr5PXsk0Ty64JAIKRtOx6Q/gRLik/IrBf5W2ycafDiU+TzKZ4R\nmZ4R8aSxy5rmXrSjErZ4eo2IKCwzgwZePk9aVy5QeFYmAQgkEXRsVX9iLWLi72eFT0T0JiGOup6x\nosXOjsTl88W6MPGZuaS97xzNPHuXyrk8sWT8zMm7HqS9yIqxL8DPeHhGkI7uUXrkGMC47Jrg8/i0\nVO8ELTM4yejNpryUTSY9N9GumdZ1Whf5MY5KCsuIU86hud3X09pR+0goFNa6TiAQ0Jbxh2hS88WU\nHPFN3MOud945B9B42Tl0YfNtkbbnsLlk1m8rmfXfRrxqvsP52YU0reMq2j3jdJXv751zlqZ2Xkv5\n2ZIbPt7PQ8hcz5Kcrr+lwrySH69HfkqmgytvUVkJW+J9iMID+w+ko3uUnF2C6kW+zQNv0l5kRQ9e\nMSP/XXQS9d9tQzPP3qOicvGvkd/XFOp74QyNuH6FEvLziIgkUvj/mkrbcSpdcUhHF97JidjtKZ7L\nQbV1SxyfZYCItCzscxItCFgTa2aORLeOSjho64acghKJZP3OmNFqGDyoK67feIuMzEJGZdeEtIw0\nFm7QR0pcJjycmWud3EBBHtNXjUeQRzgiA3+tjfge3Pv+eeRmFMDO8in2mljjiOklPL3iDrkGclj4\n11REBybgrVPt6bpSUlLYfmMVGjSSxwGT0ygrLmfsXJgiNTYdlksuoaeWKpYcni3SmgeWT/EtNgMr\nT8z7EeD+nVuHHoNdysWyw5UnwgR6hMP/VRjmbJ6I5gz0oh81oR/WWUxHVlo+blq9xLN771FSVI6o\nkBSUlbLRsB6nSX0nKjod12y9MWJ4D0w20qx9QR1x9grD3ReBmDG2H0x0JZf/MeEb1t11QRelFrhi\nNg1NGoh3jd4kxGHxE0e0a9IE9jNmQ6V5i9oX1cK/RuEDwJw+Glg7aAgeRXyBtf/72hdUgY56V6wd\nPwzPQqJw/a1khUbycjKwWDER5Rwe9l9lbtQiUBErWL+uwj9rc+bVH/VFjzDoix4aHXHH5hWj1beT\nzMagmVIT3LR4/Mv5SElJobSw7EdgMfD1Z7x58B4L/5qKdacXIuB1Raqo7vyRUOndEdf32oPLrr3Z\nnJJyS+y8sxapsek4ufTyv6pffm56Pv4yPgEZWWnstlsPORHK8RO/fMXDk08xbvYwaI3XqHKbuNBk\nvLz1FpOXj6vUkZTP4+PKbnu0U2kF42XMzXHtrdUF08xGoY+2CuIj0rBu6hkkRqdj2a5JjO2jOkpL\nObA48gSKLRtjyyZDxlMwA8KTcfyOB4b27YJN83Qklv8pOQ2rbjmjfYumuLZkOporVD+usiZ4AgFO\n+PpATakVHkyfhXZNGBokI+6jgaR/v7t0viMUCmnb65ekYnOS7oaJ5vOsSsame8+o985T5BUpuTvm\nsVcYaS+yomtP/CSW9TsOjgGko3uUXr8RzXfNFKEf4sig21Z6eIlZH7jzFXfSVzSnD26hP16L/5xC\n2yYe//F/Pl9Ay4fspqK/XQSrR+6nUJ8oIiIK9vhCegoLyHavvcj7tLd6SuNl59C1nfdFcgfVN3kZ\nBWTWZzNNbmFK4X7RtS8gIi6HRyuH/EUmnVdTQTWuGIFAQOvHWdCsruupOL+00vsO51+RvqI5+b0Q\n73dTG9+vbWlxOfG44rld67q/A4ce0zi9YxT2OYVx+XFfs2nMirM0+6+bVFwmuWsqLCWdBu07R4aW\n1ymzsFhiealFhVRcRUwT/x9cOt9hsVg4PHY8xnZRxV7PN3gRV/culiwWCxYz9KDerjW2PniBuEzJ\n0iuNR/WB/hA1XH3sh+Ao0YZvi8oU44FQV2uPcxfeIC+f2XGENaExuCsG6ajj4SVPFOQy566asGgU\nlFVbw3a/448BGKp9OqKshI28v11X0tJSaK/aGnGhFRkHi/ZMRdOWFRkRmjq9obdgJB6dfi5y2uWM\njRNhtGwcHp58iht7Hv5PM3fyMwuxTf8wsr7m4tCTreg1pIdI6+4ff4L4sBSsP2eKZtW4Yl7c8EbU\nx3gsOTgTjZv/OoA8N6MA9048hbZuHwzWr/rpQFK+W78KjRv8kQZpT5+FwMs7Cmamo9BXhFTWupBT\nUIKNpx+jobwsrDdOQ+OGkrmmItOysOy6E5orNMB18xlo3bSxxMfYvklTNJZjdmrXv07hA4CMlBTO\nGhpBs207bHzpig/f6q5kG8rJ4uzCyWgoJ4PVt54gv1R8H2/FWERddGjTHLsvuSK3kDnFLC0tha1b\nJqC8nAtrG7c/qqyWbp8IDpuLGydfMCZTVk4GS/ZPR0pMOp7f/KdZXP9R6rhzxBmBb77g8YVXkJWT\nRTeNTgAA7fEa6NKrw49tlx2dixatm+HE0svgiDBHgMViYc0ZU0w0H4cHJ1xgvera/2TKWHLEN2zU\n2Y+MpGwcfLwFGiNFGyD/2TcaD064QHfucAwzqrpaNSMpG1f32KP/aHXozqncZuHCDjvweHysPDL7\nj5fr1wexcRk4f/ENtLVUMNuE2ZYN5RweNlk/QWEJG6c2TJG4IVpMRg6W2jpCQV4O181noG2zPzvH\nty78KxU+ADSUlcW1yVPRuXlzLHvqjPCsupfSt23WBGcXGCO7uBTr7z4Fly9+Tn2jhnI4utoIxaVs\n7LvyglF/fpfOSjBdNBLvfGPg4Vl78RFTdOzaGlMXj8Qrh4+ICklhTO5Qw/7oP0oNt4+5oCiv4ulh\n2ho9NG/VBF4OH5ASnQ6DRaPQpGXVVlCTFo2w+bI5UqLSYLvnoUj7lJKSwrpzZpizYwpe2HrCYrYN\nSguZb3ddHW8dPmDdiL0oL2bj2Iud0NTpLdK63PQCHFlwDm1VWmOV1cIqtxEKhTi15gakpFjYdN6s\nkkL3cQmC77NPWLB9Mtqrtpb4XL4THfaV8TkKolBaysGBQ85o1kwBO7dPYrQFgUAoxJ5LrohJzoLF\nyolQ6yLZ9K/4rFwstXWEnIw0bpjPgHKLZrWu+b3e6I8+kYrrC5L0rzof/u+kFRXRMNvLpHXlsUF+\nnAAAIABJREFUwo+0pLriGhpFvXacop32LyX28T72DCXtRVZ02clXIjm/w+cLaPXaWzR56mnKyZHc\n/ycqpcXlNG/4IVpjbM1ommZixDcybL2cTq279cvreZkFVJgr2vld2HKH9BQWkK9LYJ327XTGlfTl\n59Jc1TUU+DqsTmvrSllxOdmsvkbjZefQuhF7KPtbrshrOeUcWjd6P01SWkIJNfioHc68IP2mpvTy\n9ttK7+VnF5FJz020WucQ8XnM+dVLispo3nAL2jz7PGMyRUEoFNK+A0714rcXCoV04rY7aS+yooev\ngyWWl5iVR6MOX6KRFpcoIav2z53D59PyZ8608PEjOuX3jl7Exoi1X/x/8uH/TrsmTXB7ynQQERY5\nOyCzpO7+ZkONnlitOxRPgiNw1UuymbjGo/vCaERv2Lp8wPsw5kr7paWlsH2bEbhcPk6eevHH7voK\njRtg2a5JiAtPZXQUYhd1ZUxfNR5u994h5O0/LadbtG6GptVY9r+zxGIWegxQwYmll5FUhwHmU9ca\n4vTbA2igII+dE47CZrUtSgqYjY8IhUK8vvMWpr034dkVd8zaMglWHnuhJGKTMiKC9erriPoYj+22\nK6ptt5Dw5StuHnTCMCNN6M0fUUnGua33UFZUji0XzBidIXvZ4inyc4phvrP+M3F+xsHpI976RGPp\nkjGM++3vvwzCI/cQzNUfKHH65de8Aphdc4BQSLi+dAZUWtX+uR/w9oCSQiMc19VHK4VGeBkfg9uh\nzPfsqhFx7xSS/olq4X8nNCOd+lywIf07NyivrKxOa4n+zv554Eq9dpwi19CoOq//mXIOl+buvk3j\nVp2jb1kFEsn6HUenj6Sje5SeuEhugYiKUCiknYuu0LT+eygng7nzYZdxyFTrL1o0YCeVFpWLJSM7\nNZdmq66l+T03UE5a3Z7w2GUcurL9HunJzaXJLUzp0tY7lJmSI9ZxfIfD5pKXvR8t09xG42Xn0Jph\nuyniQ90ttVuHHElPYQHdPfq42m1KCkppycCdNLv7BsrPLqz0/puHfqSvaE4PbV7Uef814fvqMxl0\n20o3rZiVWxuhYSk0Tu8Y7d7nwHi21Sv/KNJeZEU7zj0lgUAy2d/yCmjcsas09MAFikrLEnnd4bee\n9C4liYiICtls8k1JpmVPH5NLdGSd9o//YqVte/XuFJVftxLp9ynJ1PPcaTJ+cLfKdKXa4PB4NP/S\nA+q/24aCEiWrzvyamU9jV56j+XvvUDmHK5GsnxEIhLR1+wMymGhJSUnZjMmtjdSkbJrceycdWHmT\n0R/blw+xZKC0jGw23anyfaFQSK/vv6PEGqplY4ITaXKrpbRyyF9UWlT3m318aDIdXXiO9BvMI4OG\n8+nQbGt6fdeHCqpQolXB4/Io6mMcndtwk6a1MafxsnNokfoG8nz4ngSCurvB7E89Iz2FBWS57Eq1\n11ogENC+2TY0oeVSCntX2UBJjc+kqZ3X0uaJJxh1xeVlF5GJ9n5aPfk0cTmSV6uLSm5uMc0wOUsL\nFl2i4hLxjIPq+BT9jYYtsaalFnbElvCcUvMLafzxazRk/3mKSK1df/F++n7cCgmmSfdvUyG7IgW0\nlMsl19hoOuDtQQXlop+zJAqfRX/IdfA7jbt1IvWTG3F3zDz0bC56oMk9IR4rnj+BdvsOuG48FQ1k\n6tbNrqC0HHMvPkBhORv3V85GZyXxq9fehSRgk7UzJgzvhX1L9RnLjsjNLcGSZbZo3aoJzp1ZCDk5\n8Rou1RWHq16wPeGK7afnYowRc0Mlru5zgOP5VzhotxaDfmv0VVJQhqVau9BUsTFOv/4LjZpWPf3p\n46sw7J1xChoj1HDg0UY0EKPCMyslB05nX8DDzhcFWUVgsVhQ1egE5W5t0aqjIlp1UISsvAzKS9hg\nl3KQn1mIuJAkJISlgMfhQVZeFsMmD4T+otHQHNdXrJF6DjYvcHWXHUbPGIzttiuqdcPcOeqMe8dc\nsOL4HExZ8Wt7ZC6bh42Gx5D5NRcXvPagdQfFOh9HVRAR9i+7gU/v43DWeT06d5csoCkqfL4AW7Y9\nQHRMOs6fXQhVFeYCz4lpuTA//ADNmyjg2u7ZaN64+ulitZFRWIzFVx6hoIyNa0umoU+HygPnf8Yn\nOQluCXEQCIVYrT0YSgoKuBgYgLTiYhwZOx6y0tJIyM/DAW8PWI43QOtGNbs6OQI+HBPDMK/7wCAi\n0hLrJMS9U0j610ezHw17YkMDnawoIi9D5LsbEZFzVASp2pwksydOxBGj705Sdj4NP3SRDCyvU15J\n3S3Gn7ny+D2jPTi+8843hnR0j9KFS+6Myq0JPo9P66efpZla+yg3S/I+LN/hlHNp+cj9NEttE+VW\n4TL65BVBhi2W0F6TmgPHb+6/I4PGC2njuINUUlC58EhUBAIBRQbE0h0LR9pueIQWq2+kiU0W0njZ\nOb/8TW21hLboHqLL2+6S+/13VJQnWTD9gaUL6SksIIsFZ6vtk0NE5O0UQPpNTclyxbUqnwBOr79V\nUdz2MrSK1eLz9K4vGXTbSs43fRiVWxtnz72ql+LDrLximrTpCumvvSix6zWrsJgMLa+T9r5zFJqc\nVuv2MTk5NMz2ErknxNMBL3fa5f6K7oaF0OfMDDr81pNWPHtCRERcPp9m2N+nkIz0GuXlskvJ5M0t\nUn1g8d906QwcOJASi3Jp2BMbGuBkRV/yaj7h37kXFkIqNidpjasL8cV4rP6UlEqau21oznk7KpPA\nJSMQCGmztTMNMT1FAeHJYsupCmsbN9LRPUr+Acw3b6uOlLhMmtRrJ+1ffoNR105iZCpN7rCKtk62\nrDKbxOWKO+k3NaUrux7UKMfb0Z8mNFtMK4f8RTlp+Ywdn1AopILsQspNz6ey4nKxXDXVwePy6Pzm\n26SnsICOLr5QYzZNuH8sTW6znDboWhCHXfl7+fKuD+krmtP1Q06MHR8RUUJkGk3uvZN2m1V9k6kv\n3F6FkY7uUTp/sfrOoOJQXMqmObtv0ejlZygysW4G5e9kFZXQRKsbpLX3LAUnpYq0xic5ida4uvz4\nv0t0JB3x8aIHX8Iop7SU1r98RuYuj0nvzg06/q5y9tXPxBVm05hn50n90TF6lhz+31X4RETJxXk0\nwuUM9Xc8SaE5ol3M71wJCiAVm5O05dULEojxJX31OYZ67zxFq285E08CP2hxGZtMdt4g3dXnGQ3i\nstlcWmJ+jaZMt6YsBjofioqjrTcZdNtKL+2Z7eT5+uF70lc0pyt7qm6bcG7zHdJvakpPr9bc7iHA\nLZQmt1pKC9Q2UuKXr4weI9MU5hTRNsOjpKewgC5tu1vjE0x8WDJN77iazDR3UF5m5e9RxMd4Mmq3\nknZMO8VoCmZpcTktGX+c5g47SPl/MCU4KiqN9AxP0MbN9xiNQ3C4PFpxzJ6GmJ0mv8+JEsnKLioh\nI6ubNHDvWQpMEP27Vsgupxn298k94R9jzSHiCx3wcqeiv3343woLKSan5iSCdxkJ1M/RkrQfn6bg\n7Io4139a4RMRfSspoNFPz5GGoyUFZdftB2z9wZdUbE7SHo/XYlkm995/ol47TtE+J/HWfyc5PY/G\nrjxHc3bfotJy8XtfV5KbnEOGRidp3YY7f6x3vkAgoG3zLtLUfn/Rt0TRsxBE4fz2+6SvaE4eDv6V\n3uPz+LR7xmkybG5GPk9qzr2PDoqn2SpraJLSEnp15+2/oofO78QEJ9Ki3ptpYnNTenWnZisuJSaN\nZnVdT/N7ba4ykyg9KZtmqW2ixVq7RK5jEAWhUEjHNtyjCT22UeiHOMbk1kZeXgnNmnOeZs09T/lV\n9AUSF4FASDvPPyXtRVbk6lt5VkBdyC4qoUmnbtLAPWfoowjK/lZIMDlHRZBHYoWSvxkSRCd831JY\nZsUTBpfPp8XODnQ5UDRD6mH8J+rx8Ajpu16mryX/PM1KovD/FXn4yo2awW7sAijJN8Ii7/v4kCX6\nVJd1g4Zi2QAt3P0ciiPvvCvuYnVg7tD+MB+jjUcBn3HRw7+uh/6DTm1bwGLlRCR8y8Xeyy8YG4Le\nqZMiNm80wOcv32B73bv2BQwgJSWFLZazISMrg6Pr74HLYW7ql/nBmegzpDtOr7+F6OCkX96TlpHG\nrhsr0FNLFUdNL8H3aVC1cnoMUMU530PoOVAVJ5dfxTHTi3+0srYmeFw+bh1yxLrR+8Fl82Dptgvj\n54+sdvvU+EzsmGQJADjivBmtO/4ahC3KK8HuWTbg8wQ4eH+NyHUMovD8/gd4PQvB/PV60BjM/MjA\nquBy+dh34DEKi8pwcP80NP+tL5C4EBGs7nniTUAM1s0aBcNhvcSWlVNcCrNrDkjLL8KFxVOgpdKh\nxu2PvfOGY2Q4Ctls7PV0x5PoSPRr0w6yUtJ4FR+LoPRUyEpLY3RnFUixWDXqKSERjoW6Y+fH5xja\npgsejVuIDo2ai30uvyDunULSv6ry8DPLikjf9RL1enSM3qaL7rcWCoV0wMudVGxO0vF3dbf2hEIh\n7Xr0knrtOEUP/SULhD14FUzai6zozENvieT8zinrl6Sje5Te+YpXnScOfm/CyaDbVjp/oPpccXHI\nzy6iRQN20iy1TZRaxfSiksIy2qBrQRNaLq3V0ufzBXTvmDMZNFlEc7uvJ29H//+ptR8VGE/LtXeR\nnsICOrH00o+OoNURH5ZMs7utJxOVtZQYXtmKZJdxaOOEY2TUfiV99mP2s4/8lExG6jto95JrjMYs\nakIoFNJxy2eko3uUPL3qln9eG9ddPpD2Iis6fd9LIjk/W/b+8bVX+xayy8n0iSOlFFS44QLTvtF8\nJ3t6Fh1FYZkZdDXoI429ZUt7Pd+Q5uVzPyz+qijjcWnlu0ek+sCC9nx0/SWt8zv4r7t0fianvIQm\nvrxCavZHySNV9C+4UCikXe6vSMXmJJ3yeyfyuu9w+XxaceMx9dl5ml59Fv+HJRQK6ditN6S9yIpc\n3jI3RpDD4dGyldfJyPgUff0qevm+pFw+7EIG3bbSW1dmM0JSYtJpZvcNtHjgTspJrxx8/a70DVss\noVf3av88I/xjafmgCkW7abwFxQQnMHq8tZEc+Y0OzTtDegoLaLbqWvJ7XnvhXIh3BE3tsIrmqW+i\nlOjKmR8cNpd2z7IhA6Vl5O38kdHjzckooLnDDtKiMUeoiEGXSm18n1x142bNLq668r3lyZ5LzyUq\nrKqrsv/O94BsOa8i0O6TnETTH96j4LSKuGRIRjq5xcX8uClURWZZERm72VLXBxZkG/WhWsPl/5XC\nJyLKZ5eRqbcdRebXLbou+KmX/hn/93VaS0RUyuHS3At21O8vG/KLEz/jhsfj0+oTj2io2WkKjGCu\nH0h6ej4ZT7Mm06VXqayMuThBTXA5PNow4yxN7bebvsYzO0s0KiiBjDutoeUj9lFRfmVLuKy4nLZP\nOkH6TU3p9pHHtVrufL6Antt60MxOq0hPYQHtnnqSPnmF16vFHxeaTJbml8mg8UIybm1Otw45Uklh\n7am+no8+kJGSOS0bvJuyqriBczk82jv3LOkrmpPrLWaVI4fNpfXTz9IUjb8oIar2FEOm8PsQS2PH\nH6V9B5wkrnb9GfeAaBq8+BStt3IkrgTBbHGVPVFF1uA+zzeUkJ/34/t2NyyEJtndoVJu7VmAEXkZ\nNNzlDPVxOE6vv9U8Q+H/ncKXBL5AQJvdXEnF5iSdD/hQ5/X5peVkfPoWae09S6EpdUsV/ZmiknIy\n2XmDxq06R4mpzFnkgUGJNE7vGO074PTHXBdZaflkor2fluqdoBIxKl1rItg7gozaraQ14yyqdH9w\nOTw6ufIa6Tc1JYuF56lchBmqJQWldPfo4x+Kf7n2LnKwcaV0hgLQ+VmF9OTSa1o1bA/pKSwgo5Zm\ndHnH/WoHl/wMj8ujSzvtSL+pKW02OFrlOXPYXNo7p0LZu9h6MnLM3xEKhWS59QEZdNtKPi/qt7Hc\nz8TGZtCESVa0bOV1Ki9nrjLd/0sSDVtiTUsO2VF5FWmsopJVWExGYip7ogq9s+ONG1m89aTY3H+C\n7pvdXH9Y/dXhnhpDfR1O0LAnNiKlp0ui8GuttGWxWNcBGAHIIqI+Vbw/D8B2ACwAxQBWElFobbED\nLS0tCgyUbARhOZ+HmMIs9FNU/uV1gVCILa9f4kl0JLYMHYFV2oPrJDerqAQLLj1EMZuL28tnolsb\nJbGOLzW7EEsO2aGBvCxsd8+GYrNGYsn5nYeP/HH5iieWmo3G3DlDGZFZG2H+8di1+Co0h3fH/sum\nYlWZVof/qzBYmF6Cctc2OOqwES1aN/3lfSKCw5mXuL7PASp9OmDnjRXo2L1dNdL+gVPOhZe9H55e\ndUfspyQAQFeNTtDW74eeWqro1r8LWim3rLFCmoiQl1GA5MhUhHhHItj9M+JCkkFE6NavM/QWjoLO\nzCFoKkJP9Zy0fBxZfBER/nGYvHwczC1mQfa3Kmp2GQcWppcQ6B6OtZbzMNF0dK1y64L9ZU/cOPkC\n89eNx7y142tfwADZ2UVYtfY2pKRYOHdmIVoxMGsXAL7Ep2P1CQcot26GSztM0LSReOMEMwtLYHbN\nAZlFJbhUS4A2uaAAhRw2NNq0rVCgLBaERJBisVDM4eCY71vISElBQVYWqUVFKOZycMN4epWyiAg3\nYz7icMhr9GrRFldGzERbhaZVbvszLBZL7EpbURT+KAAlAG5Xo/CHAYgkonwWi2UIYD8R1aph+2hq\nUHBgEOSk69Ya4TtEhKcp4Tj95S3MegzCgu6/nv/PSn/z0BFYXUeln5JbgAWXH4IFFu6sMEHHluJF\nySMSMrDimD1UlRVxcYcJGoow27Q2iAiHjz6Fp1cEDu6fjuHDukssUxRc7T7g7F4nTDMbyXgXxWDv\nCBxYcAFKbZvj8KMNaNu58k324+swWC67Bg6bi6UHTWC0VPQZpOmJWfB1CcL7p4GIDIiH8O8BKY1b\nNELLNs3QVLEJmrZsDClpKXDLueCUc1GcX4q0hEywSzkAKrKI1Ad3w8BxfTDYoD+69uss0r6JCN6O\nAbiw9R64HB42nFmMMTMqfx8Lsouwf/55xHxKwrpTC2DwW3dMSfF6+gnHN9lhzKT+2GY1548MSikt\n5WDDpntIzyiAzen56MpQv/64r9lYccweTRs1wJVds6HUXDxjKr2gGGbXHJBTXIrLplMxoItytduG\nZKTD9IkTGsrI4PyESdBs1/6Hsv/+bxGHg7i8XPh9SwERsGZQ1cNbeEIBDgS7wS7+E/SUe8JqyGQo\nyNQ+3epbWTY6NmpdfwofAFgsVhcAz6pS+L9t1wLAFyKq/qr9TXO1trTEbjf29zFDE1nx07L2Bb1E\nWF4aHoxdCHnpX60lgVCIra9fwjk6EhuHDMPaQXWzhmMzcrDoyiM0bSiP28tNxB5b5vMpHlvPuGCo\nRhdYrjOGDAPWMZvNw8Yt95GcnIMzp+ejW7c/0/fkwkFnPL3zHmsPTcOE2cxOIooIiMfeOWch10AW\nB+6vQfcqFGpOWj5Orb6OYI9wDBzXB+ttFlVKY6wNdhkHCZ9TEB+ajKSIbyjILkZRXgmKcoohJIJ8\nA1nINZRDoyYN0V61DZS7t4Vyt7ZQ0+5aba+f6shOzcO5zXfh/yIEPQaoYOvlpZWGjwPA19gM7Jl9\nBvlZhdh+eSmGTZCsfe/vhH6Iw24zW6hrdobF9aWQk6///kx8vgB/7XFAUHASjlrMhLa2KiNyUzLy\nsezIQ8hIS+HyrllQblX70JGq4PD4mGJzB3klZbhiNg39OtX81Hg1+CNkpaR/9MSxMZiIbi0VIRAK\nIcViiXwDLeKysea9E3wzE7FcbSi2aOhAqpa1AqEAVxOewjnVB25jTtVvLx0AXVChyGvbbguAazW8\nvwxAIIDAtirKZOC1mZb4H6XMcvEGmzyKD6FJbtcopqDCN1uVT/tnn/5pP986+73DUtJJa+9ZMjp1\nk3KKxc9mcHAPIe1FVmRh68aY7z0np5hM5pwjkznn/tjQFD6PT7vNrtGEntvJ3zOCcfmJEd9ovsY2\nmtxxdbWZKUKhkJ5e9aDJbZfT5LbL6c5RZ5F8+38SdhmHHtm8oKkdVtHkNsvJ4ezLagvngjzDaXrX\n9TRLbRNFBTGfXZQQmUbTNffQMoOTVCRBD6K6IBQK6cTJ56Sje5SePWduqHpadiFN2nSFxq+5wEhs\n7ElQOIWJGKsTCIWUU1px/S4HBpDxg7uUVvRP3KaYw6E7oZ/oW1H1XViTivNo/POL1NP+CD2KF+26\n5HGKaPOnc6TruYHOxTjWf9BWFIUPQAdAJABFUWQOHDiQPuXF0OS3O8jEdy/FFtWtwtYjNYYMXlwm\nv8wkIqIaWyvwBQLa+voFqdicJEtfnzor3ID4rzRgzxmaYn2b8kvFb916weEdaS+yoosOdU8brY7Y\n2AwyNDpJy1fe+GOZO6XF5bTG2JqM++6iiOAkxuXnZhTQRsNjpK9oTrYHHatVlJkpOXR40QXSb2pK\nc3tuJNeb3n+0pW9V8Hl8cr3hRfPUNpF+U1PaPf0UpVaT3cTnC+j2sSdkoLSMlo/YR2kMVzUTEX1L\nzKI5Qw7QvOEWlJkqnmElDteue5OO7lG6foO5epTs/GKats2WdFaco6gkZjPGxOHkex8yeWRHREQl\nHA69iI35kYZZFf6ZyTTQyYoGOFn90Fu1EVmYRHPe76cJ3lvpVXpFhe7/XOED0AAQD6CHqDv+nqWT\nUJxGc97vp0lvt1NAbs2FGKklFTmsoTmpNPHlFXqaXFE6/bsCFwiFlRqqCYRC2vnGjVRsTtIRH686\nK33fmCTqv9uGZp69S4Vl4il9oVBIFrZujI1Y+3Fs72NonN4x+mvPoz/WfiEvu4hMxx6jmVr7KDlW\nsuZUVcHl8Mhm0x3SVzSn7VOsKKsGZfXFL4bW6Rwk/aamNL/XZnI4+1Kk1EgmKcorIafzbrS433bS\nb2pKG3QtKNSn+kE7Oen5tGPaKdJXNCfL1depvJT5J5TM1DxaOOowmWjvr5fPqDoeOweSju5ROnnK\nlbGn2bzCUjLZeZNGLTtDobF167lVX3D4fDrl94707tygYbaXKDCt+pkOjgmh1NP+CI17foESi0R7\nMnmR9oEMvTbTfL+DvxjE/1OFD6ATgDgAw+qy45/TMrPZ+bQs4ATpeW6i56l+VZ58GY9Lcz3u0J6P\nrjTH4w7dja2+AvNdRgLtC3xBCb9dWIFQSHs935CKzUna6/mmzg3XvCLjSeMva5p9/j4Vl4v3A+Xx\nBbTFxpm0F1nRC1/mXCJOjyt+ZKesJZ/bKyqpSTl/W4+HKDVJsklS1fHyrg8Zd1pD01XXk8ej6otR\nhEIhfXwdRlsMj5J+U1Oa0n4FnVx5jYI9w+vtJsjn8SnEO4KsVtnS5DbLfyj698+CazxOd/sPNKPb\nBprcYRW9uFP3J05RyMkoINOxx2i65h6K/YMN5tw9wmns+KO0e68DY9e9oLiM5u6+TSOWWtPHCNHq\nYzwj4sk5KJyyikqI/Xcr6vq4zi7RkdTngg29iout8n2BUEiWoR6k+sCC5nncpQJO7YYIR8Cj01EP\nSddzA20LuUCF3F9TdyVR+KJk6dgBGANACUAmgH0AZP/2/19isVjXAEwH8L0BDp9ECCj8npZZxmfD\nIuIWPuZFYU4nXSxWMYQU69fgZg67BGbeD5DLKYPv5HUAKgKz0lL/bEdEyGGX4vnXSDgmhuLgQENo\nKin/8v7Rd9649ikIM3v1wZGx439ZXxvu4XHYdP85+nZsi8umU9FIvvbI+u9wuHxsOOWEkJhUnFhn\njJH9mQlmXbnmhQcPP8B08UgsmDecEZm1kRSTge3zL6FBQzmcuLcCbTqINtO1LqQlZMFy9XVEfkzA\nSOOBWG5hAqV21Q+uiQlOxDNbT7x7EoiyYjaU2rfAYIN+6DdSDX1H9ESL1uIF+YCKoHHUx3gEuX/B\n++efUJhTDHkFOYw1GQqjJTroqtGp2rXZqXk4t+0+/N3CoKalik1nFqFTFQFcScnLLsaOBZeRk1GA\nwzfMoa4pWjaRpPgHxGP3Xkf07qWM40dNIM9ARlpJGQdrLB0Q+zUHVhuMMaRPl1rXWLu9g1dkAnop\ntwGbx4N6+9aYod0XLRo1rFB6DGUnlfN4WOXqgpVagzFIuXIqZxmfi63+T/HyWxRmq2pi/0B9yErV\nPHc4h1OAg+E3EVmUjNl/60Hp3/RgvaZl1hdV5eHzhQKcjXWAa/oHjGmlia1qcyqlbfKFQqzydcB0\nFQ3oKfcE6+9GRFV9iPfjghFVkImDWoa/vE5EsPZ/j7MBH2DUvSes9AwhKy36AGi3zzHY+sAV/Tq1\nw6XF4in9knIOVp9wQMK3HFhvmoaB6pIPbCYiHDvxDK/fhGPTRgMYTWBualVNxIWnYueiK1Bo3AAn\n7i6vF6Uv4Avw6Kwb7lk+g7SsNGZvnIBpK3UhV4NS4ZRz4f8iBJ4O/gjxjkB5SUV6ZTuV1ujUsx06\ndG+HDt3aoJlSEzRqpoDGzRQq0jLZPHDZXJQWlSPray4yk3OQnpSFmE9JyEnNBwA0bCyPQfr9MNJY\nC1q6fWucwMUu4+DxpTewt3kJoVCIhTuMMWWFLqO1DN/JTi/AzoVXkJtVhINXzdB3EDPGRG2EhqVg\nxy57dOqkCCvLOWgsZk78z5SUc7DO0hGRyVk4sWYSRmrW3tyNyxdg/+M32DZxNJorNIBvTDL8E1Ig\nzZLCMp1BaChXt5tQEYeDpzFRmNtHo0odwxUIIFeF7kgvK8JyH3tEFmZhZ79xMO0xqNYbTVhBPA6F\n3wRHyMNWtTkY2apfldv9v1H4QIXSsv/qgWsJz9CraRcc6LMEzeUqp0P6ZyXja0kBpnTpC5lqLPQn\nSV/glR6HE4MnVXlnvRL0Ecd832JsF1WcnzAJ8jKip6q9DIvGtocv0L9Te1xcPEUspV9QUo7lR+yR\nmVeE89tmoLeq5NYeny/A7r2OCAxKxN7dxhg1Uk1imaIQF/4NOxddhULjBjh2exnadWJXi0EKAAAg\nAElEQVRm7N7vpCdl4+reR3jvGoJ2Kq2waKcxRhpr1ao8BXwB4kKTEeYTjdiQJKTEpCM1LgM8ETqB\nyjeUQ5tOilDp0xHq2l2hpq0K1b6darzZAIBAIITHow+4ddgZOekFGDahP8wPzkS7Lq3qdM6ikp6S\ni52LrqC4oByHbM3Qa0CXetnP70RHp2PzNjsoKTaB9al5jHS/LCnnYL2VEyISM3FstRFGD+gm8tr5\nlx5iXK+uMB1VoRM/JnyDV1QCerZVwuQBonfQzCgphpnLY8Tl5eL5nIXorijadzo0NxXL3z1COZ8H\n66FToNO+5joZIsLj1Le4HOcC5YZK2NfHDJ0bVZ9m/f9K4X/HJzsUxyLvoaVcE1j0NUfnRpXnR/pm\nJqJ/S2U0kpVDMZcNAEgqyUdUQSbyueWwiwvGjv7joN9BDWw+DzwSoonsr5bYvc+h2Ov5BkM6dMRl\noyloLCe64v6u9DU6tsOlxVPQuEHd56xm55dg2ZGHKCpl48L2mejZWfLClPJyLrbteIjomHQcPjiD\nsfzn2ogL/4Zdi69BVk4aFteXQqUn8+6K7wR7ReDKHnskRaZBuWsbzNpgiLEzBkFGVvSbtkAgRE5q\nHorzS1FaWIbigjKACLINZCEnL4uGjeXRppMSmrdqWic3AKecizcP/OB08TVSE7LQvX9nLDs4E32H\n9RDnVEUiMTodu82ugccV4PCNpejep+Z2vkwRF5eJzdvs0KiRPGxOz2ekivZnZX9k1UToDKxZYXL5\nfMRm5kJGSgo927VCcFIq7vuFYrp2bwzt1hlcPh+PAr4gOScfuybriHQMMbk5MH3ihCIOGxcmTsbI\nTl1EWueSHI7tAU/RumFjXBlhUuu87nIBB9bR9vDICsYwxT7Ypj4PjWSqfzoSkAAyUjL/PYXfW1ON\nPgT4oYls9b7YqKJk7P1sC66Qhz29F2Ngy56VtinkluOvj67wyUzEhI7q+FpSgIYyMtBXVkPnJi2g\n3aoTPuel40CwG1o3bAxplhTODpv2iwznqAhsff0SvVu3wY3J09CioejFNW6fY7DtwQv0Vm6Dy2ZT\n0UQMpZ+eU4TlRx+ijM3DxR0z0b2j5BZgSQkbm7bcx9dveThxbBb69pHcZSQKybGZ+Mv0GjjlXOy7\nvBh9tFTqbV9CoRDvn3+C3SlXxH/+CsW2zWGwYAQMFoxEq/biD6cXl4zkHLy674vnN71RmFuCHppd\nMHOtPoYbaUKqDnGiuhLmH4+DK2+hgYIcDt9Yis7dax6uzRQJiVnYtKWidchpq7lo107ynu0lZRys\ns3JCZJJoyj6/tBxzLz5Av45tEZiUCvMx2tDo2A7hqZkI+5qBqQN7Q7Nze5RyuFhz2wWWsw2h1KTm\nqtwP375i+bMnaCgrA9tJU9G7de1FjUIiWH/xxvkIX2i36ojzw6ZDsUHN+0kty8aB8BtIKs3AYhVD\nzO40rlLc8mc+F/jiVcY9bFG/+N9T+O17K9J6h6mY13kHOihU/7iWyc7Dns/XkFyaiTXdp2GScuVg\npEdaLPYEvsDxQUYY0fYfa7acz4N3ejyef41A7xZtsUJ9GFb5OmBEG1XM7TbgFxlvEuKw5sUzdG7W\nHLemTEfbxqJbKu7hcdhk9xw92yrhitl0NFeou//yW1YBVhy1B48vwIUdM9FVWbz+PT+Tn1+KDZvv\nITe3BJbHZkNdvb3EMkUhMzUff5leRXZaAbadmovhejUWaEsMEeHjmy94auuJQPdwsFiA5pheGD5R\nE4P1NaDYlqHhEVWQnZYP/5eh8HD0R4R/PFgsFgaN74sZa/TQZ2j3em9f4OnyCad22KNdJ0VYXF+C\n1n/oRpeYmI3N2+wgLS0Fa6t5UFaWfL9FpWyst3JCVHIWjq4ywpiBtbtx7vuF4FteIbZNHI3QlHTY\n+YVAo1M7dGujiKTsfDwOCsfikQPxIS4F2cWlODXXCHIy1cfrnkRHYtvrl+jcrDluGE+HctPae9uU\n8rjY4u+CV6nRMFHphwMDDav06/+MX84XHI+8BymWFHb2WgDtltW7XnlCDlzTbiIgzw0dFXpgZffj\n/z2F329AX5p/bxhK+AWY0mElNFuMqXbbMj4bRyLuwD8vAlOUR2JFV2NI/+aTD8r5hkPBrzBDRQPz\n/+6r8z4zCc9SwtFfURkmqhUBzF0fn0OliSLM1Sq3Bfjw7SuWPXVGswYNcGvKdKi2ED346B2VgA33\nnkGlVUtcM5uGlo3r7sdMycjHimP2EAoJF7bPhKqy5H7w7OwibNh8H0WF5ThxfBbU1f6M0i/ILcH+\n5TcRE/YVZlsNMX3p6D/Su+W7le3h4I+M5BwAQM8BXaA5Wh3q2l3RS7srmrQQv4ldbkYB4kJTEPY+\nBkEeX5AUmQYA6NSzHcbOHIKxMwahdYf6iV/8DBHhwQUP3LZ2Q99BqthzfiGaMDQ5qjYSk7Kxeasd\npKWkcMpqLjoyEKQvKCnHOktHxKfm4uhqI4wSIUALAE+CI/AyLAZWcydCQU4WoSnpeBTwGUO6dYJR\nfzW4fY7B568ZKOPysHvyWEhJVf0dJCJcCgqA5ft3GKzcAZcmGqNZg9oNt9TSQix/Z4/owmzs6qeL\nxT20a/yeC0iIO0kvcS/5Nbo37oC9vU3RtmH11y+bnYoHKSeRwU7GyFZTML7tXMhIyf73FL6WlhZ5\nf3CHXbIVEku//B975xkeVdl14XuSTHrvCUkIkBBI6ITeJfTeFCyIXaSjoAgiiI2igKCiWBEFpLdQ\nQu8kkEBIb6T3Nr3P+X5E1JiuEd/3/VzXxQ+unDkzc+ac/exn7bXXpq/rGEZ6PY2pqHYO1iAY2Z5+\nlP25Fwh1asfy4JnYiqtTL6mSEg5nxfFapyqebsnNo/jbOTEnuMqEKrYsnz0Zd5jVtgeBDlW0icag\nr+bBE1dcxDOH9wPw9fjJdPJo/Pb4WmoW8344greTPV89OwUPh6Z772QVlDN77V6MRoFPX5/aLJl+\nUbGExa/+hFSmZt2HDy/oa9Q6Pn59D5fCYwmb1J15ayY3WOhsLgiCQFZSPtdP3OHmqVhS7mT9apjm\n4eeCl78bXv5uePi5YudojbWtJVa2lohMROi0enQaPSq5mrKCSkoLKinJKyMzMZ/yIgkAYnMzQnoH\nEPpIB0KHhtCynfdDWdAAVAoNG5ft5fKJWIZO7Mb8d6c+FG8cgPT0Il57fTdmpqbNFuzLJArmbdhP\ndkEF6+aPp2+n+mnA5IISjIJAkKcbMo2GrRHXGRjUin6BLTExEXE2Po0vzt/ky2cm49gIKabeaOTt\nC2fZFRfLuLbtWBc2olECjlslObxydT9ao55P+kxioFf9i5RUp+CDhJ3cqkhipGcv5gVOqdc8Mqbi\nAkfyvsRMJGaq7wKC7KtYif/qoq1B0HOy4HuulR6nlU0I01u+iq1Z3Vvw8PzrfJK6D28rV9Z0eJ4W\n1rXz3ZcLM1gfe54jw58DIENaRkReMqVqBcu7DuOntGjylBJiSnOZE9Kffh6/3WQZFeXMOryfcpWK\nz0ePZ0BL/0Z/r6iMXF75/hDONlZ8/fxUfJybrvl+EPT1BiOfLp3aLJz+r0FfqmbtB48SHNygv12z\nwGg08tPWM/y45QxBnf1YvuVJ3JqB620q1AoNKXcySYjK4H58LoVZJRRmlSIpk9f7OpFIhJO7Pa7e\nTvgFedGmgy+BnVsS0MmvXinm34X8rFLWvLKD7LQiZr06iqkvPJydE0BiUj6vL9uDtZUFG9ZNx6cZ\ngn1RmYw56/dRXC5jw4IJ9Aypv2dgX9Q9vr8cTWt3Z8oVSn546TG2X4ikXK7ikeA2hLZqgUgkYvm+\nUwwLCWRw+/oFC3KtlnknjnIxK5PZoT15tU//Bo3MAPZm3OGt2ydoYe3IlwOm0ca+/sQsWZrNO/Hf\nUaGVMidwMqO9+tT5u2mNao7mbSe64jz+NsE86rsQB/Pfzv9fHfAf4E7FRQ7mfo6NmR0zWi7F17ru\nYs3dyjTeifsOAYG3QmbR1anmsbFl+WyMu8i3g2YQU5pHVGk2WbIKngnqSUxpLpvjL7O+5zgkWjWb\n4i6xqc8E2jn+VpwpVsh55vABUsvLWBc2kont2jf6u8XmFPLStwewFJux/dkpBHg0fYufXVjBK2v3\notHp2bpkarOod4qLpSxe8hOVlUref3canTo+nEIuwJWT9/j4jT2IzcUs/Wg63QfULMD/E1ArNCik\nKpRyFUpZldJLbG6G2MIMS2sLnNztm6T8+Ttx9XQcm5btRWQi4o2Nj9Ot/9+n+vkjYu/l8OaKvTjY\nW/HR+hl4NkNdJKeogrnr9iNVqtm0eBKdA+tPQm6kZbPhxGU+eXIc3k72LNkdzgfTRiIg8PXFW8jU\nGhysLBnRMZCXvj3Ie9NG0L0eu+MCmYwXjh4kuayUNUPCmN6hU4OfWW808uHds3ybEkl/j1Z80ncS\nDuZ1izwEQeBEwQ22pu7HydyelSGzCLKvuzmvSJ3FrqyPKNXkMdh9KkM8HsVUVJ2+/p8I+AD5qgx+\nylyHVF/OOO8X6OFS94CGAlUpb937ihxlCbMDJjKhRf8aK+acq/up0KqQalWM8+vAuJYhJFcWsS72\nPFv6TibA3hWjIDD/2gFe7TSYVnbVA7NUo+HlY4e5kZfD6/0G8GK3+vm53yOlsJQXvtmPTm9k2zOT\n6OTbdOVEbnElr6zdi1ypZdPiSXQK/OtUTEmpjCVLd1NULGH125Pp+ZAkmwA56cW8P38nmSmFPPby\nEJ5aMBzTegpo/6IKapWW7e8fJXz3TQI7tODNT57C07f5m9vqwo2baax65xAeHvZsWDsdN7eGC5kN\nIS2nhLnr92MUBDa/Opn2/g0rYe7lFHLqXgrzhvUlMb+Y2d8fYmhwAA7Wlrw0pCcphaXsun4XtV5P\n34CWPNG37sbD+OIinj96CIVWy5ZRYxnk37CarFKjYsH1g1wpus+swB4s6xJWZw8QgMagZUvqfk4V\nRtLNqS1vtn8Kh1p6iqBqYbhVfoZj+V9jaWrNo74LaWNX+wL0PxPwAZR6GXuyN5Imv0OocxhjvZ9H\nbFK7Nl6hV/Nh4k5ulMUz2qs3cwOnIDapno3FlufjZG6Nr60jqZISHj+/k0/6TKKPhz8A6dJSPku4\nxryQ/vjb1XyINHo9SyJOciw1mac7d2XFgMGNtmLIKa/kha8PUCpXsuWpcfQJaHqLe2GZlDnr9lFS\nIW/UlrcxqKhQ8PqyPWRmlbLizfEPrTkLqoLXF+8e4eTPkQR19uO19Y/h0+rvaUT6X0B6Qj7rXt1F\ndloRU58fxMxFI2pMyfo7EXEmjrXrjxPQxoMP33+0WZqqYlPzWbTxIFYWYrYsmUIr78btgFMLS9l4\n8gqudjZcSr7P0jGD6NnahwU7j9LV35vXRg0EQKpSY29Vd8H1bEY6C04dx8HCkq/HT6Kda8P3X4qk\nhJeu7KVQKWVN91FMbV17F+wDFKhKeSf+O9LkeTzRcjhP+Y+oYZHwAGqDksO524iVXCHAtjPTfBdg\nK659B6XWF2Il9vp7/fD/jn9durUTdIbaPdwNRr1wqmCn8ObdScLWlNeEck3dVqgGo0H4Ov2YEHZ+\noTD/9iahTF23F/WWuMvC1vjLgiBUGSkpdBrhlSv7hPdiIup8TdV7GIV3L50XWm3eILx07FCDMyp/\nj2KJTJi4aYfQafkm4fidut0T60NppVyYsfx7oe9zm4RzUSl/6hx/hEymEubO3yEMHf6hcPhI8zl3\nNhYXjsUIU7uvFMaHLBMOfHPxobl8/rdAo9YJ3310QhjT7nVhRp93hNuX6x9s/Xdgz883hCFhHwiL\nX/tJUDSTm+eVO+lC/xc2C5OXfi3kFVc26jW/Nz3Lr5AKqYUlwqoDvz2z2WUVwkvfHBDk6vrtwY1G\no7D9dpTQevMGYfyuH4QieeNmSJzMSRQ67Fsr9Dy0Ubhd0rAR3dWSe8LEy8uEiZeXCTdK4+s9NkeR\nKmxIfFlYcXeKcL5or2Aw1v4c6A0qIbl0jXA+s+NfMk8zXbVq1Z9aKP4qNn66dFWv8TdxtOyBuWn1\ngodIZEIb2054W7bidvlZosoj8LLyx8WiZuemSCSiq1NbWlp7cDz/OmeKbtHRoTWuFjWLpdeLMxGb\nmBLq5ku2opLNcZdQ6nWs7TkWoM5qvkgkYmBLf+wtLPnuTjTXcrIZ1roNVuKGFSc2FuaM7hxETFY+\nO65G42BlSSffpnWgWluaE9azLbcSc9h9Ohp3Z7u/zOmbm5vxyJBg0jKK2Lc/CqPRSJfOfg+tAOjf\n1pOwid3JTiviyI5r3LmWSlBnPxxd/txUsf8lJMZksfL5b7h2Oo6hE7qxatss/Ns+nGYqoEoWvO0s\nP+y8xqCB7Vi1chKWlk23DvkjTlxLYPm2cNq0cOGz16fh7lx3r4tEpeZiUgY6gwFHG6tfd9U25uZo\nDAYuJGbQzssdR2tL9kfFUSJTMLpzUJ27b53BwMoLZ/n8ViQj2wSyfdxEHC3rb7A0CgKb4y/x9u1T\nBDt6snPwE7+q+2qDwWjg2/sn2Jq6n5bWnqzr/Art7GvfkRsFI9dKj/FzzkbEJhbMbPUmXZxqL8DL\nNIncLX6eMtUFWtg9ztZ15wtWrVr1Zb0fvg78Y5RO127thS2HXdAbpQQ6L8fb9tFav2yZpoAfs9ZR\nrM5miMejDHGfVmc3Wro8j1Vx31CmkTK/7VRGelWfG3q3LI/Xbh4lyMENW7EFIuCd0FGITUx/nUnZ\nEE6mpbLoVDietrZ8PX5So7X6Gp2epXtOcCY+jecGhbJweP86NcF1QaXRsXTLEW7GZTFnan9mjml8\nTaEuGAxGNm46SfjJWEYM78iri0Zi9hB5dUEQOHc4mi/fP4pcqmbCzH48MW8YNnZ/3Xzrvw3lJTK+\n23CCiAO3cPNyZP67Uwgd+HCL22q1jg/WHuXylRQmT+zO7JeH/mWTN0EQ+OHELbb+fJnu7X1ZP388\ntlZ1K5zyKiTM/OJn+gS0JKWwlMHtWtErwK9aAXbDiUvE5RZhbS5GrdOzfvpoXOrofalUq5gTfozr\nudmNVuLItGpevXmEs/mpTPHvxJrQUTVGqP4e5RopHyT+wJ3KNEZ79WZOwOQ6JZcKvYR9OVtIkUXT\n3r4nk33mYG1Wc/ETBAPZ0m/IqNiM2NSR9q4f4GI14L+Xw7928yTxJUupUF/F3Xo07VzXYGZSM8PT\nGjUcyfuCmIoLBNp2YZrfQmzMai8cSXUK3kvYQXRFCuO8+zE7YGI1Xj9fKSWmNJeOzl64W9piaSZu\ndLB/gJiCfF48dgi9UeDzMePp7dM4tYvBaOS9I+fZczOWcV3a8c6U4fV2/dUGnd7A6q9OcvpGMtOH\ndWXhjMFNXjj+CEEQ2LHzKt/vuEK3ri1ZtXIStrYPN+BKKxR899FJTv4ciaOrLU8vGkHY5IZN0f4X\noNXoOfLDVX7aegadVs/EWQOY8cojWD/k36CiQsHylftITi7glZeHMmVyj798ToPRyMc/nmfv2bsM\n7xXEyudHYN6A6ulEbDIpBaUsGNGPhLwibmfmkVZUxqO9OhHS4rfiblpRGRUKFV1aetXpdptRUc5z\nRw5SIJPxwdDhTGrfsHlaurSUl6/sI1tewfKuYTwVEFpvYnWvMp13E3ag0KuY33Yqwz171n1u+T32\nZm9CZZAzymsWvVxG1nputT6fhJLXqdRE4mY9gnYuqxGbVnUz/9cG/Fu3biEIRrIk27lfuRlLsxaE\nuH2MvUXHGscLgkBUeQTH8r/C1syR6X6v4mdTe/ZjMBr45v5xfs45T7C9P2+FzKqV4nlw3j+TJedI\nJDx35ABZkkrefWQY04IbZx8gCALbL0Sx+fRVerb2ZfOTY+stMNUGo1Fg064L7I6IYWiPtqx6YSQW\nzVDIO3X6Hh9tPIG3lxPvrZnaLO3yTUVybA7b1hwm6U42vm3ceXrRCPoO7/DQqKaHCb3OQMSBW+z+\n7CzF+ZX0HNKeF98cS4u/yU2zPqSlFbHi7f1IJEqWLxtP/35/XfKp0uh4a1s4l2LSeXJUKHOnDWhU\ncrIv6h6Hbiew8+XHAMgqreBMfBoSlZo5Q/tgamJCRkk5gR4u9d4Xl7IymXfiGOamJmwbO4HuXg33\nnpzKTWLpzaNYmIrZ2ncyPd3rllAaBSM/55zn24xwvKxceDtkFq1sa1fSGQQ9Z4v2cKn4AK4W3kz3\nexVPK/8axwmCQJHiCMll7wBG2rqsxNNmYrXv+V8d8B+gUn2L+JLX0BpKaeP0Gr72T9f6Y+Yp09mV\nvQGJtpSRXjPp6zq2zh/9QnEMHyXtxtrMgreCZ9HBsXESxIOZ9whr0baGs+YfIdWomRt+jCs5WbzY\nvQdL+w5o9E7hSHQCbx2IoKWLI5/PmkgLp6Y1aAmCwI8nb/PJnkt0DvRm/YIJONo23vStLty9m83b\nqw8AsOrtSXTp/HCGZ/wegiBw9VQcOzaeIiejmDbB3jz28iP0G9HhbzUhe1jQafWcPxLDrs/OUphT\nTlBnP2YuHP5QdfW/x8VLSaxdfxw7O0vWrJpC22aoF5RWylm86TApWcUsfmIwj4Z1bdLrV+6PwN/N\niWd/sTiOycrnh6vRLBk9iNv3cxGbmTKiY+3XSxAEvr0TzftXLtLWxZXtYyc26IljMBrZGHeRzxOv\n0dnZm0/7TcHLuu7XSHUK1if9xI2yBAa6dWZx0PQ6XS7LtUX8nL2RHGUK3Z2GMrbFc5ib1DzWKOhJ\nKFlCsTIcB4tuBLuuw0pckz34nwj4ADpDJYmlb1KqOouL1WDau36AuWlNjlyll7M/dyuJ0khC7Hsz\nyXcOVqa1+6PclxewKv4bitTlvNhmPJNaDKw3K8iUlTPixBf42zmzrf/UGtr8P0JnMLDm0nl23rtL\nWKs2fDxidKMtliMzcljww1HEZqZsfWo8nfyabid8JjKFVV+ewMPFjo2LJuHn+dez8rz8Cla8tY/c\nvApmv/QIkyZ2/0cybIPewLnDMezZdo68zFJ8Wrsx6ZkBPDK+G5bWf72I+LAhKVcQvvsGx368Rnmx\njICQFjy1YDg9Brf7Z66vwcj3P1xh54/XCAluweq3J+Hs/NeL5qk5JSzeeAipQs27s8f8qYluN9Nz\nOBmbTHtvdx7tVaVHf23XccZ0acfgdq3rvF4avZ6VF86yNyGO4W0C+GjYKGwaeB4rNEoW3TjM5cIM\nHm3dhVXdRtTL1ydIMnk/YQdlWikvtZlQaw/QA8RWXuFw7jYEYKLPy3Ry7F/vZ0kuW4WFqRctHZ5H\n9IeGK8GoBHU4JjbT/gsDfrdAISrqMiLT6tmEIAjkynaSVr4Wsakjwa7rcbbqU+P1giBwpfQwpwt2\n4mjuxnS/12hhXbuXhVynYl3ST1wvi2Owe1cWt30MK7O6s/frRZnMv34QndHAxt4TGhxgALDjbgxr\nLp0nwNmF7eMm4mPfuIw9vbiMV747RIlMwfvTRjCyU9OLdHdT81jyyRGMRiNr545vlulZcoWaD9ce\n49r1NIaFhbBowUgsLR+OD84fYTAYuXIyln3bL5IWn4e1rSVDJ3Zj9IzeD1W98mcgCAL3IjM4tTeK\nKydj0Wr0dOvflsnPDqBb/7b/GFUlkSh574Oj3Lp9n9EjOzF/3nDMm4EWvHwng7e2HcfWyoKPFk78\n02oyo1Hgcsp9Dt6Ox8fJgaEhASzfe4rVk4fRo3XtXv/FCjmzjx8hprCAuT16s7B33wZ33PfKC5hz\ndT8lajkruw1nRptudR4rCAIHci+yPeMobhaOLA+eWacKR2NQcSz/K6IrzuNr3ZZH/RbhbN5wc1ld\nFLOgjUKQvAGGHEy9Uv8LA35nGyHydDAih3cQWY6q8XeZNon4kkUodfdp6fAirRznYSKqGXCyFEns\nyf4Yub6SUV6z6O0yqtYLZhSM7Mk+x3f3w/G1dmdlyDP41TNVJk8hYfaVvSRUFrGwwyBeCe7X4M1z\nObuKMzQTmfDZmPG1zrmsDeVyJfN3HiUmK585YX2Y/UivJgeCvOJKFm86RHZRJW/MHMqEQTXrIE2F\n0Sjw40/X+G7HZdq0dmflionN4p/yZyEIAokxWRz/6QaXT8Si0+oJ7NCCgaM7M2BUp79ltOKfgSAI\nZCYXci0ijvNHY8i7X4q1rSVDxndl3JN9HppffV1ITMxn9buHqKhQMH/ucMaMrr+JqDF4oMT5dO9l\nglp68NGCCbg5/bXdgiAIFFTK2Hz6KmamJvRq7VvnxKqYgnxeCT+KVKNm/bBRjA5smB7bm3GHlbdP\n4mJpw2d9p9DJpe5OdqlOwUdJu7lWFkc/1468GjQdO3HtqqA8ZTo/Z2+kTFvAIPcpPOLxGEajArFp\n0zuUBaMSQb4JlN+DqQ8ihw8wsej1Xxjwu3cUIk+3Bd09sByPyP5tRCbVpUkGo5KU8vcokO/D3rwT\nwW4fYS2uWURR6mXsy/mEZNntBime6IoUPkj4AbVBy+KgxxjiUfeKrtLrWH4rnMNZcYR5B7Kh13js\nzOsvsGZUlPPisUNkSySsHDiEJzs1bq6sVq/n7QNnOBKTyMiObXl36vAmz9+UKzUs++wYN+OymD6s\nK/OnD8KsGVQuN26m88HaoxgMRhYvHMkjQxo/Ju7vgqRcwbnDtzl/9A6p93IBaBPsTeigdoQOCKJ9\nV7+HatugVmqJu3WfmKspXD+TQEF2GSKRiJBQf4ZP7cGAUZ2wtPpnaSijUWD/gSi2f30BV1c73l4x\nkaBmmEqm1up4/9sITl5PIqxnW1Y+NwLLZnRFNRoFBIQ6Nfa742JZdeEcHra2bBs7gfYNdM6q9TpW\nR5/i5/t36evhz6beE+sdVpIgyeS9hB2Ua6W80Hock3xqp4WNgpErJYeJKPwJO7Ej03wX0so2hOSy\nVaj1BbhYDcDJqi824taNEotUZfXLwJAN1k8gsn0NkYnN38vhi0Sib4CxQLEgCDWkKKKqT70ZGA0o\ngVmCIEQ39MahoaFCVNR1UGxDkH8GJh6IHNYisuhV49hixQmSylYiCHrauryNp4cyPg0AACAASURB\nVM2EGherqpHhKKcKdmIvduYxv8V1qnhK1JW8m/A9CdJMJrToz4ttJmBuUvt2VhAEvk+9xQd3zuBj\n48jn/afStp7mC6jy4Fl46jgXMu8zo0MnVg4c0ii7VUEQ+PbybT4+eZn2Xu588tR4vBybNjJObzDy\nyZ5L7D4dTY9gP957ZUyzFHOLiiWsee8ICQl5jBndmTmzw/4xiuePKMwp5/KJWCLPJ5IQU2WDbGVj\nQbsuflX/OvvRqp0Xrp4OzUKhGI1GCrLLSIvPIy0+n6SYLJLuZqPXGRCbm9G5dxv6Du9A76HBODXD\nyL/mQEWFgnUbwrkZmU6/foEsfXUMds3Q61BUJuP1rUdIuF/E7Cn9mDW24WHdf0RWaSUlMjmhrZo2\nllGj17P64jl2x99jgF9LNo8c02AzVba8grlX9xNfWcQrwf1YGDKwzoXEKBjZl3OBb+4fx83CkRXB\nT9dpfCbRlbE/Zwvp8lhCHHozscVsrM3syKjYgkKXir/DbArkB9ALcvzsZ2FrHlQ3fSOoEGQbf8nq\nWyCy/6BaXPy7A/5AQA7sqCPgjwbmURXwewGbBUGoGbX/gN8XbQXtXQTJEjBkgfUsRHaLEYmqc+xq\nfT7xJUuQaG7hbjOGIOdVtW6RcpQp7Mn6GImulDDPGQxwm1Rro5beaOCrjKPsz71IkJ0fy4Nn4mVV\nd4E2qiSbudcOoNBpeb/HGMa3DKn3+xmMRj6+cZXPb0XSzdOLT0ePx8O2cVvcS0n3WbI7HHMzUzY+\nMbbJDwLAscvxfPD9GVwdbVg3b3yzuG3q9Qa++e4yu/fcwM/XhTffGNcsio7mhEKm4s61NKKvppIU\nk0VmSiFGY9U9bmltjk8rN7xbuuDkZo+zmx1ObnZY21hgbinGwlKMSCRCrzeg1xnQqnVIyhVIKhRI\nyuQU5paTn1VGYU45Om3V8HMzsSmt2nnRuXcAXfsGEBLaCov/kIXwAW5GprNuQzhyuZqXX3yEiRO6\nNcvCF5WQzYrPj6PVGVj14sgmDRp/gMvJ91m6+wQO1pYcWzyr0TvSPJmUOeFHiS0qZHZoTxb37teg\nx9Wp3CRejzyGCBEf9R7PI/XU5iq0MtYn/URUeRIDXDuxOGh6jfkbDxAvucHB3M/QG3WM8X6WUOcw\nRCIRRkFHctlKvGyn4GgZilpfSJHiGHJtEiFuG2o9V/Ws/nFEtksQmVTfffztKh2RSOQPHKsj4H8B\nXBAEYdcv/08GBguCUFDfOf+o0qniqtaB8icwC0DksAGRuDp1IAgGsiRfcr9yC+amHgS7rcPJsmZz\niMqg4HDu59yTXKONbSem+s7HXlw7v3ulJJYNSbsQiUS8FjSDfm51c99FKhnzrx3kVmkOMwNDWdY5\nrMFRZuGpKSw9cxIbsTlbR4+lh3fjgndGcTnzfjhCbrmEN8YOZnrvTk1+SOMzCnh9y1EkchXLZg1j\ndL/moWKiozP5cP1xKioUzHyqH49P7/Mf2yClVmpJi88jO62InIxicjNKKMgpo7xYhkqhafR5rGws\n8PBxwsvPBW8/F3zbuNMmuAUtAz0eqplZU6BSadn25XmOHouhlb8by98cR+tWf33hFwSBnSdu8ene\nK7T0cmLt3PH4ezetfmI0Cmy/GMmWiGsEebqx+clxjZ4dcSU7iwUnj6EzGFk/fCQj2tQvqtAZDay/\ne56vU27S0cmLrf0m42NTt71zTEUqHyb+gEynYnbARMZ696312dMa1RzP/4Zb5WdoYdWGR/0WIRaK\n0Rul2JoHYWHmwf3Krcg08XTy+BwApS6bLMk2HC1C8bL7bbZ2Vfz7GJQ//MrVi8xrb+D6pwP+MeBD\nQRCu/PL/s8DrgiDUsMIUiUQvAi8C+Pn5dc/KyqrxXoLmctUKZyxHZDsHbF5E9IdirVQTS3zJa6j0\n2fjZP09rp/mYiKrzo8IvdqPH879GbGLJFN+5tLOv/RoVqMp4N+F7UmQ5TGwxgBfajK+T4tEZDay7\ne45vUiLp4uzNlr6T8bap/0ZNLivl5WOHyZNJWdZ/ELM6d21U8Jaq1Lyx5yQXk+8zoVswKycOxbKJ\n3uxlEgXLPztOdHIukwZ3YvHjg5ulSUsmU7Ppk1Ocv5BIUJAXS18bTat/oGHor0Cl0FBRKkej0qJW\nadGodQiCgFhshqmZCeYWYuydrHFwtnlok7qaC3fuZrF+QziFRRKmTunJc88MbBYVjlSh5p2vTnEp\nJp1HQgN567kR2DSxNiFRqVn280kuJt1nbJd2rJoU1qh6lVEQ+CzqJhtvXCXA2YXPx4xv0NokTyFh\nwfWDxJTl8VRAd5Z1CatTcqk3Gvg+8yR7ss/iY+3GiuCnaV1HI1WOMpW92Zso1xYywG0SQz0eI0/2\nHTnS73GxGoxcm0ig8zKszHxJKX8PN+vheNqORW+UUyg/glFQ4Wv/DCKRCYLmBoL0TTDkgvVTiGxf\nRWRStyvpf03A/z3qskcGEIyVCNI1oD4KZh0QOa5DZFZ9u6g3KkgrX0u+fA+25u0Jdl2PrXnNlb5Y\nncue7I8pVGfSx2U0I7xm1mq3rDXq+TrjKAdyLxFo68ObwTPxqWOaFsCJnETeiDyGmYkpG3qNZ4h3\n/dtZqUbNkoiTRGSkMyawLR8MHdEovb7RKPD5uRt8dvYG7byalgk9gN5gZNv+q+wIj6JdS3c+mDOW\nFu7NM3Xq/IVEPtl6GoVCw5OP92XG9D6Ixf963P9TkCvUbN9+gaPH79DC24klr41utkE3CRmFLPvs\nGCUVcuY9OpDpwxuXuPweifnFLPrxGAWVMpaMHsgTfbs06hwVKhWLT5/gYtZ9xge1470hwxrU15/J\nS2Fp5FEMRiPv9xjDGL+6d7iFqnLeT9xBojSLUV69mR0wESvTmtJtg2DgUvEBzhXtwU7szFTf+bS2\n7YDeKCepdAWBzm9iYeZOtuQ7NIYiHC26IxKZkS35imC3dViaeVMoP4xUE0ug0yIE2QZQ/QSm/ogc\n3kNk3rCdxT8d8JuF0qkNgvokgmQlCEpEdouq+P0/NCOUKM+SVLocg1FBG6dX8bGfiegPnL3OqOV0\n4U6ulR7Dw9KPR30X4WlVu372WmkcG5J2oRcMzA+cSphn3df1vqycedf2k1hZzMvt+7Kow6B6ByIY\nBYEvb0ex4foV/B0d+XT0eIJcGjez9mJSBm/sOQnAe9NG8Ehw44Y8/x6XYtJZvf0kRkHgzVnDGNar\neYy5KiuVbPk0gvMXEmnl78bCBcPp2OHhTdP6F1U72ouXkvn0szNUVCqYMrkHzzw9oFkK60ajwK7T\n0Xy69zJujra8P2cMIa2bpu4RBIG9Uff44OgFnKyt+PjxMXRp2biBPjEF+cw9cYwypZIVAwfzRMfO\n9S4SGoOe9bHn+TYlkhAnTz7pM6nWWRcPcK7oNptT9gGwKOhRBrvX3hVcpilkX85mspXJdHIcwPgW\nL2IiKLAwq6LJYgqfxcNmFN5209Ab5eTJdmEwqvC0nUCR4jjlqkv42s8iW/otruat8dVfA2MhIptZ\niOwWIhI1TlzxTwf8McBcfivafiIIQt3uQb+gMQEfQDCUIEhXguYsiLshcvgQkZl/tWO0hlKSSldQ\nqjqPk2Vv2rt+gKVZzZspWRrNgdytqA0KRnjNpI/L6FpvnGJ1BR8m7uSeJINhHqHMC5xaZ6OWWq/j\n3TsR7EqPoburD5v6TMK7npZsgOs52Sw4dRy5VsuaIWFMaV9/AfgBcsorWfzjcRLyi3lmYHcWDO9X\np2lUXcgvkfDWF+HcSytgwsAOLH5iCFbNRFdcv5HG5i2nKS6WMmJYB158YQhOTnXL3f5F8yAnt5yt\nn0YQdes+gYEeLF4wslnkllBFCa7efpIbcVkM6taGFc8Ox6GJqi+FRsvqg2c5fjeJvgF+fPjYqDqd\nLX8PQRD4OuY2665dxsvWji2jxtLJo36RwH1ZOQuuHyS+opCZgaG80XlonRSOUq9mS+p+zhTdItje\nnzfaP1mrcOMBPRxe8C0mmDC+xYu0snb8pSvWAzNTR4JdPyBPtge1Ph8fu8exMPNAqomjQL4fb9tp\n2FkEUyA7gFwbj6X+Hi2EO2Da+heuvmm2E3+3SmcXMBhwBYqAtwHxLxdi2y+yzK3ASKpkmc80ROdA\n4wP+L+8D6iNVNI+gRWT3ahXX9btMXhAECuT7SC1/HzChrcuKGqZDAHJ9JQdyPiNZdotA2y5M9p1b\na0HXYDTwU3YEOzNP42nlwpvtn6p3FuWRrHhW3ApHbGLK2p5jCWtRf+NHiULBwlPHuZ6bw5T2Iawe\nPBTrRvjra3R61oVfYveNu3Tx82L99NF4OzWtoUOvN/Dloet8fzySlp7OrH5pVKNGzDUGKpWWnT9d\nY+++SCwsxDw9sz8TxnX7l+b5GyBXqPnxp+vsPxCFhbmYWU/3Z+KE7s1WQL9yJ4N3vzmNQqVhwYzB\nTBnSdOFAYn4xr+0KJ7uskjlhfXhhcI9GTYwrVylZGnGKc5kZDG8TwLqwEdhb1C8jPZR5j5W3T2Jm\nYsKHPcYy3KfuHWyCJJO1iT9SqC7jiZbDeaLlMExNat6jcn0lh3K3kSiNpLVtR6b4zMNUKCGpbDn+\nDrNxtR7K5ZzehHr9jN4op0hxFGtxK1rYTQcgvuRVrMWtaOU4F0EdgSBdDcYysHkBke2cGmrExuB/\nxkunIQiGQgTpW6C5COJQRA7v18j2VbocEkrfQKK5hat1GO1c3sHctPqqLQgCkeWnOJH/HWYm5kz0\nmU0Hh5r2DQCxlel8mLiTcq2UWf6jmOb3SJ2jyn6fXTwVEMqyLnVnF1Al3fwk8jpbI2/Q2smZT0aN\nbbBp5AFOxCbz9oEzmIpEvDNlGMM6NGz/8EdEJWSzevtJyqRKXpjQh5ljejRLoxZAdnYZWz6N4HZ0\nJi28nXjxhcH07/fPWQn8L0GvN3Ds+B127LyKRKJkxPCOPP/soGbxwQFQqrVs3n2JgxdiCfB1Zc1L\no2nj0zjq8QEEQeCn63fZcOISjtaWrH1sFD1bN47mi8zLZeHJ45SrVLzRfyBPNyBykOk0rLp9kkNZ\ncYS6+rKx94Q6hRS/JXIRuFk48Eb7J+s0VYyX3OBw7jY0RhXDPJ+gr+tYTEQmyLRJ5Mt2Eei8HBOR\nOfeK5+Jn/yx2Fh0pVZ6lUn0LKzMffB1mkVL2HrZiHzyN0aA+AWbtqrJ6ceN29bXh/03AhwfZ/kEE\n6Xsg6H7J9p+sxu0LgoEc6fdkVGzE1MSWIJe3cbcZWeNcpZp8fs7eRJ4qja5Ogxnr/RyWtXToynRK\nNqX8TJwkg+09XsdeXDdNoTHo2RB7nm9SImnn4M6mPhPrnZIDcC0nm0WnwpFo1CwfMJgnG+AoHyC7\nrJIlu8OJyy3isV6dWDJ6YJO7c6UKNet2nOX0zWQ6Bnix8vmRtGwGAzao+q1uRmbwxfbzZGWV0rGD\nD88+M5DOnereKf2LumE0Cly6nMw3310iN7eczp18efnFR5qNvgG4k5LHO1+dJK9EwhMjQ3l5ct8G\n/ev/iHK5krcORHAhMYOBQa14b+pwnBtB4eiNRrZG3mBr1A187R3YMmosHdzr33neKctj0Y3D5Coq\nmRfcn1eC+9dZR8tXlbI28UcSpJkMde/OvLZTsDGrSU+pDAqO539DTMV5vK1aM813Ae6Wvy1WUk0s\nudIfARESTTTW4paIEGNmYoe/42z0RinJZaswNbHDaMino2kFYlSIbOeCzfM1VIdNxf+rgP8A1bP9\nblUVbrPqhUy5NpXE0teRaeNxtx5NkMvKX4cIPIBB0HO+aC8Xi/djL3Zmiu88WtvW7sdfppXW6av/\nADqjnmJ1BSmVEpZGHkWh17K8SxiPt6m/2aVUqWRJxAkuZmUS1qoNH4YNx9mq4YdEqzfwyemrfHv5\nNq3dnFk3fRTtvZuutT51I4n1P5xFo9Xz8uR+TB/RrdHD2huCwWAk/MRddvxwlbJyOd26tmTWzAF0\n6ND0hrL/jzAaBa5cTWHHzitkZJTg7+/K888Ook/vgGbbMak1Oj7bf5U9EdF4uTqw8vkRdAtq+u9z\nJSWT5ftOIVFqWDyyP0/1a5ySJ1cqYdGpcG4X5DOpXTCrBw+tV8WmNxr5PPEqW+Iv42llz8e9JxDq\nVvsOQhAEThTc4PO0Q5iKTJjfdhqP1GGpkiq7w8HcT5HpKhjoPpnB7hMRm1gjCIZqSaXWUEqx4jQK\nXRpBLisBiC58Ck+b8XjbTUOjiUMnfQ9rw20Qd/0lPjW9Ma02/L8M+PAg2z/8S7avQmQ7H2yeRST6\nLSMxCjqyJNvJrPwMsYkDQS6rcbMJq3GuHGUK+7I/oVSbT1/XMQzzfBJzk6bza5dL7vJNxnF6uYQw\npcVQlkQe5XJhBkO9A3m/xxhc6/HsMP7i473+6mUcrSzZMGwU/f0a50d/PS2LN/eeolyhYv6wvswa\n0L3JAbu0Us6H35/lUkw6Hdp4seLZ4bRuUb89dFOg0eg4evwOu3Zdp6JSSbeuLZn+WG+6d/P/l+qp\nBQaDkUuXk/lx1zUyMkrw8XFm5pP9GDK4fbM2ut1KzOb9byPILZYw9ZHOzH10ANZNnGGr0urYePIK\nP16/Q4CHC+seG0WQV+PoycPJiaw8fxYBgTVDwpgQ1L7e43Pklbx68zC3S3MZ7xfC6u4jsa/D46pC\nK+Pj5D3cKIuni2MgS9rNwN2y5g5WY1BxsnAHkWWncLPwYarvPDSao8g08XTx/BoAQTBWqxuWKi+i\n0t3H2+4xTE2syJJsB0HAT2yBIN8IiBDZLq7ywamDBv4z+H8b8B+gSsmzCjQRYBZStZr+oUtXpk0i\nseR15LokPGzG0tZ5RY1sX2vUcLJgBzfLTuBq7s0U33l1+vHUBYPRwNni23ybEc5XPd/AytSC71Oi\nWBd7DjuxJR/2HFNvSzdAQkkxC04eJ72inGe6dGNp3wGN8uKpVKhYdegMEXFpdPP35v1pI/B1bpre\nXhAETt1IYsPO8yjVWp4e04NZY3s1S7PWA6hUWo4ci2HvvkjKyxUEtHFn2tSeDB7U/t/iLqBQaAg/\ncZf9B29RXCzF19eZp55o/kBfKVexZc8ljl6Ox8fdgRXPDqdbu6bLaWNzCnlz70nul1TwZN8uLBo5\noFENghK1mrcunOFYSjLdvbz5ePhofB3q3kELgsC++3dZExOBSCTinW4jmeBf96S5yyV32ZyyF6Ve\nw3OtxzDJZ2CtNisZ8jgO5H5KpbaYvq5jGeb5OPmyHZQpL2JiYomtOIgA5yU1vG9KlRfJlf2Am9VQ\n9IKcfOlO2plb4yCkg/mAKidg04anbDUV/+8D/gMI6lO/VMEraq2CV2X7X5BZuQ0zE3uCXFbhbjO8\nxnnSZHc5mPspEl05A9wmMtTjMcxMGse7yXUq3k34ngFunRjj3ReDYMRUZEJyZTGv3jxMYmUx01t3\n5c0uYdiI686iVDodH169xA+xd2jr7MLHI0YT7NYwVSMIAkdjEnnvyHkMgsDS0QOZ1rNjkzPocqmS\nTbsucPJ6En6eTrw+cyg9gpuXe9dq9Zw9F8/PeyPJyi7DycmGcWO7MHZ0F1z/Q0zHHibuZ5Zw9FgM\npyPiUCq1dOroy7SpPenTO+Avzy3+PQRBIPxaIpt3X0SmUPPEyFCen9gbyybWf7R6A9vO3eSri5G4\n2dny3tTh9A5o3D1yNSeLpREnKVEqWdCrDy9171lvD0upWsHyW+GcyUuhl3tLNvQcV2dhVqZT8mnq\nAc4W3ybQ1ofX2z9BS5uack6tUc3pgp1cLwvHxdyLyb5z8bep2l3ojTK0hgpMRGbEFs0m0PlNnKx6\nIQgGQPRrxl6kCEemuYdafYlWZGBlao/IfgVY1j2J76/i34D/O1R16X4A6oNg2gqRw7s1utfk2iQS\nS99Epo3HzXoEQS4rMTetrkJQG5SE53/L7YqzuFv4Mtl3Lr7WDSthfsg8RYoshzUdn6/xN41Bz6a4\nS2xPuo6vjSPreo2jh1v9D8jFzPssPXOKSrWK+Y14MB6goFLGW/tPcz0tmz4BfqyeHNbkMYoAN+Iy\nWfv9WfJKJAzrGcT86QPxcG7eYGw0Cty+fZ+Dh29z42Y6JiYievZszcjhHendK6BZLAH+UyFXqLl0\nKZkTJ2OJT8hDLDZl0MB2TJ4USrtmLMY+QEp2CRt2nuNOSh4d2nixbFYYgb5Nt8SIyy1kxb7TpBaV\nMaFbMG+MHdSo2cxKnY61vyQyrZ2c+Hj46Aa19adyk1hx6wRynYbXOg3hmbY965xNcbMsno3Je6nQ\nynii5TAebzkMs1rklhnyexzI/YwKbVGDFG6ebA8F8oN09/yxGo+v0uVgacyr6hMyZILlBET2yxCZ\n/L1zGf4N+LVA0Fz55YfIBatHEdktRWTym17dKOjIlnxLZuUWTEysCXReVqvtcrI0mkN5nyHTVTLA\nbQKPeDxWqzUDVGl7N6b8zFvBT+Nn4/Frdl/tcwkCt0pzWHLzKLmKSp4N6sWrHQfXK9+sUKlYeeEM\nx1NT6OzhyYZhI2nj3DC3LggCeyPvsT78EgKwaER/ZvTu3ORsUa3VseN4FD+ERyESiXhufG9mjOjW\nZPVGY5CXX0H4ibucjoijrEyOvZ0lgwa1Z8jgdnTs4Psfa9LWFGi1em5HZ3LmbDxXr6Wi1erx9XVm\nzKjODB/WEUfHhov1TUWlXMWXB65x4HwsdjYWzJ02gHEDOjT5XtDo9Hx29gbfXr6Fi601b08MY3D7\nxo0wvJWfx5KIk2RJKnmmSzde69Mfq3p6Tyo1Kt6JOc3hrDg6OHmyvtf4Oq3JFXoVn6cd4lRhJP42\nXixpN4O2djXpKY1BxcmCHUSWn/olq5+Dv039poIPZs1amHkS6Pw6eqOMMuVp9Mp9eBhuIzL1xcTh\nHUQW/Rp1Hf4q/g34daDKgW4LKL8FE5eqrZbFyGpBXaFNJ7FsOVJNDM6W/QlyWY2VuLo6QW1QEJ7/\nHbcrzuJm0YJJPnNoadOu6j0EgZtlCfR2DeG9+B20tPHkSf/hGAXjr3zh77k/hV5NsjSLZGku8aUa\ndqXH0MbOhXW9xtHFpX6+71hKEisvnEWp07God1+e6xraqGw/v1LKqgNnuJqaRZeWXqyeNIwAj6YX\nY/NLJGzafZELt9PwdnNgzrT+hPX4e7T1BoOR29GZnDp9j2vXU9Fo9Dg5WtOvX1t69WxDt64tsfqH\nB4o0BRKpilu3Mrh6LZWbkRmoVFrs7SwZMiSY4cM60C7I62+5jjq9gX1n7/L1kevIlVqmDu3Mi5P6\nYm/TdC/8m+k5rD54hqyySiaHhrBk9MBGZ/Ubrl/h+zvR+Ng7sC5sBL186q8VnMlLYcWtcCo0KuYE\n92N2cD/EtWTqADfLEtiU/DPlWimP+Q3lSf8RtZofJkujOZy3DamujL6uYwnzfLzRwgytoZzYopew\nMvPDRCimhTERW5ESbJ77hTr+67MFGot/A34DEHRxCJIVoE8Ai8FV07V+V0wRBAO5sp/IqPgYgNZO\nC/Gxq67tB0iVxXAo93MkujL6uI5mmOcT6I3wXsIOUmW52Iut+arnGwAYBCMi+DXoq/QarpTGEluZ\nTpwkAytTC1Z1eJbkygqWRR2nSCXjuaBeLAwZiKVZ3VlPiULBWxfOcDo9jU4enqwNG9EoPx5BEDgS\nk8i64xeRa7Q8N7AHLw3picWfyNIj47PYtPsiaTmldGjtyfzpg+jStvmLUw+gUmm5GZnOpcvJvwZL\nsdiUTh196dbVny6d/Wjb1vM/KvvXaHQkJuUTHZNF1K37pKQUIAjg7GxDvz6B9O0bSLeu/n9bkVoQ\nBM5EpfDZ3ivklUjoFdKSBdMHEvAn6JsKhYoNJy5x6HYCvs4OrJoU1miu/npONsvOniZbKuGpTl1Y\n0ndAvXLLCo2SNTERHM6Ko72jO2t7jiPEqXbKR6pTsC3tEBFFt/C39uS1djNq7YZX6mUcz/+GO5UX\ncbfwZZLPK00WY2j0JdwqmIQFKoJMZdhYdEVk/w4icfP4UTUF/wb8RkAQ9KDcgSDfTJVcah5YP11N\nwqnW55Nc9jZlqkvYm3ciyHUNdubtqp1HY1BxqnAnN8tO4CR2Z4LPywTadeFY/jW2px/h9fZP0Mel\nQ7Vs7cesCCq1MlwtHHAQ25Iiy6GbU1t6ugRjbmJGqVrOxnuX2J0RQys7Zz7sMbZOTXHVdxE4nprM\nqgvnkGk1zA7txezQno1S8pTLlawPv8SRmER8nR1YPv4RBgT5N/l6GoxGwq8msG3/VUoqFfTr3IqX\nJ/drlkEr9UGnMxAXn8vNyHQiozLIzCwFwNJSTLsgLwIDPWkb6ElgoActvJ0eyiKg1erJzColPb2I\ntPRiEhLzSUsrwmAwYmIion07b3qEtqJHaGuCgryatQD7RwiCwI17mXxx8BoJ94sI8HFl3mMD6dPR\nv8nnMhoFDtyOY+PJK8jVWmYN6M7sob0brcBZe/USu+Pv0dLBkbVhI+qd8SwIAidyk1gdfYpKjYpX\ngvsxu32/WudNCILA5ZK7bE09gFSvYIZfGDNaDquR1QuCQGzlZY7nf4PaqGSQ22QGuU+pIcCoUEdx\nv2IzHdw/wdy0Jv8uCBpSi55CrL9HS7E1IrslVTRxM0otm4J/A34TIOhzEWRrQHO+qs3Z/h1E5r/N\nnRUEgSLFMVLL30dvlOBr/yytHOdgalK9Iy9TkcDBnM8o1ebTxXEQo72fQW80IVWeS4VWRgeH1nhZ\nuXChOIZ1iT/yafdXaWXrxfb0o1iZWjDWuy+O5rbcrUjjVGEk+apSOtmF8H1yIrkKCU8GdOe1TkOw\nE9e95SxTKnn38gUOJyfSxsmZ94cOa/SAlRtp2aw5fI7M0grCQgJ4fewgvB2bPmRZpdGxJyKGnSei\nkCo0DOkewAsT+/ypTPLPoLxCQWxsNndjc0hKLiAjoxidzgCAWGxKixZO+Pm64OXliLubPe7u9ri6\n2GJvb4W9vRXW1ub1UikGgxGlUotcrqasXE5pqZzSMhmFhRLy8irIzS2nezVGtAAAIABJREFUoLDy\nt6lalmKC2noSHNyCjh186BDig63tw9nuRyVk88WBa8Sm5ePpYseLE/syql/7P9VAl5BXxLuHz3M3\np4Du/i14a8IjBHo2bid5Ii2FVRfPUaFS8WzX7izs1bderr5QKWVV9Cki8lIIcfJkbY+xtHeqvcO2\nVCNhS8o+rpXFEWjrw+Kg6QTY1dxdVmiLOZz3BamyGHysApnk80oNh1ydoZK0inUUyPdjadaCjm5b\nsLOobnlQVQtcjaDPQmQ1FpHdMkSm/+zch38DfhMhCAJoIqrM2IzFYPVY1VhFk98069VvBh+CnN/G\nxXpgtfPojFouFO/jUvFBrExtGO39DJ0dB5KpKKRcK6W7c9V2b8f9k5wvjibQzhdrUwum+Q7B08qF\n80XRXC65S1/XjnhYOrEz6zTzAqbyQ2os36VE4mFlx+ruIxs0YruYeZ8V58+QJ5MyPaQjS/sNaHC2\nJ1QNTv/+SjRfnLuJADw/qAfPDAxt8pAVqBqg/tOp2+w6FY1CrWVw9wCeGder2UzZGgu93kBmZilp\n6UVk55STnV1Kdk45RUWSXxeC38PERISFhRhzc1PEYjNEoqogbzAY0WoNqFTaWt/H0lKMTwsnfHyc\n8fFxpnUrdwLauOPt7fS3ZvB/hCAIXL+XyXfHIrmTkoe7ky2zxvViwsAOiP/EEPdyuZJPIq6xL+oe\nzjbWvDpqAOO7tm9UfSFHImH1xXOcy8ygg5s7HwwdTkg91ghGQWB3ejRrY8+jMxpY2GEgz7btVWtd\nyigYOZ5/na8zjqETDMz0H8FUn8E1DM8MgoHrpcc5W7QbgGGeT9DbZSQm1axXBAoVh0krX/tLUvcM\nrRznVkvqBEMRguxDUB+v8qq3f/uhFWUbwr8B/09CMMoR5J+AcgeIHBDZLQWrSdW2ahWqmySXvY1S\nfx9361G/Djj4PQpVWRzK+4wcZSptbDsxocVLuFhUl9TdKk9ifdJPWJiYs7nbArKVRVwtuUegnQ/D\nPKtkoy9GreO1X9QFMaV5vHnrOCmSEkb4BLGy63A867FdVup0bLpxlW/vRONgYckb/QcypX1Iox7U\n/Eop649f4nRcKl6OdiweOYBRnf5cMVYiV7H7dDR7Iu4gV2noFdKSJ0eF0jPE7x/tpjUaBSolSkqK\npZSWyZFKVUhlKmRSNVqdHq1W/+uCYGpqgqmJCWZiE2xtLbGxscDWxgJnZ1tcXGxxdbXD3s7yH/0+\ner2BM1Ep7AiPIi2nFHdnW54aFcrEQZ3+VJOcVq/np+t32XbuJkqtlhm9OzMnrE+jirJag4Ht0bf4\nNOoGJiIRC3v1ZVaXbvUKCpIri1l+K5yYsjz6uPvzbuioOj3r78sL2JTyMwnSTLo4BrCg7aO1Dicq\nVGWxL+cTCtT3CbLrzvgWL+JoXv04hTad5PJVVKojsTfvTJDrO9Vo2yrq94equCDoENm+9MvUvaZ3\n3f9d+Dfg/0UIusSqhi1dNIi7V63m4t9uAqOgJUvyFVmVnyMSmdPaaSEt7GZgUs3CwUBk2WlOF/6I\nQdAx2H0qA9wm/soXfpl+BCtTC9wtnPC1didWko5BMDLBuz+2YitulsVzsfgOS9s/gd5o4G5lGrGV\n6ZQrxXydFI1YZMLijoN5MqB+y4TE0hLeOhdBdGEBPbxbsGrw0EY7cEZl5PLhsQskFZTQpaUXS0YN\nbPSQij9CrtJw4Hwsu09HU1qpoK2fGzNGdCesR9tm7dr9/wapQs3RS3HsORNDYZkMfy9nZo7uwYg+\n7f5URi8IAhHxaXx84jI55RL6t/Vn6ZiBtHFvnIrrcnYm71w8T3pFOSPaBPLWwMF429WTmOi1bI2/\nwtfJN7ETW/BmlzAm+dfeGKg2aPkxK4K9OeewMbXi5YAJhHmE1rnQFqtz2XH/XUZ6P02Ife9qxxmM\nKjIl28iWfI2piRVtnF7F27Y6Dy9ooxCk74A+GSwGIbJ7C5HZf57R378BvxkgCEZQ7UeQrQdBVuV/\nYbsAkclvTUZKXRYpZe9Qrr6CrXkwQc5v42DZpdp5pLpyjud/TZzkOq4WLRjv/QJt7DpxteQeNmaW\ndHEKRBAEVsd/yxjvvvRwbke5RsrxgmuYm4gZ7dWHT9MOYBCMuJo7EFWeyHTfUfyQHM+VovuEOHrw\nTuioeiWcRkFgb0Ic665eQqLR8ETHzizq3bdRNI/BaORwdAKbT1+lVKYkLCSABf/H3nuHx3WW6f+f\nM73PqPdiybJsy1XudhyXOL2RhARCgFBCX1jYLywLv21f9rsLyy67wNJhCQESCKlOt1Pd4iJ3W9Xq\nvU7vp7y/P44sW7GsOMXgJLqvay5fozl+ZzQ65z7P+zz3cz9XraMi9801k6Rlhef2NnH/cwfp6Pfj\nc9u5af0Cbtm0iKKcN94I9l5FY+cQj7x0jO37mkimFWqri7nrmmWsW1zxplNIBzt6+a9nd3OsZ4DK\n3Ey+dt2GCy7g94RC/OvuV9je1kqpx8s/bdzMpvLz6/GFEGzva+ZfjjzPQDzM+2ct4uuLryDTOnXP\nwd7Rk/z41KMMpQJcmbeCz1TehNfimiR3ngqqUDG+Jn0zGn+RU/5/I6n2ke+8mdmZX59kmS7UYUTk\nu5B8AgwF4/LtLZesv9MM4b+NEFoAEfkBJP6ga/fdf6t30I3/8YUQjMSf45T/26TUIQpct1OZ8Tfn\nVPdbIod5su9X+NODLPKt59qCu3GZfBgkA23RPr7f/Cf+Z9lXAHiibzdDST9LfFWElTjP9O/lu0s+\nj1Ey8P3mP1HjncWWvOU809PIvx59nuFElDsqlvC1RZvIOM8FAxBMJvjvfa9y/4ljeKxW/mb1Oj64\nYNEFafdjqTS/23OEX+88SCItc8vyGj67edWbKuye/t7qGrp55KVj7DzShiYEq2rKuOnyhaxfUjET\n9U+BaDzFC3UtPP7KcRo6hrBZTFy9ei63b1nKnNI3Xzhs7B/mh9tfZWdzB3keF5/fspr31dZc0CyE\nuCzz80MH+MWhgxgk+PyK1dyzdNm0CrHOiJ9/ObKdVwbaqPbm8q1l15xXhTaU9POTU4/x6thJyhx5\nfGnO7RilEULyGEt9G7CbLtzzPyH30OL/f4wlXsFprmJO1j+RYTvTdS9Eejx98yMQad262PmZaQeI\nXwqYIfyLACGfHE/zHNPtTT3/gGQ+Y9SkaFE6gz+mJ3wfRoOLCt+XKXJ/YJJ2X9ZS7Bh+jJ0jj2KS\nzGzO+wBrsq8jIif5Vv1vWOSrxChJNIS6eF/xevJtWfxv+1O8r3g9tRlzCKQjPNzzMjXeCtZm6+8d\nlVP8sH4Xv2k5gMts5SsLNnBn5fT50sbREb614yX29/UyJzOLb67fyOVl5Rf0PfijcX7+8gH+uP8Y\nALctX8CnN60k3/vm7RWG/BG27jjBE7tOMuyP4nFa2bKymqtWz2VJVdGfteh5qUFWVPad6OTZvY3s\nPNxGWlGZVZjJrZsWc93aebjfRMPUaTQPjPCTF/fxQn0rHpuVezau4K61Sy+oSK9qGo82NfC9vbsZ\njsW4YU4131i3gQL3+c+DmJzmJ417+HXzfswGI3+94HI+WrV8ygaqtCrzp56X+WP3C0hI3FV+FbcU\nrWdr30/wpwfJtZZgkAxUuBayyHfZtJG+qiXoCv2c7tD/IkkmZvm+RLHnwxjO8qEXqZ26y67aMZ6+\n+Xsk04U50/6lMUP4Fwl6mucxRPQ/QfOD/fZxNc+ZaD6abqHF/y8EkwfG0zz/gNc22Wt7NNXP0/2/\npiVymFxrCTcW3YPPXMZ9nc+SbfWyMbeWEkcuP2t9nKSa5svVdwDQFu3jj90vckPBWhZnTPbSbgmN\n8K3D29k73Mlcby7/WHsVq3LPf8IKIdjW1sp3du+gOxzi8tJyvrF+wwUPUe8Phvnlywd49FA9EhK3\nrVjAJzcsf9MRP+gkUtfQzdO7G9hxuJVkWiE308WVK6vZvLyKmoqLq1m/VCArKoeaenh+fzOvHGol\nEk/hc9u5cmU1162bx/xZ+W8pvdA8MMJPX9rH8ydbcVktfGTdUj56We0FFWQBdnd38Z3dO2gYHWFJ\nXgF/f/lGagvOX9sRQvBEVz3/fvxFhhJRbilfyN8u2kSu/dybw+lO9Z+0PsZAcoz1OYv5bOXN5Noy\nSKgxtg38lmsLPobVaKc5fIgXh/7Ix2b9Iw6T+xz3Sn33vZ1T/u+QUvvJc97A7Iy/xWo6oxQSSjci\n8m19RraxDMn9Tb0Z8xJN30yFGcK/yBBaRN/2xX8Hkh3J9YXxKVt6x6AQguH4s7T6v0NKHSLPeROz\nM746+UQTgsZwHc/0/5qAPMwC71quKfgoXnO2PjZNjvP3J37JN+d/hDxbJiPJIE8PvEpETvDFObdN\n/bnG86L/euQF+uIhri6u5uuLr6DMdf6JVSlF4XfHj/Kjun1E02lumTufL69eS9E0hbaz0R8I84tX\nDvDYoXoQcP2SuXxyw/ILLvKdD/Fkml1H29m2t4l9JztRVI1Mj4N1i2exbtEsVswvfUvR7aWG0WCM\nfSc62X2snf0nu4gl0zhtFi6vreTKldWsXlCG6U0UYU9DCMGhzj5+9Uodu1o6cZ5F9N4LJPqTw0N8\nd88udvd0UeT28Lfr1nNDVfW05Hh4tJd/PfI8R/39LMjI559qr6Y2e+rekK7YED9ve5w6fxMljlw+\nXXENMEi2tYDZ7iXElDC/aP0m91T+C26zfk4/3vszTJKZG4o+OYnwo+kmWvz/RjC5H5e5mqqsf5ic\nvtGiiNhPIfYbkMxIzs+B8+MT1/A7CTOE/2eCUFp1J870Lt2J0/MNJOvGidcVLUZX6Bf0hH6NJJko\n836GEs/HMZ7l1yFrKXaNbGXn8KMI4PLcW1if8z4sBiv/2fQHFvtms8RXxXOD++iNj/DJihvItWWc\nE82cjaQi86vm/fy86VUUTeOjVSv4wvx15x0KAXp+/yd1+/nt8aMg4MOLlvD5FSsvaMoW6BH/fbsO\n80jdCRKywsZ5FXxi/TJqy4vecrQUiSV59UQnu4608erxTqKJFEaDRE1FAStrSqmdW8yCyoI3bOf7\nl0Q0nuLYqT4ONHRTV99Na6/eIZzjc3LZkgrWLa5gVU3ZW65lqJrGSw1t3LvzEMd6Bsh02rlr7VI+\nuHoxPseFEX1HMMB/793DU6ea8dlsfH75Kj6yaMm0efreWJDvHnuZp3sayLE5+erCTdw6a9GUrpYR\nOc7vOrextW83dqOZj5Rfw6qsUh7o+jZzPSvoiZ9iacYG1mRdzzMDvyatpbml+HMAjCT7eLzvp9xR\n8mW8lmxkNUB78If0Rf6IyeChwvclCt0fmFDQCaFC4lF9IIk2CrZb9F268c/bH/J24qITviRJ1wA/\nAIzAr4QQ33nN66XAfYBv/Ji/E0I8M92a70TCPw2RekUnfrVDH3Tg/jqS+UxzVELuoTXwXUbi27GZ\niqjM+Cq5jmsnEWEwPcq2gd9yPLQbrzmbq/LvQqKIn7dtxWmysSyjmpVZ86lwFU5L9mdjKBHhv068\nwiMdx/FZ7Hxh/mV8aHbttE6c/ZEwP9i/l0ca67GbTHxsSS2fXLrsghQ9oPus/GHvUR7Yd4xALMGC\n4jw+vHYpVy+swnIBVg+vB0VROdE2wP6TXew72Ulj5xBCgMloYG5ZLvMr8pk3K5+55bmUF2S+bWMZ\n3wpSaYW23lGau4dpaB/kRNsAHf1jCAEWk5HFc4pYWVPK6gXlzCnNeVvSCeFEkscONfCHvUfp8Yco\nzvDwsfXLuWV5zQU30vWEQvy4bh+PNNZjMRr5xNJlfKp2BR7r+TXooXSCnza+yn0tdRgkiXuqV/Pp\nuWumnPWgaCpP9e/ht53biCkJri1Yzd2zriXD4mbf6LPE1Qib8+6gO9ZMU+QgdoOTRb7L+E3Hv3BX\n+dfJthYSkQM8P/gAKzKvAHU/HcEfo2pRitx3Msv3RczGM82TIrVPb55SGsbrcP8fknnRG/9yLzFc\nVMKX9CpkC3Al0AvUAXcKIRrOOuYXwBEhxE8lSZoPPCOEKJ9u3Xcy4cPpCv/9iOiPQUT1bl3Xl5DO\nknv5E3tp9X+bqNyM11pLVeY38Fgnn3Ad0XqeGbiX/kQ7xfYqri/8BCZDFoX28+fWR1MhRlNB5nqm\nztnXBwb57rGX2D3UQbHTy1cWbOCmsgXn9RAHaPWP8f19r/JMawsus2WC+L22C4sKE2mZJ4408Ps9\nR2kf8ZPptPP+FQu5fdXCt5Tnfy0isSRHT/VztKWX460DNHcOkUwrAFjNRsoKMqkoymJWYRbFeT6K\ncrwU5XjxON/eRilNE/jDMfpHw/QPh+gc8NM54Kej30/3oB913GrB7bCyoLKAhbMLWFRVxKLZb+/O\npGlghD/sPcrTR5tIyArLyou4a+0SttTMvuCbX284xI/r9vNIYz0GSeJDCxbxueWryHGefxxnUpH5\nbetBftrwKhE5yS3li/jKwg0UTtEcKIRg79hJftn2JL2JEZb6qriusJKW8E425t3GHHctRwM7OBrc\nycdm/QOgO1vWh/ayNvsGWiKHaIkc5Z7Kb5FQotzX8U3mWZtRtU4ybOuoyvw6LssZEzOhdOgyy9SL\nYChEcn8VbNe/o/L00+FiE/4a4J+FEFePP/8GgBDi22cd83OgXQjx7+PHf08IsXa6dd/phH8aQgvo\npB9/ACQbkvPT4PzYhF2qECoD0UdpD3yftDZKnvMGKnxfmWTBrAmNo4FX2D54PxElwELvWq7M/zCZ\nlrwpT9IfnXqErX272Zi7lI/Puu68N4fdg+1899hL1AeHmOvN5SsLN3BFYdW0J37T6Aj/c2Afz44T\n/4cXLeHjS2vJcZz/4p/0fQjB/rYeHth7lJcb2wG4bE45tyyvYePcCixvIS89FVRNo3PAT1PnMK09\nI7T1jtLeP8awPzrpOJvFRLbPSZbXiddlx+Ww4rJbcNqtWMxGTEbDROOSpglUTUNRNRJJmUQqTSwp\nE4omCITjBCIJxoIx0soZqwajQaIo10d5QSaVxdlUl+ZQXZZLYY73bSeaaDLFcydaeOxQPUe7BrCZ\nTVy/eC53rln8hgbYtwf8/OJQHY82NWBA4oMLFvLZ5SvJd51feSNrKo92HOeH9bsYTETYWFDJ1xZt\nYq5v6hRJQ6iTX7U/xYlQG6WOPD5VcSNmwxD7xp5hfc77WOBdg0EyMpzsYefIY9RmbKLCtZCw7OdI\n4GXsRhcrs67mkZ7/IaX66YgeJ9s0wkKng6rMvyPbseGMZFrzI6I/Gb8WrUjOz0y6Ft8tuNiE/37g\nGiHEPePPPwKsEkL81VnHFADbgQzACWwRQhyaYq1PA58GKC0tXdbV1fVmPvMlCaG0601bqRf15g33\nl8f1+3qUpWhRPb8f/g1CaJR4PkKZ97OYjWeaj1Jqgl0jW9k9shUNlVVZV7Mp9w4cpskXYFxJ8mD3\nSzzS+wqKULmhcC13lV1FhuXcC1UTgqe6G/j+yR10RQMsyizgbxZu5LK8WdMSUePoCD+p28czp1qw\nGE3cPr+Ge2qXU+q98Bm5/YEwD9WdYOuhBobCUTKcdq5bVM1NtfOoKZr6ZvZ2IZZI0z8aom84RN9w\nkOFglLFgjLFwnFAkQTSRIpZIE0uk0aa5BswmI3arGYfNjNdlx+e2k+G2k+11UpjjpSDbQ0G2l+Jc\n70UZCHMaqqaxv62HJw438Hx9K0lZoSI3k9uWL+CW5TUXXIgFODE8xM8OHuC5Vv1ve0fNAj67bOW0\nEktV03iiu54fntxJdyzIksxCvrZ4M6vPowzrjg1xb8cz7B49js/s4qPl13Bdgd79+lDPD9iQcyv5\n9jJUoWCUTKTUBAfGthFWxri+8JMAvDj4RzQ01mdvpMX/X3RFtmE2eKjJ+ixF7g9OyCyFSELsPkTs\n5yDiuprO9ddIxgtToL3TcCkQ/t+Mr/W98Qj/f4EFQgjtfOu+WyL810KkDyAi/w7yCTDNR3J/bZLp\nUlIZoD34Qwajj2EyeCn3fo4i952TCrth2c+LQ3/kkP8lrAYbl+feyprs688Z1jCWCvG7zm08O7Af\nq9HMbcUbeH/JRpymc/PviqbxWKcemfXHwyzPLuFLC9azNrd8WuLtCAb0KLCxHlUIrquawyeXLmfx\n64ylOxuqpvHqqW4eO3SSlxvbSSsqFbmZXLuomqsWzKYyN+svut1WNQ1ZUSe8dAwGA0aDhPGsqP8v\nAU0THO8ZYNuJUzx7vJmRSAy3zcp1i6t5X+18FpZcuFxTE4IdXR38+sgh9vR047ZY+ciiJdy9ZOm0\nuzdV03i6p4Ef1e+mLTLGfF8eX1m4gU0Fs6d87+FkgPu7tvPcwAGsRjO3l2zi/cUbsZusE7WoJ/p+\nySxnDSktwbHADjKtBazOugZVKNT5nyfbUsj63Pexa/gh+mI7yJd2gCRR4rmbMu+nMY13vwuhQnKr\n3iipDYB1M5L7q0im2ed8rncTLoWUTj36TaFn/Hk7sFoIMXy+dd+thA/j+v3kM4jof+kjFi1r9BPR\nvHDimEi6iTb/f+BP7sZqLKQi40vkO2+a1Lg1lOxm28DvaY4cxG3KYFPe7SzP3IJRmhxJ9sSHubf9\naXaNHsdtcnBHySZuLl6P3XhusS2lKjzUfpSfNr7KYCJCbVYxX6hZx4b8ymnJYyga5d6jh3jg5HGi\n6TTLCgr52OJarp5ddUGdu6cRTiTZduIUTx5p5HBXH0LArJwMttTMZvO8ShYU578ntPfnQ1pROdTZ\nywv1bbxY38pIJIbZaGR9dTk3Lp3HhupZb2hoTSyd5tGmBu47dpj2QIA8p4uPLVnKnQsWT1uMlTWV\nJ7rq+UnDHjqjfqo8Ofz1gvVcXTx3ylqQPxXmD90v8HT/qwBcX7iW24rXkW/PQxPqhFulosnsHHmM\ntJYkIge4Mv8uDvpfIKIEWJV1NRISj/b8CANhxtJD1Ni7qfZcRUXGl7GZdO2/7nb7it4fo5wC0wIk\nz98hWVa+ka/6HYuLTfgm9KLtFUAfetH2Q0KI+rOOeRZ4UAjxG0mS5gEvAkVimsXfzYR/Gnph9w96\nXlEEwHatvtU0nfEc8Sf20hb4TyLpkzjNc6jM+ApZ9k2TyLcz1sjzg/fTGWsg05LHFXkfZJHvskmW\nrwCnIj3c1/Ec+/0N+MwuPlB6BTcUrsVmPFcxcZr4f9a0l4F4mIUZBXx+/jq2FM2ZtrgbSaV4uLGe\n3x47QlcoSIHLxV0Ll3B7zYILzvOfxkg4ygv1bTxff4qDHb2omiDb7WDj3Aoum1POysqSN5SqeKdi\nKBRlb2sXO5s72NPSRTSVxm42cVl1OVvmz+byubMuuEnqNDqCAe4/foyHGk4SSadYmJvHJ5Yu47rZ\nczBPMVTkNFKqwiMdx/h50156YyHm+XL5Ys16riyqnvK8CKWjPNTzMlv7dpPWFK7KX8GqrEz2jj5M\ngb2CD5f/3cSxpyP8xnAdu0e2UmSv5LrCjwNwb/v/ZUXmlWQYe2jy/5iwHKbCvZrKjC/jOtvNMn0I\nEflPkA/ptsXur5wztvTdjj+HLPM64PvokstfCyH+VZKkbwEHhRBPjCtzfgm4AAH8rRBi+3RrvhcI\n/zT0po//1WfriiTYb9XnYI6PWTztz9MW+G8SShcey2IqMr5Cpn3NmTWEoCVyhOcH72cg2UGOtZgr\n8j5AjXfNOS3mDaFO7ut8lsOBFnxmF7eXbOLGwnXYTedGdGlV5fGuE/y0YQ/dsSAV7iw+NXc1N5ct\nmFbOqWoaL3e2c+/RI+zt7cZkMLBlViV3LljEutKyaW8aUyEYT7K7uYOXGtvY3dJFLJVGkmB+YR4r\nK4tZXl7M0vLCd8UNYCgU5XBXH3Xtvexv66FzNABAttvBhrkVbJxbwZrZpdjfoJonpShsazvFH0+e\nYF9fDyaDgWtnz+Fji5eyJH/6mbmhdIL7Ww/zm5Y6xlIxlmQW8vn569h8niL/aduPJ/r2kNJkNuUu\n5SPl11Boz+Lx3p9S7KjiWHAnl+fcSrWndlKUrwqVl4ceIq0lWJV1DZmWXO5r/xo+qR6PoROPdSmz\nM76Kz3aG04TcoGvpUzvAkK1PrLO/H0l65/RivF2Yabx6h0Coo3phKf6A/gPHB5Gcn5soLmlCZiD6\nGJ3Bn5BSB/DZVlHp+/IkqwZNaDSE9vHi0IMMp3rIs5VxRd4HmO9Zdc6FeTLYzu+6tnE40ILX7OS2\n4o3cVHQZTtO5pKloGs/2NvLLpn3UBwbJsTm5u2oFH6xcOq1BG0Cbf4wH60/wSGM9gWSSIreH98+v\n4bZ5NRR73rgjpqyqnOwdYm9rN/tauzneM4isqkgSVOVls7Akn0Ul+SwszmdWTubbrvx5OxFPyzQP\njNDQN8SJnkEOd/XTFwgD4LCYWTGrmJWVJayqLKE6P+cNp7OEEDSMDPNIYz2PNzcSTCYp8Xi5o2Yh\nt8+vIdc5vdlYXyzEvS0HeLD9CHFFZn1+BZ+Zu4bVuWVTEv1oKshDPS/zdP9eZE1hU24td5ZdSZnz\njEonrkRwmNzUjT3PseAu7qn81sRrp90sQ+lRGsN1nAxuZzTVgcsQotbtYU7ml8myn7E6EEq7PpY0\n+SxIHiTnp8DxkUve4OxiYobw32EQ6oAu5Uw8ApjB8SEk56cmNPyqlqI/+iCdwZ8ha2Nk2i5jlu+L\nk6yYNaFyIriHF4ceZCw9QL6tjE25tzPfu3rKiP/3Xdup8zfiNNq4qegybim+fEpVjxCCV4c7+WXT\nPnYNtmMzmri5bAF3V62g2je95C+lKGxvb+Wh+pPs6elCACsKi7ipeh7Xzq664C7e1yIpK5zoGeRQ\nZx+HO/s40TtIOJEC9AasWdkZVOVnU5GTSVl2BuXZPkqzfLhsf56hFUII/LEEPWNBuseCtI/4aRv2\n0zo0Ro8/yOlLLNvtYGlZIbVlRdSWF1JdkDNtemU69IZDPNnSxNamRlr8Y1gMRrZUVPLBBYtYW1I6\n7Q5LCMH+kW5+e6qO5/taMCBxQ2kNn5q76rzyyt74MH/qeZkXBusIt+UJAAAgAElEQVRQheCKvFo+\nVHYlxY7znxNpLcXvO7/NYt96lmVeMUH2py2LO0I/YiDRgdNcxKKsL5LjuHpC1SaUTt3OJPkUSDZw\nfAzJ+Qkkw9vX0/FOxQzhv0Ohn9Q/huSTIFl1fx7nJyfM2VQtTm/kAbpDv0LWAmTa1+vEb108sYYq\nVI4Hd/HK0MOMpvvJtZawMfc2FvrWnZPjbw5382D3i+wePYHZYOLq/JXcXrKJAvvUPjjNwWHuO1XH\n410nSakKq3LL+Ojs5WwpmvO6hdq+cJjHmxvY2tRIa8CPyWDgstIyrq+q5sqKSjzWN5+aEULQNRqk\nvm+IU0OjtAyOcmpwjP5geNJxHpuVfJ+bAp+bHLeTTJeDLKcDn8OG02bBZbXitJoxG42YjcYJe2BV\nE2hiXIeflonLMvGUTCiRJBRPEoglGI3GGA5FGQxHGQpFiaXOjEI0GQyUZvuYnZtFVV4WcwtzqSnK\nI8974da+U2EoGuW5thaebG7i8OAAALX5Bbxv7nyur6omwz59d3RcSbO16yS/O3WI5tAwPoudD1Yu\n5a7Zy6ZsmII3fs68FvWhfbwy/AhfqPoP/e8WeYK60XuxiA5yrXmU+z5PnvOGM1YISjci9hNIbEUP\nhu5Cct4zqaHxvY4Zwn+HQ9+2/ng8mnHoEb/jExMnuaLF6Is8QHfof5G1ABm2dZT7PovPumJi66sJ\nlZOhvbw89BDDqR6yLAVclnMzSzM2YjZMLtr2xIf5U/dLvDB0EE1orMtZxK3Fl1PjmVqbH0jF+VP7\nMe5vPURfPESe3cXts5Zwe8Viip3T6/KFEDSNjrC1pYmnWproj0QwGwysLi5hS8VsNpdXUOR5e6K2\nRFqmxx+iczRAz1iQgWCEgVCEgWCEsWiMQCwx0QH7VmAyGMh02cnzuMnzusj3uijO9FKa5aMk00dx\npvdtSTMJITjlH+OF9jZeaG/j6JBO8nOzc7ihqpob58ylxPv6KbP6wCAPth1ha3c9UTnFPF8ud1et\n4MbSGmymc3PgqtDYP1bPIz07OB5qw2Wyc2PhuvPuCs+H0xbGD/f8D5o2TEo+gVn04jNnsTj7c68h\n+k5E7GfjRG8Cx53ju96/7MDwSxEzhP8ugVBax4n/GX0ba79Tj/jHT/ozxH8vsjaG11pLufdzZNrX\nn0X8Gg3h/ewYfpT+RBsuk4+12TewKutqbMbJKprRVJDHenfxzMBeokqCancptxZfzvqcxZgN5xZs\nVU3j5YFWHmg7zM6BNgDW5c3ijoolbCmaM22RF3QCOz40yLNtp9jWeoquUBCA6qxsNpVXcHlZObUF\nhVjeZJrj9aBpgnAiSSCeIJZKE02liadkZFVFVjVkdXymrSRhMBgwGSQcFgt2ixm7xYTXYSPDYcdp\ntVw0VUgsnWZfXw+vdHbwSmcHfRF917IoL58rKyq5urKK2ZmvH+1G0kme6K7nwfaj1AcGsRiMXFcy\nnw/NrqU2a2qDu7iSZNvgAR7v3UV/cpRcawbvK17PdQVrzqn7hNKj7Bl9kogc4ANlfzPlZ9CETH/0\nCR7p/S2jskSFTeGawk+S57zxLKJvRUR/pgc7WMbrWvcgGS+8Y/i9hhnCf5dBKG3jF8GT6Nva28eJ\nX1f1qFqSgejDdIV+RUodwG2podR7DzmOq85yCRS0R0+wc+QxWqPHsBocrMjcwurs68iwTL6YEmqK\n5wfreKx3J72JETItHq4vWMN1hWvItk4dQfbHQjzccYyHOo7RHw/jtdi4vmQ+N5ctYFl28esSohCC\njmCAlzraeamjnYMDfSiahtNsZkVRMauKillZWExNbt5FuwFcCoil0xwdGuBAXy/7ens4OjiArGk4\nzGbWlZSysbyCTeWzprU7OA1ZU9k12M7WrpO80NdCUlWY683ljool3Fy2AJ916pRPV2yQJ/v38Pzg\nQeJqkvmecm4t3sBl2QsxvmZYyUCigz2jT3E8uAshNBb51nNryV9NGiuoanEGoo/SHf41rfE4KZHP\n1QV3U+I+02ci5AZdwJB8DiT7Wbvad2d37NuJGcJ/l0Lf5v58fJsL2G5Acn16opNQE2kGo1vpDv2K\nuNKJzVRCqefjFLhuw2g4E5H1xdvYPbKVkyG9KabGu5q12TdS6qye9H6a0Djob+bxvl3U+RsxYGBt\n9gJuLFzLkoyqKScMqZrG3uFOHu44zvN9zSRVhWKnlxtKa7iptOZ1C72nEUml2Nfbw87uTl7t6aYj\nqEsVbSYTi/PyWZJfQG1+IUvyC6Y19bqUIYSgKxTk2NAgx4YGOdTfR8PIMKoQGCSJmpxc1pSUcllJ\nGSsKi6a1Iz4NTQgOjvTwZHc9z/Y0EkgnyLDYua5kHu+vWMzCjKnlmLKmsGf0BE/1v8qxYCtmycjl\nOUu4uXg9815jyqcJjebIIV4deZL22EnMkpVlmZtZl3MTmZYzRd606qc3fD99kd8ja0G81qWUej5F\ntmMzkiTpDVPyQT2YSe8CyTWeo//4pKFCM5geM4T/LodQBxCxeyHxIIgEWK9Act4D5trxC0llJP4i\n3aFfEU4fw2zIpNhzF0XuOycNaw6mR9g39ix1Y9tJanFKHHNYk3UdNd41mAyTc7l98RGeHtjLtoED\nhJUYRfYcrilYxZa85eeN+qNyiu29zTzZXc+eoQ5UIajyZHNVcTVXFVVTk3HhVgAj8Rh1fX0c7O/l\n8OAADSPDKJru1JHrdDI/J5d52TlUZWZTmZlJhS8Dp+XSGWYRSCRoD/pp9ftpHhuleXSUxtFhgskk\nAHaTiYW5+awoKmJ5QRFLCwqn7Xw9G4qmcXC0h+d7m3mut4nBRASb0cQVhXO4uayG9fmV590VdceG\n2D54gG2DBwjKUfJtmVxfuJZr8lfhs0wuKifVGIcDr7Bv9BnG0gN4zdmsybqO5ZlbJs2Wjcud9IR/\ny0D0ETSRJNu+iVLvp/DZlgHjFgipl/ReFPmwPivacbdO9oY3PyrzvYoZwn+PQGh+ROz3EP89iCCY\nlyA5PwnWLUjjcrdg6iDdoV8yltiBAQt5rhspcd+Fy1ozsU5KTXA48DJ7R59mLD2A0+RleeYWVmZe\nhc8yuUiWVmV2jhzj6YFXORnqwIDE8sy5XJW/kjVZNViMUze+jCVjPNvTyDM9jdSN9qAJQZHDy+bC\n2WwurGJVbtnr5vzPRlKRqR8Z5tjgIA0jw5wcGaY94J+4CQDkOV2UeL2UerwUeTwUuNzkOl3ku1xk\nOxz4bPa3JT2UUhTGEnFGYjGGYzGGYlH6ImH6wmF6w2E6Q4EJYged3KuyspmXncOivHyW5OVTlZX9\nhiwpInKK3YPtvNh/ipf7WwmmE1gMRtbnV3BDaQ1XFFZN6UEPEFMSvDJ8hG2DB2gMd2HAwJrsGq4v\nXMuyjDnn7NwGE53sG3uOY8GdpLUkJY45rM2+gRrv6glbDyEEweR+esK/YTTxChIm8l03Uuq5B6el\ncvyYpD4iNHYvqJ1gLEZyfAIc73/XOVj+OTFD+O8xCC0OyccQsV+D2oOU8Rsk62Q36li6jd7I7xiI\nPo6bOHOsLozmZdjcX8Jg0T19NKHRFj3GvrHnaA7r5qbVnmWszLyKKveSc2SdvfFhtg3W8cJgHaPp\nEC6TnY25S9mSt5x5nrLzDpUeS8Z4qf8UL/S1sHuog6Sq4DRZWJNXzuX5FazLm0WZK+MNF0LTqkp3\nKEir309bYIyuUJCeUIjuUIjBaISpzmyXxYLXasNpseA0m3GYdVmmSTJgMhiQJAlVaGiaQBEaSVkh\nocgkZJlwKkUwlSSpKOesazYYKHR7KHR7KPf5mOXLoCIjk4qMDEq9vjfceawJQWNwiL1DnewYbKNu\npBtZ0/BabGwqqOLKojmsz684L8nLmsIhfzMvDh1iz+gJZKFQ5sjj6vxVXJG3jEyr5zXHp6gP7ePA\n2Ha64o2YJAuLfJexOutaihyVE8epWpKh2NP0hn9LVG7CbMikyP1BitwfwmrSgwWhjiLiD0D8ft1S\nxLRA35HarkKSLp6j6HsFM4T/HoUQqp4LtWw4L1nKyhhDkXsZiz2CXYyRbbSSsN1Bjvfzk9I9gfQw\ndWPbOeh/gZgaxmvOojZjM7WZmyflaUGX7R0JtPD8YB17Rk+Q0mRyrD4uz1nCxtwlVLtLpx3HuHe4\nk5f6W9kx0EZfPARAocPDqtwyVuWUsjK3jFKn7y0pYWRVZTgeYygaZTAaxZ+IE0wm8ScThJNJonKa\neFomLqdJa5rufz++W5AkCaMkYTQYcJjM2M0mbCYzHqsVn82Gx2oj024n1+Ekx+kk1+kkx+F8S9O2\nNCFoDg5zYKSbAyPd7B/uIpBOAFDlyWZzYRWbC6tYklV03p2BoqkcDZ5ix/BR9oyeIKLE8ZicbMpb\nypV5K5jjLjnnO+2Lt3Eo8CLHgrtIqjEyLfmsyrqa2ozNk2y543IXfZE/MhB9BEUL4TRXUeK5mzzn\nTRNOr0KuR8Tug+TTgKy7Vzo/AeYVF03V9F7EDOHP4HWhCYXR+EtYIn9PvxxkSLWQ67iaIvedeG3L\nJi5IRZNpihzk4NjztEaPIRBUuBayPOMK5nlXnWPRHFeS7B2r55XhIxz0N6EIlTxrButzFrM+ZzFz\nPaXnjfyFEHRG/ewe7GDfcBcHRrrxp+IA5NicLMsuYVl2MYuzipjny8VhunRy9G8V4XSSE/4BDo/1\ncmSsjyOjfYRlPQ1U6PCwOrectXnlrMktI/88TVEAaU3haOAUu0eP8+roCUJyDIfRyprsBWzKrWVZ\nRjWm1yhtYkqY48FdHPK/xECyA5Nkpsa7mmWZW5jlrJn4e2lCYSyxg77wA/iTu5EwkeO4kiLPhyZ6\nQIRQIPWiTvTyQb2PxH4LkuOjSKZZF+8LfA9jhvBncF4IoZ1pV9f8iNA3SFmupCfZxED0MVQRxWGu\nYLZtDj6jFaPtSiTblYA+d/dw4CUO+18iIA9jMdiY71nF4oz1VLoWT5LiAUTlBHtGT7Br5BiHAs0o\nQsVndrEqaz6rsmpYljEHxxQ+PqehCUFreJQDw10cGu3l0GjvxA5AAircWczLyKPam0u1N4c53lyK\nnN43nC75c0LWVDoiflrDo7SEhmkMDtMYGJr0e8325FCbXcTKnFJW5JRS5Jy+mSqQjnBgrJH9/gYO\n+ptIqCkcRiursmrYmLuE5Rlzz6mtpLUkTeGDHAvs5FT0KKpQKLRXsixjM4t9619ThO1mIPoIA9FH\nSavDWI15FLo/QKHrdqwmXXUl1EFE/E+Q+BNow+P5+Q/rhmYz9gcXFTOEP4MpIYR6Rvec3I5IPgNY\nMPi+C+iNXCPRR5Bj92LX+hjTDBSb3SiOz+Fxf3RC068Jjc5YA8eCOzkZ2ktSjeE0eljgW8di32WU\nOKrPieJjSoL9Yw3sHavnoL+JqJLAJBlZ4J3Fisx5rMicR7nz9VU7g/EwJwODNAQGqQ8M0hAcoj9+\nxkLBYjBS7s5kljuTMlcmJU4vRU4fRU4veTYXLrP1oqYThBAE0wkG4mH642H64yG6o0E6I366ogG6\nowGU8TlAZ9+05vvymJ+Rz+LMQjyW6QuYqqbSGOnioL+Zg/4mmiPdAGRZvKzOms+a7BqW+uacQ/KK\nJtMaPcbx4G4awwdIa0k85kwWedezNGMD+fbys94jyUh8O/3Rhwkm9wMGsuyXU+i6nSzHRgySSZ/z\nkN6r5+dTLwEaWC5DctwJ1k2TZjnM4OJhhvBncF4IpVP3DxcJJMcH9AvU4EAIGUkyI+IPI5RGkqZa\n+pLHUeN/wk2MDpFLnuM6iqyl2Igh2W9CMhagaDLNkUMcD+6mKXwQRaTxmrOY51lJjXc1Zc7550T+\niqZSH+7gwFgDdf4mOmK6RYDP7GKxbzaLfbNZ6Kug1JF33vTP2YjIKVpDesTcHvHTERmjPTJGbyyI\nrE0esmYxGMmxufBZ7fgsdrwWGy6zFYfRjN1kxmGyYDIYMEtGjIbT3cr6TU4RGilVIakqJBWZqJIi\nnE4RkVME03HGknH8qfgEoZ+G3WimzJUxcSOq8uQw25tNpTtrSiuD10LRVE5FezkebOVEsJ0ToTbi\nagoDEnM9ZazMms+qzPlUugrPuZmltRStkaM0hPfTGK4jqcawG13UeFez2Hc55c75E9+xEBrBZB2D\nsccZjm1DFTFsphIKXbdR4LoVq0mv3Qh1EBKPIhIP6wN9pAxdaWP/AJKp9HV/nxm8vZgh/BmcAyE0\nRPSHkHxK79J13HnWa+KMFUPwy0jWzeMKChta8O+IaTIdchyP/DJOSUOVvHiMLgzef8NmO+PRn1Tj\nNIYPUB/ax6nIURSRxmF0U+1ZxjzPSqrcS7AYzo1eR5JBDgaaOBZs5XiwjZGUbrHgNjmo8ZZT461g\nnqeMOa6SKT38zwdNCIYTEXpjIfrjIYYTUUZTMUYSMYLpOKF0knA6SVhOklBk4qo87Tzb0zBJBmxG\nEy6zFbfZhsdixWuxkW11kmlzkmV1UODwUOTwUuDwkG1zvqFdRViO0Rzupj7cQX2og6ZwN0lNN2Mr\nceSyyFtJbcYclmbMwW0+13E0poRpDh+iIbyf1shRZJHGbnQx17OCBd41zHYtntRnEU03MRh9kqHY\nU6TUQYySgxznNRQ4b8ZnW4kkGfThPamXdZJP7UKP5lcj2W8H29VI0runnvJOwwzhz+AcCKFB/PeI\nxGNgcCNZ1ur51bNa14XShoj8AMn1RSRzFUIoiMBnkFx/BdoQavIFRimkL1FHoXaIkAZRUy259i3k\nWYuwSFYk22ZAzxGfihylPrSP5sghkmoMk2RhlquGKtcSqtxLybGe6+EihGAgOcaJYDsnQ+3Uhzro\nSeiTMQ1IlDnzme0qYparkEpnIbNchfjMrrclTSOEIK2pKJqGKjRkTUWSJAxIGCQJo2TAajS9Ib38\n673fUDJAR6yfjtgAbdE+WiN99CdHATBgoNJVyHxvOQu9lSzyVZ5nML1KX6Kd1shRWiKH6YmfQqDh\nMWcyz7OKGs8qyl3zJ2nmY/IphmPbGIk/R0xuRcJEpn09+c4byXZsxmiwj3fCHkckt0LiaV1SacjT\nB/bYb5uJ5i8RzBD+DKaFkBsQiUeQLMsBiz4xyLIYIZ9ExB9Ect6NZJqNSL6EGN8RiOQLSAYvkvNj\nCCFQgl/Drwm6kq2U0IgqwGu0YzAWInn/Hw7rson3U4VCZ6yRxtABTkWPMprqA8BrzqbStZBK1yIq\nXYtwmzOm/LzBdJTmSDdN4S6aIz20R/sZS4cmXnebHJQ68ih15lFsz6HQnk2RPZt8W9Yb2hFcLETk\nOP2JUQaTY/QmRumJD9EbH6EnPkRcTU0cl2/LpMpdwhxXMdWeMua6S6f8/EII/OlB2qLHaYueoC16\nnIQaBaDQXkm1exnzPCsotFecGRwiBJF0PSPx7YzEthNXOgAJn3UFuc5ryHVei8Wo2xkIpRuSTyAS\nT+gNUljBthnJfgtY1s/k5i8xzBD+DC4YQukEpR3JthmhxRHBLyB5/wPJmI3m/yiS7UYwVyMSzyBZ\n1yNZ1+n2zfGHkCxLwJCPGvo/9JrvYCS+jVniBO0KCFM12Y7NZNs34LEunkQSgfQwrZFjtEaP0hY9\nMUFWOdZiyp3zKXPOpcwxlwxL3nkj92A6SkdsgI5YP92xIbrj+iMkxyYd5zY5yLVlkGP1kWFx4zO7\n8FlcuE0O3CYHLpMdh8mGzWjBajBjNVgwGgwYJSPGidy2QEOgChVZU0hrMilVJqGmiClJYmqSiBwn\nLMcIylGCcpSxVIixVIjhVJC4mpz0mXKsPkocuZQ4cil3FjDLWUC5s2DKyWOgR/DDyV664k10x5ro\njNUTlPVdgMecyWzXEma7FjPbvQin6YyiR9VSBFMHGIvvYDT+Ekm1DwkjPttKchxXkeO48qzmqH5I\nbkMknwX5KCCBZRWS7SY9ZTNjeXDJYobwZ/CmIER6PM//DJhqQDIieb8Haj8i8m0kzz8iGfMRiScR\nShOSdSMi9SqSZEJyfQGh+ZEjPySsJuhO9RNKHUKgYjL4yLJfRqZ9PVn29ZMavDShMZDooC16nI5Y\nPV2xJlKarr13Gj0UO+ZQ4qiiyFFJkb1yEqFNhaicoD85Sl98hKGkn+FUkOFkgJFUkKAcIZiOoaFN\nu8ZbgVky4jG7yLZ6Jx75tiwKbFkU2PV/p9t1CCEIyWP0J9rojZ+iJ3GKvnjbme/E5KXcOY9K1yIq\nnAvJtk4u1MblbvyJXYwldhFI7kMTCQySjQzbGnIcV5Lj2IzZqO+khNINqe2I5HMgH9cXMM1Dst0A\n9huRjPkX7XuawduHt0L4M33O72FIkgXJ/VWE405QusGyYtyTJwrqwAQBiNQOPR1kyNOJwvNNfQGR\nxoRMlmMz2ZlXIytB/Mk9jCV24U/sYij2FAAuyzwybevIsK/Ga63VydxRyeXcgiZUhpLddMdb6I23\n0BM/RXPkTCDgM2dTYK8g31ZGrq2EXGsJWdaCiaEuLrOdOeYS5rhLpvwdNaERVRJE5DhRJUFUSRBX\nkyTVNClNJqWmUYWew1eEioQ0KY9vMZixGsyYDSacJhsOow2nyYbLZMdrdmE3XrjsM6UmGEn1Mpzs\nZTjVw0Cik/5EO3FVl5kaMJJvL2dxxnpKHdWUOuaS+ZpdT1r1E0weIJDchz/xKgmlCwCbqYQC161k\n2zfgs63CaLDpOXmlEZH4AyK5HZQGfRHTAiTXV/VI3lR2zuecwbsXFxThS5J0DfADwAj8SgjxnSmO\nuQP4Z0AAx4QQH5puzZkI/9KF0KKI8LdAbQfjLBAJDBk/QqT2IqLfw5D1sN5hKR9FRH+G5PsekmFy\nJC6ERjTdyFhiN/7kbkLJIwhkJIy4LTX4bMvx2pbhtdZO5JJPI6nG6E900JdopT/ezkCyk9FUP4LT\nenYJnzmHLGshmZY8Miy5ZFry8Fly8JizcJm85/gA/TmgCoWIHCAojxJMDxNIjxBIDzGWHmAsNUBE\nCUwca5RM5FpLKLRXTDwK7LMmTScTQpBSBwgmDxFM1hFKHSImt47/fwc+2yoy7evIsl+Ow6wTt9Bi\nulY+9QqkdoA2pC9mXopkuxqsVyGZiv9s38kM3n5c1JSOpCdjW4ArgV6gDrhTCNFw1jFVwJ+AzUKI\ngCRJuUKI4enWnSH8Sx8iuR0wgmU5ksGLiP8JIddj8P5fhNIDya0IkcLg/j+TpJ4wbvCmjU4oO1Qt\nTjB1mGCyjmDyIOHUMQQyAA5TOR5bLR7LQjzWhbgs1RheI/uTtTSjqT6Gk72MpvsZS/UzmurHnx6a\nqAmchgEDbnMGTpMPl8mL0+TFYXRhMzqxG51YDQ7MBitmgwWzZMEgGSceMC5pRaAJFVXIyEJG0WRS\nWoKUGiepxUkoUeJqmJgSJqqEiCgBYkqI18Jl8pFlKSDLWkC2tYAcazE51mIyrflT9CtEiaabCKdO\nEEodIZQ6QlrVLyOj5MRrq8VnXU6GbRVu6wIMkllXYynNkH4VkdoF6TpABsmp91xYN4H18pnBIu8i\nXGzCXwP8sxDi6vHn3wAQQnz7rGO+C7QIIX51oW88Q/jvPAgtiAh8FkxzQfODqWJcrldyLuEntyGC\nXwRDEVhWIllX6UXBialdKSLpE4RShwklDxNKHUPW/ABImHGaK3BaqnFb5uK0zMFprsJqnLqom1Tj\nBNJDBOVRwvIYYdlPWB4jqoSIKiFiSoiEGiWtJc/5v28WVoMDp8mD0+TGYfTgNmfiMWfiNmXgs2ST\nYc7Fa8k5x3sI9A7ohNJHTG4hmm4mlm4hmm4irnTBuMenzVSE17p0/FGLy1I9YYGN0grp/Yj0AUjv\n1+WTAKbZupGedQNYame08u9SXGzCfz9wjRDinvHnHwFWCSH+6qxjHkffBaxDT/v8sxDiuSnW+jTw\naYDS0tJlXV1db+Yzz+AvCKH2QeIJPYJ0fOi8drdCHYTk82eRkt5chaFArxVYloN5mX7TGCeypNJL\nJF1PJF1PNN1ENN1MSh2aWNMkuXFYKnGYynGY9YfNVILNVIjZ8Pr2yqpQSKpxUmqctJZCFmkULY2G\nNh7NKxM5fAkDBgyYDGaMkhmzwYzV4MBqdGA12F43ZSSERlodJan0EVe6SMhdxJUu4uk24koHmjgj\nz7SZSnBZqnFb5uO21OC21JxR04g0yI0gH0KkD0L60BmCNxSM30zXgGXtTNH1PYJLgfCfAmTgDqAY\n2AksFOL0VX4uZiL8dwdeG9lPfYwGyik9KpUPQfogaCP6i5ITzAv0QqK5Bsw1YCybMHxLq35iciux\n9ClichsxuZWE3EVKHZz0HgbJjs2Yh8WYi8WUg9WYg9mQidmYgcWQgcngxmRwYzS4MRmcGCQrBsk2\n4Rc03e8nUNBEClWLo4oYihZD0SLIWgBFDZHWAsjqGCl1hLQ6SkodJKUMT6Ssxj8hNlMhTnMFDvNs\nfQdjno3TUoXJ4Bp/r7QevcuNCOUEyCdAboLT6xhLwbwMybISLCt1w7JL2DhuBhcHF1ul0wecLYEo\nHv/Z2egF9gshZKBDkqQWoAo93z+DdzEuhHAkyQDmajBXI/FRPS2hdoN8GCEfh/QxiP/2DEFKToSp\nGkzVmM3V+ExV+FzXIRnONGqpWpy40k1S7iWp9JJU+0kpQ6TUESKpE4yqI2gi8fqfDZMuM8VwZrci\nBONKfDSRhguQdZoMHizGbCyGbLzWWqyOfGymAmymQuzmMuym4om6hBBCd5hUTkHiQTS5Rc/DK6fg\nrO8A8wJwfBTJskgneuOFzQeewQzOhwuJ8E3o6Zor0Im+DviQEKL+rGOuQS/k3i1JUjZwBFgihBg7\n37ozEf4MzoYe3baB3IBQ6kFu1klQnHHGxJAJxnIwliKZSsBYAsYiPbVhzEOSJhuTqVoSWQsiq34U\nLYIiIihaFFWLoYkkqkiiiZRuKYGqD5QBQEKSDOM3Acv4bsCCSXJiNOgPk8GN2eDTH0bfOUVmIRKg\nDoHaB2ovQu3VjceULr2bVZxVaDbkgGkOmOcjmeaBeT4Yy6oMYEoAAAZbSURBVCd2OTOYwdm4qBG+\nEEKRJOmvgG3o+flfCyHqJUn6FnBQCPHE+GtXSZLUAKjA16Yj+xnM4LWQJAuY54F5HhK3Aacj4QE9\nzaG0IpQ2UDr11FByK0waYighDNlgyNYJ1JiLZMjAasjAKvnA4NYf5lw9epZsgA0kK0hmwMCZy0Gg\nR/UqiDSIFJACLQ4iNv7wg9IOWhChBdG0UdBGQRvTif6cbKYRjAX6DctyM5KxUi+ymucgGTKZwQz+\nHJjptJ3BOxJCpMaj5wFQB/Risjas1wbUEf1fLQCT8ugXC1b9RmM8fcPJQzLm6QRvKABTsf6zmXmu\nM3gb8P+3d3chVtRxGMe/z7YpuZgbCb2opFEIBb0YmFZItRVYsl4ktEGUUvRCZXUTddNFd0EXvVwY\nYvSeWUuGhYlBN90k+FZZJliZulmahVpatvl0MbPrMrvHc3bdnZltfh8Yzjkzf/Y8/Fh+Z+Y/Z87E\nlbahcqSx0Hx+spDcXCTLNvhw8hVSH0r2zI+lj/4rWTgK7gb+xe5Oz0k0HV80JlkYk9y+r6klPUIY\nD02t0NSKdOIbmIRQFtHww/+WpKQ5N7U0Nn6E84RQtDgrFEIIFRENP4QQKiIafgghVEQ0/BBCqIho\n+CGEUBHR8EMIoSKi4YcQQkUUdqWtpEPAtkLefHAmAr8WHaIBkXN4jYacoyEjRM7hNt32kO4yX+SF\nV9uGenlwniStj5zDJ3IOn9GQESLncJM05N+kiSmdEEKoiGj4IYRQEUU2/KUFvvdgRM7hFTmHz2jI\nCJFzuA05Z2EnbUMIIeQrpnRCCKEiouGHEEJF5NLwJZ0iaZOkjwbYNlbSCknbJa2TNDWPTAOpk3Oh\npH2SNqfLPQVl3CHpqzRDv69nKfFCWs8vJc0oac5rJR3oU8+nCsjYKqlT0reStkqandlellrWy1mG\nWk7v8/6bJR2U9GhmTOH1bDBn4fVMczwm6WtJWyQtV+ZOO0PpnXl9D/8RYCtw+gDb7gZ+t32BpA7g\nGeC2nHJlnSgnwArbD+WYp5brbNe6QGQucGG6XAksSR+LcKKcAJ/Znpdbmv6eB9bYXiBpDDAus70s\ntayXEwqupe1twGWQ7DgBXcDKzLDC69lgTii4npImAYuBi2wfkfQu0AG82mfYoHvniO/hS5oM3AIs\nqzFkPvBa+rwTaFNyn7lcNZBztJgPvO7E50CrpHOKDlU2kiYAc4CXAWwftfvdebzwWjaYs2zagO9s\n/5hZX3g9M2rlLItm4DQlN0MeB/yU2T7o3pnHlM5zwOPAsRrbJwG7AGx3AweAM3PIlVUvJ8Ct6aFo\np6QpOeXKMrBW0gZJ9w6wvbeeqd3purzVywkwW9IXkj6WdHGe4YBpwD7glXQab5mk7L0Qy1DLRnJC\nsbXM6gCWD7C+DPXsq1ZOKLietruAZ4GdwB7ggO21mWGD7p0j2vAlzQP22t4wku9zshrM+SEw1fYl\nwCcc/2TN2zW2Z5AcHj8oaU5BOeqpl3MjcJ7tS4EXgQ9yztcMzACW2L4c+BN4IucMjWgkZ9G17JVO\nObUD7xWVoRF1chZeT0lnkOzBTwPOBVok3XGyf3ek9/CvBtol7QDeAa6X9GZmTBcwBSA9dJkA7B/h\nXFl1c9reb/vv9OUy4Ip8I/bm6Eof95LMPc7MDOmtZ2pyui5X9XLaPmj7j/T5auBUSRNzjLgb2G17\nXfq6k6Sx9lWGWtbNWYJa9jUX2Gj7lwG2laGePWrmLEk9bwB+sL3P9j/A+8BVmTGD7p0j2vBtP2l7\nsu2pJIdPn9rOfkqtAu5Kny9Ix+R6NVgjOTNzje0kJ3dzJalF0vie58BNwJbMsFXAnek3ImaRHAru\nKVtOSWf3zDdKmknyv5jbB73tn4Fdkqanq9qAbzLDCq9lIzmLrmXG7dSeJim8nn3UzFmSeu4EZkka\nl2Zpo3/PGXTvLOTXMiU9Day3vYrkZNQbkrYDv5E03FLI5FwsqR3oJsm5sIBIZwEr0//FZuBt22sk\n3Q9g+yVgNXAzsB04DCwqac4FwAOSuoEjQEfeH/TAw8Bb6eH998CiEtaykZxlqGXPh/uNwH191pWu\nng3kLLyettdJ6iSZXuoGNgFLT7Z3xk8rhBBCRcSVtiGEUBHR8EMIoSKi4YcQQkVEww8hhIqIhh9C\nCBURDT+EECoiGn4IIVTEfwieYSwvEHaeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "levels1 = np.linspace(0, 0.1, 5)\n", + "levels2 = np.linspace(0.2, 2, 10)\n", + "\n", + "CS = plt.contour(MUS, SIGMAS, Z, levels=np.concatenate((levels1, levels2)))\n", + "plt.clabel(CS, inline=1, fontsize=10)\n", + "plt.title('Convexity of DKL')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "6, 1.5 에서 최솟점이 생기는 것을 확인할 수 있고 그래프상 볼록함수로 보입니다. 이제 $\\mu$, $\\sigma$에 대해 수치 미분을 하면서 경사하강법을 이용해서 최적화를 하도록 하겠습니다. 즉, $Q(x;\\boldsymbol{\\theta})$ 라는 확률 분포에서 $\\boldsymbol{\\theta}=(\\mu, \\sigma)$를 조정하여 $P(x)$와 최대한 차이가 없게 만들겠습니다. 스탭사이즈(학습률)는 선탐색Line search하지 않고 그냥 0.1로 고정하도록 하겠습니다.(목적함수가 볼록하므로 효율을 위해서는 선탐색을 하여야 합니다. 다만 머신러닝에서는 선탐색이 별 효용이 없으므로 그냥 고정값으로 하겠습니다.) 아래 코드가 있고 자세한 주석이 달려있어 이해하기 어렵지 않을 것으로 생각합니다.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XFeV6Pvf0jxYg23JjmPZlucptpOgOAMQQkaHgE1/\ngHTCBUI3lzw65MJtuLwO3bzQnf6kLw0Nzb2Q+xozdS5TCCSPa2hnIhMJxPEUJ47j2JblSfIkWZIt\nW2Op1vtjnyOVZckqyVV1TlWt7+dTnzp16pyqVYqzatfa++wtqooxxpjskBN0AMYYY1LHkr4xxmQR\nS/rGGJNFLOkbY0wWsaRvjDFZxJK+McZkEUv6xhiTRSzpm9AQkSdE5K4kvv5/F5H/GsdxU0Vkp4gU\nJiuWIe93nYg0JuB1bhGR38R57EYRWXqh72nSjyV9k1Qisl9EboznWFW9VVUf9s77pIi8PMb3UhE5\nIyKnRaRJRL4lIrnec9XAJ4DvxRHHMeB54O6xvH+yiPMlEdkjIl0iclBE/klECoYc+iDwtThf9l+A\nBxIbqUkHlvRNplmhqhOAG4CPAp/29n8SWK+qXXG+zs+A/yvx4Y3L/8R9AX0CKANuBW4EHvEPEJEr\ngApV3RDna64D3isiFyU4VhNylvRNyvitdxH5FxFpE5F9InJrzPMviMh/FpHFwL8BV3ut9vaxvpeq\nvg28BFzi7boVeDHmvf5GRF4VkTzv8V+JyA4RKfIOeRWYIyKzRvgst4nIayJySkQOicjfxzxX6/3q\nuMtrlbeIyN/FPF8sIv/u/Q3eAq4Y6XOIyHzgHuA/qeorqhpR1R3Ah4DbROQ9I3y+a7z3neE9XuG9\n3yLv79MNbAFuGe1vaTKLJX2TalcCu4Aq4OvAD0VEYg9Q1Z3AZ4BXVHWCqlaO9U1EZAnwbuA1b9cy\n73193wB6gK94ifWfgI95yRBVjQD1wIoR3uIMruVdCdwG/JWIfHDIMe8CFuJ+ddzvfZkBfBWY691u\nAc7Xj3ED0KiqG2N3quohYANw83CfT1X/hCtlPSwixcBPgf/H+zL07TzP5zMZypK+SbUDqvp9Ve0H\nHgamAVMT+PpbRaQN+C3wA+DH3v5KoMM/SFWjuKT9OVyp4+uq+tqQ1+rwzjuHqr6gqttVNaqqbwC/\nAN4z5LB/UNUuVX0deJ3BBHs78KCqtnrJ+3+e5/NUAUdGeO4IUD3c5/P8PVABbASagIfi/Xwmc1nS\nN6l21N9Q1U5vc0ICX/9yVZ2oqnNV9Stecgdow9XDB6jqflyHbS3nJkS844ctLYnIlSLyvIg0i8hJ\n3C+TqiGHHY3Z7mTwc14MHIp57sB5Pk8L7otxONO852H4z9cH/DuuxPVNPXdK3RE/n8lclvRNWCV6\nzu83gAWxO0TkNuBq4FlcuSf2uTxgHq6FPpyf434hzFDVClwfhIxw7FBHgBkxj2ee59jngBkisnJI\nfDOAq4AXvF3Dfb7puFLSj4FvDjMEdTEjfz6ToSzpm7A6BtQMMyxxvNYTU34RkSpc+ec/42rqHxCR\n98UcvxLYr6ojtcLLgFZV7fYS8kfHEMujwJdFZKKI1AD/ZaQDVXU37gvlZyJylYjkeuPrHwP+BPx+\nhM8nuFb+D4FP4b5o/jHm+SLgHcAzY4jbZABL+iasngN2AEdFpAVARP5WRJ4Y5+v9b+B9XqcmwFrg\n/6jqelU9gUuMPxCRyd7z/wmXbEdyD/CAiHQA9+MSebz+AVfS2Qc8DfxklOPvxX1B/RRXJnrTO/+D\nfvlKVbcCJ0XkSu+czwFTcJ23CvwF8Bci8m7v+Q8AL6jq4THEbTKA2MpZJluIyD8Bx1X126McNwU3\n/PEyfzRPmIjIPwB/Blyrqu0x+28G7lHVoaOIhnuNV4FPqeqbyYvUhJElfWPSkIjcC9Sr6pNBx2LS\niyV9Y4zJIlbTN8aYLJIXdABDVVVVaW1tbdBhGGNMWtmyZUuLqlaPdlzokn5tbS2bN28OOgxjjEkr\nInK+i/wGWHnHGGOyiCV9Y4zJIpb0jTEmi1jSN8aYLGJJ3xhjskhcSV9EVonILhGpF5H7znPch7wV\ng+pi9n3ZO2+XiNgqPcYYE6BRh2x6C0s/BNwENAKbRGSdqr415Lgy4PO4Zeb8fUuAO4CluDnEfy8i\nC7wFNIwxxqRYPC39lbg5PhpUtRe3GPOaYY77R+CfgdgJqtYAj6hqj6ruwy0/t3KYc00a6+rr4pdv\n/pLfvP0bogNrlhhjwiiei7Omc/YqP424dU4HiMjluMUk/kNEvjTk3A1Dzp0+9A1E5G7gboCZM8+3\nnoQJm/3t+/n+lu/T0ukWcDrScYRPv+PT5OWE7ro/YwwJ6MgVkRzgW8AXx/saqrpWVetUta66etSr\niE1IPNvwLP/88j/T0tlCTXkNJfklbDu6je9u/C49kZ6gwzPGDCOepN/E2Uu71Xj7fGW4NThfEJH9\nuCXc1nmduaOda9LUwZMHeXTHo0Q1yg1zbuDL7/4yX7zmi5QXlrOzeSff2fgdbAZXY8InnqS/CZgv\nIrO9pevuwK0NCoCqnlTVKlWtVdVaXDlntapu9o67Q0QKRWQ2MB/YmPBPYVLu+X3PA3D97Ou5fent\n5OXkUVNew5fe+SXKC8vZc2IPO1t2BhylMWaoUZO+qkZwy7U9BewEHlXVHSLygIisHuXcHbhl5N4C\nngQ+ayN30l9HTwcbmzYiIlw/+/qznptSOoXraq8D4KUDLwUQnTHmfOLqbVPV9biFl2P33T/CsdcN\nefwg8OA44zMh9PLBl4lEIyyfupzq0nP7YK6ZcQ2/3f1bXj/2Oh09HZQVlgUQpTFmOHZFrhmTqEZ5\n8cCLALx39nuHPWZi8USWTVlGf7SfVxpfSWV4xphRWNI3Y7Lt6DbautqYOmEqi6sWj3jcu2a+C3C/\nCqxD15jwsKRvxuS5fc8B8N7a9yIiIx63bOoyKosqOXb6GHta96QqPGPMKCzpm7gdO32MPSf2UJRX\nxNUzrj7vsTmSwzUzrgFca98YEw6W9E3c3mp20y0tm7qMoryiUY9/58x3ArDl8Ba6+rqSGpsxJj6W\n9E3c/HH3S6qXxHV8VUkVcyfNJRKNsPvE7mSGZoyJkyV9E5eoRtnVsguARVWL4j5v4eSFAOw6sSsp\ncRljxsaSvonL/vb9dEe6mVI6hUnFk+I+b2GVl/RbLOkbEwaW9E1c3m55G4DF1SMP0xzO3IlzycvJ\no/FUI2d6zyQjNGPMGFjSN3HZ2ezq+ecbmz+c/Nx85kycA2B1fWNCwJK+GVVPpIe9bXsRkYFyzVgM\nlHisrm9M4Czpm1HVt9bTH+1nZsVMSvJLxnz+QGeu1fWNCZwlfTOqgXr+GEs7vtkTZ5Ofm8/hjsN0\n9HQkMjRjzBhZ0jej8sfnj7UT15eXk8e8SfMAq+sbEzRL+ua8Ono6OHTyEPm5+cydOHfcr2Pj9Y0J\nh7iSvoisEpFdIlIvIvcN8/xnRGS7iGwTkZdFZIm3v1ZEurz920Tk3xL9AUxy7W3bC8CciXPIz80f\n9+vYeH1jwmHURVREJBd4CLgJaAQ2icg6VX0r5rCfq+q/ecevxi2Uvsp7bq+qXprYsE2qHGg/AMDs\nytkX9DqzKmZRmFfI0dNHOdl9koqiikSEZ4wZo3ha+iuBelVtUNVe4BFgTewBqnoq5mEpYBOoZ4gD\nJ13Sn1U564JeJzcnd2C8/v72/RcaljFmnOJJ+tOBQzGPG719ZxGRz4rIXuDrwOdinpotIq+JyIsi\n8u7h3kBE7haRzSKyubm5eQzhm2RS1YGW/qyKC0v6ADMrZgKDXyTGmNRLWEeuqj6kqnOBvwG+4u0+\nAsxU1cuALwA/F5HyYc5dq6p1qlpXXX3umqsmGK1drZzuPc2Eggljmm9nJP4Xx8GTBy/4tYwx4xNP\n0m8CZsQ8rvH2jeQR4IMAqtqjqie87S3AXmDB+EI1qRZb2jnfKlnxGmjpt1tL35igxJP0NwHzRWS2\niBQAdwDrYg8QkfkxD28D9nj7q72OYERkDjAfaEhE4Cb5ElnaATe/fnF+Mad6TtHe3Z6Q1zTGjM2o\nSV9VI8C9wFPATuBRVd0hIg94I3UA7hWRHSKyDVfGucvbfy3whrf/18BnVLU14Z/CJEWiOnF9IjLQ\n2rcSjzHBGHXIJoCqrgfWD9l3f8z250c47zHgsQsJ0AQj0Z24vlkVs9jVsouDJw+yfOryhL2uMSY+\ndkWuGVZLZwudfZ2UF5ZTWVSZsNe1ur4xwbKkb4aV6E5cn5V3jAmWJX0zrGSUdgCmlE6hKK+I9u52\nTvWcGv0EY0xCWdI3w0p0J67POnONCZYlfXOOZHXi+izpGxMcS/rmHMfPHKc70k1lUWVSJkazzlxj\ngmNJ35zDb4EnurTjs5a+McGxpG/O0dThZtmYXnbOvHoJMXXCVArzCgfm9jHGpI4lfXOOplNe0i9P\nTtLPkRxmlLvpnKy1HzKtrdDTE3QUJoniuiLXZJfDHYeB5LX0AWrKa6hvredwx2GWVC9J2vuYOKjC\n22/D+vWwezcUFMDll8M118CCBZDA6zRM8Czpm7N0R7pp6WwhLyePKaVTkvY+F5ddDAz+qjABaWuD\ntWuhwZsHMT8fenthwwZ3W7YM7rkHcqwokCks6ZuzHOk4AsBFEy4iNyc3ae/jJ33/V4UJQCQymPAn\nTIAbb4TrroOODpfwX3gBtm+HX/0K/vzPg47WJIglfXOWgU7cJNXzfbFJX1UTOtWDidPjj7uEP3Ei\nfOUrLvEDFBfD6tWwdCl885vw3HMwfTq8613BxmsSwn6zmbP4LW8/KSdLaUEpFUUV9Pb3cqLrRFLf\nywxj61Z49llXtrn77sGEH2vuXPjYx9z2z38Oe/akNkaTFJb0zVkGRu4ksRPXZ3X9gLS0wMMPu+0P\nfxjmzBn52GuucWWf/n744Q+hry81MZqksaRvzuKXd5Ld0ofBLxar66fYunXQ3Q2XXQbXXz/68R/6\nENTUuE7fP/4x+fGZpIor6YvIKhHZJSL1InLfMM9/RkS2i8g2EXlZRJbEPPdl77xdInJLIoM3idXR\n00FHTwdFeUUJWQh9NNaZG4CWFti0yZV1PvKR+IZj5uTA+9/vtp94wlr7aW7UpO+tcfsQcCuwBLgz\nNql7fq6qy1T1UuDrwLe8c5fg1tRdCqwC/pe/Zq4Jn9hWfio6Vv3OYkv6KfTkkxCNwpVXwuTJ8Z93\n6aWutd/eDi+/nLz4TNLF09JfCdSraoOq9gKPAGtiD1DV2InRSwH1ttcAj6hqj6ruA+q91zMhlOwr\ncYeaNmEaAEdPH6U/2p+S98xq7e3wyiuudX/rrWM7V2Swtf/kk9baT2PxJP3pwKGYx43evrOIyGdF\nZC+upf+5MZ57t4hsFpHNzc3N8cZuEizZc+4MVZhXSFVJFZFohONnjqfkPbPaM8+4sfmXXw5Tp479\n/EsvhRkz3JfHSy8lPj6TEgnryFXVh1R1LvA3wFfGeO5aVa1T1brq6upEhWTGaGD6hRS19MHq+ilz\n+jT84Q9ue6ytfF9sa/+pp1yZyKSdeJJ+EzAj5nGNt28kjwAfHOe5JiCqmrIx+rGsrp8iL77ople4\n5BLXWh+vFStgyhTX2n/rrcTFZ1ImnqS/CZgvIrNFpADXMbsu9gARmR/z8DbAv4pjHXCHiBSKyGxg\nPrDxwsM2iXai6wQ9kR7KC8uZUDDMhTpJMjBWv8PaAkmj6mr5ADfccGGvJeLG7sPga5q0MmrSV9UI\ncC/wFLATeFRVd4jIAyKy2jvsXhHZISLbgC8Ad3nn7gAeBd4CngQ+q6rWYxdCqe7E9Vl5JwX27YPm\nZqiogEWLLvz1rrrKJf9t26Cz88Jfz6RUXHPvqOp6YP2QfffHbH/+POc+CDw43gBNagRR2gE3sVuO\n5HD8zHH6+vvIz81P6ftnhQ0b3P3KlYmZLXPiRPflsXOnG/P/nvdc+GualLErcg3ghk3C4DDKVMnL\nyWPqhKmo6kAMJoEiEdi82W1fdVXiXtdKPGnLkr4B4MhpN6XytLLUJn0Y/KKxun4SvPkmnDnjZsms\nqUnc6156KRQVudLRkSOJe12TdJb0zVmt7FS39GGwpGQt/STwSzuJbOWDW12rrs5tW2s/rVjSN7R1\nt9ET6aGssIzSgtKUv/9FEy4CBhdwMQnS2ekWQRFx9fxE80s8r75qY/bTiCV9M5Bsg2jlw2BJyS8x\nmQTZvNnV9BctgsrKxL/+nDlQVeXG7O/bl/jXN0lhSd8EWs8HmFo6FRGh+UwzkWgkkBgy0tat7j4Z\nrXxwvyBWrHDbr7+enPcwCWdJ3wRazwfIz82nqqSKqEZtDp5E6e6G3btdYl6+PHnvc+ml7n7btuS9\nh0koS/pmYIy+X1sPQuyMmyYBduxwq13Nmzf8UoiJMm8elJbCsWNw1P7bpQNL+lnurJE7AZV3wDpz\nE84vtySzlQ/uYq9ly85+TxNqlvSz3One05zpPUNRXhEVhRWBxWGduQkUjbpROzBYc08mK/GkFUv6\nWS62EzcVq2WNxG/pW3knAfbudcM1p04d37z5Y7VkCeTluRE8p06NfrwJlCX9LBf0cE1fbE0/qjbm\n+4L4ZZZUtPIBCgth8WI3m6eVeELPkn6WC3q4pq84v5jKokr6+vto7WoNNJa0Fpt4k13Pj2VDN9OG\nJf0s57f0gxy547PO3AQ4dgyOH3cjaubOTd37rljhhofu3Ak9Pal7XzNmlvSznF9DT/WUysOxztwE\n8Fvay5YlZhrleJWXw6xZ7grg3btT975mzCzpZ7Guvi7au9vJz81nUvGkoMOxztxEePNNd5/K0o5v\n6VJ3b8sohlpcSV9EVonILhGpF5H7hnn+CyLyloi8ISLPisismOf6RWSbd1s39FwTHL9FPbV0KjkS\n/Pe/35lr5Z1x6ulxI3dEXMdqqi1Z4u4t6YfaqP+ni0gu8BBwK7AEuFNElgw57DWgTlWXA78Gvh7z\nXJeqXurdVmNCIwwXZcXy4zh6+iiqGnA0aWjPHncV7qxZUFKS+vefPdvNsX/0KLRaZ3xYxdO8WwnU\nq2qDqvYCjwBrYg9Q1edV1V8scwOQwNUaTLKEZbimr6ygjJL8Ejr7Ouno7Qg6nPTjt7CXDG2TpUhu\nLixceHYsJnTiSfrTgUMxjxu9fSP5FPBEzOMiEdksIhtE5IPDnSAid3vHbG5ubo4jJJMIYWvpi8hg\nZ66VeMYu6KQPVtdPAwkt5IrIx4A64Bsxu2epah3wUeDbInLOODJVXauqdapaV11dnciQzHn4Nf0w\nDNf0DQzbtBE8Y9PW5pYtLCx0ZZag+F84O3fawiohFU/SbwJmxDyu8fadRURuBP4OWK2qAwN1VbXJ\nu28AXgAuu4B4TYL09ffR0tmCiDCldErQ4Qyw2TbHaedOd79woZsSISjV1W5hlc5OOHAguDjMiOJJ\n+puA+SIyW0QKgDuAs0bhiMhlwPdwCf94zP6JIlLobVcB7wTsd18IHDtzDFWluqSavJwAk8QQVt4Z\npzCUdnw2iifURk36qhoB7gWeAnYCj6rqDhF5QET80TjfACYAvxoyNHMxsFlEXgeeB76mqvYvIQTC\nVs/32Vj9cVCFt99220EM1RzK6vqhFlcTT1XXA+uH7Ls/ZvvGEc77E7DsQgI0yeEn1TDV8wEmFU8i\nPzef9u52uvq6KM4vDjqk8GtshI4OmDgxNbNqjmbhQnc1cEMDdHVBsf03DJPgr8gxgQjTnDuxciSH\nqaUucVlrP06xpZ0Ap8ceUFzsOpOjUXftgAkVS/pZKuh1cc/H5uAZI78TNwylHZ8/Xn/XrmDjMOew\npJ+FohoNbXkHrK4/JpEI1Ne77UWLgo0llh+L39dgQsOSfhZq7WolEo1QWVQZypq5Ddscg337oK8P\nLr4YysqCjmbQnDlu6GhjI5w5E3Q0JoYl/SwU1nq+z+bVHwO/fOKXU8IiP98lfrCplkPGkn4WCuOV\nuLGmTpiKiNDc2UwkGgk6nHALa9IHK/GElCX9LBTWMfq+vJw8qkuqUVWOnzk++gnZqq/PDYsUgQUL\ngo7mXNaZG0qW9LNQmDtxfVbiicPeva4jd/p0tzxi2NTWQkGBmxPo1KmgozEeS/pZRlVDX9MHG7YZ\nF78FHaZRO7Hy8mDePLdtrf3QsKSfZTp6O+js66Qor4iKwoqgwxmRDduMQ5jr+T7/C8mSfmhY0s8y\nsfV8CcPVmyOwpD+Knh7Yv9/V8+fPDzqakVldP3Qs6WeZMF+JGyt2rL4tnTiMvXvd0ogzZ4Z7bpuZ\nM90SisePuzn/TeAs6WeZdKjnAxTnF1NRVEFffx8nuk4EHU74+MMgw1zaATfxmj+yyMbrh4Il/Szj\nd4yGdbhmLLsy9zz8BBr2pA+DSd9KPKFgST/LHO44DMDFZRcHHMnobNjmCLq73apUOTmDo2PCzFr6\noWJJP4t09nVysvsk+bn5TC6eHHQ4o7JhmyPYu9dNW+zXy8NuxgwXZ3Oz1fVDIK6kLyKrRGSXiNSL\nyH3DPP8FEXlLRN4QkWdFZFbMc3eJyB7vdlcigzdj47eYp00I98gdn/9rxFr6Q6RTaQfcLxJ/hJG1\n9gM3atIXkVzgIeBWYAlwp4gMXYjzNaBOVZcDvwa+7p07CfgqcCWwEviqiExMXPhmLNKpng+DNf3D\nHYdtBE8sP3GGceqFkViJJzTiaemvBOpVtUFVe4FHgDWxB6jq86ra6T3cANR427cAz6hqq6q2Ac8A\nqxITuhkrv54f9uGavrLCMiYUTKA70k17d3vQ4YRD7Pj8dKjn+yzph0Y8SX86cCjmcaO3bySfAp4Y\ny7kicreIbBaRzc3NzXGEZMbDL5OkQyeuz4/V/8LKen49f9as9Kjn+2LH67fbF3iQEtqRKyIfA+qA\nb4zlPFVdq6p1qlpXXV2dyJBMjHQr74B15p4jHUs7cPZII2vtByqepN8EzIh5XOPtO4uI3Aj8HbBa\nVXvGcq5Jvu5IN21dbeTl5FFVUhV0OHGzlv4Q6Zr0wUo8IRFP0t8EzBeR2SJSANwBrIs9QEQuA76H\nS/ixE6A/BdwsIhO9DtybvX0mxfykedGEi8iR9BmpayN4YvT0uOUR062e77N5eEIhb7QDVDUiIvfi\nknUu8CNV3SEiDwCbVXUdrpwzAfiVNxTwoKquVtVWEflH3BcHwAOq2pqUT2LOKx3r+XDuCJ50GGqa\nNA0Ng/X8MM+3M5KZM6GwcLCuX1kZdERZadSkD6Cq64H1Q/bdH7N943nO/RHwo/EGaBIjHev5MDiC\n53Tvadq725lYnMUjftO5tAODdf0dO9xnWbky6IiyUvr8zjcXJPbCrHTjf1FlfV0/3ZM+DJZ4rK4f\nGEv6WSKd5twZaqCun80jeHp707ue77PO3MBZ0s8C3ZFuWrta3YLjpek3JNZG8DA4f/6MGVBSEnQ0\n4+fX9Y8ds/H6AbGknwX8qYmnTpiaViN3fH5JKqtH8GRCaQcgN3fwl8qePcHGkqXSLwOYMUvXkTu+\n2JZ+1s7Bkw7r4cbLhm4GypJ+Fki3OXeGmlAwgdKC0uydgydd59sZidX1A2VJPwukcycugIhkd12/\noWFwPdx0ruf7rK4fKEv6WaDxVCMA08vPN09euA3U9bNxBE8mlXbA6voBs6Sf4c70nqG9u52C3AKq\nS9Jv5I7P/8JqOpWFUzdlSiduLKvrB8aSfoZr6nBJcnr59LSewmB6mZf0O7Is6af7fDsjsbp+YCzp\nZzi/ZVxTXjPKkeHmt/QPdxwmqtGAo0mh2PVw03G+nZFYXT8wlvQz3EA9vyx96/kAJfklTCqeRF9/\nH8dOHws6nNRJt/Vw4xVb17fWfkpZ0s9wmdCJ6/N/rWRViSfTOnFj+Z/p7beDjSPLWNLPYFGNDgxx\nTPeWPgwmff+LLON1d7vx+bGrTmWSRYvcvXXmppQl/QzW0tlCb38vE4snUlpQGnQ4Fyzrkv6ePa6e\nX1ubXuvhxsufR6ilxd1MSsSV9EVklYjsEpF6EblvmOevFZGtIhIRkQ8Pea5fRLZ5t3VDzzXJkyn1\nfF/WJX2/7OG3iDNNTo4N3QzAqElfRHKBh4BbgSXAnSKyZMhhB4FPAj8f5iW6VPVS77b6AuM1Y5Ap\nI3d81aXV5Ofm09bVxpneM0GHk3x+0s/Eer7P/2w7dwYbRxaJp6W/EqhX1QZV7QUeAdbEHqCq+1X1\nDSCLxtKFXyZ14gLkSE72jNfv6IDGRsjPh7lzg44meWLr+tk6mV6KxZP0pwOHYh43evviVSQim0Vk\ng4h8cEzRmQviJ8ZMaenD4BdYxpd4/HLH3Lku8Weqiy6Cigo4dQqOZOEUGwFIRUfuLFWtAz4KfFtE\nzmm2iMjd3hfD5ubm5hSElPl6Ij00n2kmNyeXqaVTgw4nYWaUzwCyIOlnej3fJzL4GW3oZkrEk/Sb\ngBkxj2u8fXFR1SbvvgF4AbhsmGPWqmqdqtZVV6fv/DBh4rfyp02YRm5ObsDRJE7WzMHjJ8DFi4ON\nIxVsvH5KxZP0NwHzRWS2iBQAdwBxjcIRkYkiUuhtVwHvBN4ab7AmfpnWieuLvUArY6djOHECmpvd\ntAszZwYdTfL5Lf3du90QVZNUoyZ9VY0A9wJPATuBR1V1h4g8ICKrAUTkChFpBD4CfE9EdninLwY2\ni8jrwPPA11TVkn4KZFonrq8kv4SJxRPp6++j+UyGlgL9Fu+CBW5YY6abPBmqqqCrCw4eDDqajJcX\nz0Gquh5YP2Tf/THbm3Bln6Hn/QlYdoExmnE4dMr1vWdaSx9cXb+tq41Dpw4xdULm9FcMyKbSjm/x\nYnjpJTd0s7Y26GgyWhY0I7JPVKMcOumS/qyKWQFHk3gZXddXzY7x+UP5X3BvWSEg2SzpZ6Cjp4/S\n29/L5JLJGTH9wlD+r5eDJzOwFNDU5IYvVlTAtPRc03hcFi92I3n27nVrCJiksaSfgQ60HwAys5UP\nUFtZC8CBkwfQTLugZ4fXHbZ0qUuC2aKkBGbPdmsB25QMSWVJPwMdOOkl/crMTPqTi90vmI6eDlq7\nWoMOJ7H88sbSpcHGEYQl3uwu/hefSQpL+hko01v6IjLw2fwvuIzQ0+Nm1hTJrk5cn5/0ra6fVJb0\nM0xUowO8kg/qAAAYgUlEQVQjdzK1pQ+DJZ797fsDjSOhdu1y5Y3aWijNvL6YUc2e7a5NOH7cplpO\nIkv6GeZwx2H6+vuoKqmiJL8k6HCSZqCu355BLf3Yen42yskZ/IVjJZ6ksaSfYfwk6CfFTOX/ismo\nztxsT/pgdf0UsKSfYfxhjJlc2gGoLKqkoqiCrr4ujp85HnQ4F+74cTf1QklJdl+c5H/h+aUuk3CW\n9DOMX+PO1E7cWBlV1/c7L5csyY6pF0YyaZKbbrm7Gxoago4mI2Xxv67ME4lGBubcmVmR+RN1xY7X\nT3tW2hnk/w2sxJMUlvQzyJGOI0SiEaaUTqE4vzjocJLO/zWT9i39SGTwgqQlQ1cizUKXXOLu33gj\n2DgylCX9DJLpF2UN5X/OgycPpvc0y7t2uTH6NTVQWRl0NMFbsACKityUFCdOBB1NxrGkn0Ey/aKs\noSYUTKCqpIq+/j6OdKTxUnuvv+7uV6wINo6wyMsbLPFYaz/hLOlnkH3t+4DsaenD4GdN2xKPqiX9\n4fh/C/9vYxLGkn6G6I5003iqkRzJyfgx+rHSfgTPwYPQ3u7KOtmwSla8LrnEjWLatcstrmISJq6k\nLyKrRGSXiNSLyH3DPH+tiGwVkYiIfHjIc3eJyB7vdleiAjdn29u6F1VlVuUsCnILgg4nZfyk39CW\npsP7Ylv52TSr5mhKS2HuXLd8oo3iSahRk76I5AIPAbcCS4A7RWToEIODwCeBnw85dxLwVeBKYCXw\nVRGZeOFhm6HqW+sBmD9pfsCRpNbsytnk5uTS1NFEZ19n0OGMnZV2Rub/Tayun1DxtPRXAvWq2qCq\nvcAjwJrYA1R1v6q+AQwdQnEL8IyqtqpqG/AMsCoBcZsh/KQ/b9K8gCNJrfzcfGora1FV9rbuDTqc\nsWlpgcZGN1Ilm1bJipef9Ldvt6tzEyiepD8dOBTzuNHbF4+4zhWRu0Vks4hsbm7O0MWukygSjQx0\n4mZb0gdYMHkBAHta9wQcyRj5rfylS92IFXO2KVPc1bmdnW5FLZMQoejIVdW1qlqnqnXV1dVBh5N2\nDrQfoK+/j2ll0zJyecTR+CWtPSfSLOn7ZQsr7YzM/9ts2xZsHBkknqTfBMyIeVzj7YvHhZxr4pSt\npR3f3ElzERH2t++nJ5Im66t2dsLu3W6Ein8FqjnXpZe6+y1b3PBWc8HiSfqbgPkiMltECoA7gHVx\nvv5TwM0iMtHrwL3Z22cSKFs7cX1FeUXMrJhJVKMDZa7Qe+01NzJlwYLsXDAlXrNnw+TJblirlXgS\nYtSkr6oR4F5cst4JPKqqO0TkARFZDSAiV4hII/AR4HsissM7txX4R9wXxybgAW+fSRBVzfqWPqRh\niWfTJnd/xRXBxhF2IvCOd7jtzZuDjSVDxFXTV9X1qrpAVeeq6oPevvtVdZ23vUlVa1S1VFUnq+rS\nmHN/pKrzvNuPk/MxsteR00fo7OtkYvFEJhVPCjqcwMyf7JL+7hO7A44kDqdOwdtvQ24uXH550NGE\nX12du9+yxf06MhckFB25Zvz8lu28SfOQLL64x/+Vs699H5FoJOBoRuHXp5cudYummPObOROqq92X\n5e40+FIPOUv6ac5KO86EgglcXHYxff194V831y/trFwZbBzpQmSwtW8lngtmST+NqepAOSPbkz4M\n/g1CXeI5ccJ1SObnw/LlQUeTPvy+j61b7UKtC2RJP401dTTR3t1ORVEF08vivV4uc6XFRVp+S3XF\nCigsDDaWdHLxxTBtGpw54/pDzLhZ0k9jbx5/E4BLplyS1fV838IqN5XB7hO76e3vDTiaEVhpZ3xi\nSzwbNwYbS5qzpJ/GYpO+gfLCcmZVzqKvv4+3W0LYGjxyBA4dguJiWwt3PPwvyq1b3cLpZlws6aep\nzr5O9rbuJUdyWFy1OOhwQmP5VFcn335se8CRDOPll939O95hc+2Mx5Qp7mK23t7BX0xmzCzpp6md\nzTuJapS5k+ZmxSLo8Vo2ZRkA249vR8N02X5fH7zyitu+9tpgY0ln73qXu3/ppWDjSGOW9NOUX9rx\nk5xxZlbMpLywnLauNpo6QjTN07ZtrhNyxgxbIetCXH65u7bhwAFXKjNjZkk/DanqQNJfOsVqw7FE\nhGVTvdZ+mEo8f/iDu7/2Wlsh60Lk58OVV7rtP/4x2FjSlCX9NHTo1CFO9ZyisqjShmoOI7bEEwrH\njrkrSQsKbNROIvglnldfdWUzMyaW9NOQDdU8v8XVi8nLyaOhrYHTvaeDDmewA/eKK9wqWebC1NRA\nba2bnnrr1qCjSTuW9NOQDdU8v6K8IuZPno+qsuN4wItqRyLwpz+5bevATRy/tf/ii8HGkYYs6aeZ\ntq42GtoayMvJY3G1DdUciT90841jAS+qvXkznD7tWqezZgUbSya54grXobt3LzQ0BB1NWrGkn2Y2\nNm1EVVk+dTlFeVYqGMnAeP3j24NbTUsVnvLWDLr+euvATaSiInjPe9z2008HG0uasaSfRlSVDY0b\nALiq5qqAowm3qpIq5kycQ0+kh21HA1pfdft2OHwYKisHR5yYxLn+eneR27ZtrrPcxCWupC8iq0Rk\nl4jUi8h9wzxfKCK/9J5/VURqvf21ItIlItu8278lNvzs0tTRxOGOw5QWlNpQzThcPeNqAF5pfCX1\nb64KTzzhtm+6ya7ATYbycrj6ave3fuaZoKNJG6MmfRHJBR4CbgWWAHeKyJIhh30KaFPVecC/Av8c\n89xeVb3Uu30mQXFnpVcbXwWg7uI68nIsiYzG/zu93fI2bV1tqX3z+npXay4thXe/O7XvnU1uusmV\nzV55xS2yYkYVT0t/JVCvqg2q2gs8AqwZcswa4GFv+9fADWJjCRMqqlE2NrnZBa+cbqWCeJTkl7Di\nohVnlcVS5skn3f1732tTKCfT1KlumupIBJ57Luho0kI8SX86EHu9c6O3b9hjvIXUTwKTvedmi8hr\nIvKiiAzb5BGRu0Vks4hsbm5uHtMHyBa7WnbR3t0+UKs28blmxjWAK/GkbC6eQ4fgzTfdxVjvfW9q\n3jOb3XKLu3/+eejoCDaWNJDsjtwjwExVvQz4AvBzESkfepCqrlXVOlWtq66uTnJI6enVJlfauarm\nKrsgawyWVC+hvLCcY6ePsa99X/LfUBUee8xtv/vdMGFC8t8z282ZA5dc4qZb/t3vgo4m9OJJ+k3A\njJjHNd6+YY8RkTygAjihqj2qegJAVbcAe4EFFxp0tuns62TrEXfl4ZU1VtoZixzJGfibvXIoBR26\nO3bAzp1uzvz3vS/572ecD33I1fb/8AcbyTOKeJL+JmC+iMwWkQLgDmDdkGPWAXd52x8GnlNVFZFq\nryMYEZkDzAfsSooxenH/i/REelhUtYgppVOCDiftXF3jRvFsbNpIV19X8t6ovx9+9Su3/f73Wys/\nlS6+GN75TohG4fHHg44m1EZN+l6N/l7gKWAn8Kiq7hCRB0RktXfYD4HJIlKPK+P4wzqvBd4QkW24\nDt7PqGproj9EJuvr7+PZfc8CsGreqoCjSU/Ty6ezYPICuiPdvLD/heS90R/+AEePusU+rrsuee9j\nhrd6tetH2bYN9oR4neSAxVXTV9X1qrpAVeeq6oPevvtVdZ233a2qH1HVeaq6UlUbvP2PqepSb7jm\n5ar62+R9lMz0SuMrdPR0MKNiBouqFgUdTtp633xXavl9w++Tc4VuZyf81vvn/aEP2bj8IFRUwM03\nu+1f/cq1+s057IrcEItqlKfq3WX8q+atsg7cC7CoahG1lbWc7j3NSweTsOrSY4+5RVIWLHBDCE0w\nbr7ZXQF94IBdsDUCS/ohtuXwFlo6W6gurebyaZcHHU5aExFuW3AbAE/vfZq+/gTOw/7662765Lw8\nuPNOm2MnSIWF8IlPuO1169w0GOYslvRDSlV5st5d4HPz3JvJEftPdaGWTVlGTXkNJ7tP8qdDf0rM\ni3Z0wE9+4rb/7M9ch6IJ1tKlbrhsJAI/+pHrYDcDLJOE1B8P/ZHGU42UF5YPjD4xF0ZEBmr7T9Y/\nSW9/74W9oKpL+B0dsHAh3HBDAqI0CfHhD8Pkye5COX8OJANY0g+lUz2neOwtd4HP7UtvJz83P+CI\nMsdl0y6jpryG1q5W1u0aOvJ4jF580ZV2iovhk5+0sk6YFBXBXd4o8t/9zl0/YQBL+qH067d+TWdf\nJ0uql1B3cV3Q4WSUHMnh4ys+jojw+4bfs799//he6M034Ze/dNsf/ShMmpSwGE2CLFwIt93mfpGt\nXWv1fY8l/ZDZ2byTVxtfJT83n48u+6iN2EmC2spabppzE6rKw9seJhKNjO0FDh1ySSQadVfd2mLn\n4fWBD0BdnZui4bvftbl5sKQfKt2Rbn62/WcAvH/B+6kutXmIkuUDCz/AlNIpHO44zBN7xlDzbW2F\n73wHenrcwiirV49+jgmOiCu91dbCiRPw0EPQlcSrstOAJf2Q6I/2s3bLWprPNDO9fDo3zbkp6JAy\nWkFuAR9f8XEA1u9ZH98C6keOwDe+ASdPuvH4n/iE1fHTQX4+fPazrgS3bx9885tZ3eK3pB8Cqsov\n3vwFO47voKywjHuuuIfcnNygw8p4CyYvYNW8VUQ1yve2fI8D7QdGPnjvXvj6111Lf84c+Ku/sqtu\n00l5Ofy3/+amyDh0yP23PHEi6KgCYUk/BJ7e+zQvHXiJ/Nx87rniHqpKqoIOKWt8cNEHubLmSnoi\nPXxn43c4fub4uQdt3gz/+q9uqoXly+Gv/xpKSlIfrLkwkyfDl74EM2bA8eMu8e/eHXRUKWdJP0Cq\nyu92/47Hdz6OiPCXl/2lLZCSYiLCXSvuYumUpXT0dPDtDd/mSMcR92Rnp7u45/vfh74+eNe7XAu/\noCDYoM34lZfDF74A8+dDezt861vwm99k1QVckrLVhOJUV1enmzdvDjqMpOuJ9PDjbT/mtSOvISLc\ncckdXFd7XdBhZa2eSA/feuVb7G/fT2FeAZ8ovpq6J153iSE/313s8573WA0/U/T3w3/8B6xf74Z0\nzpoFt98O8+YFHdm4icgWVR11jLcl/QA0tDXwk9d/wuGOwxTnF/Ppyz/N0ilLgw4r6/X0dfPTp/+F\njVt/Cx2nuL5nOmumXUfRX97tasEm89TXu19zfn1/+fK0nU7Dkn4INZ9p5vGdjw+sgnXRhIu454p7\nmDphasCRZbmuLle3f/lldP8+Xig4wq/KD9E/s4ay2oXcOv99XDvrWrsyOlN1d7sZOZ95xg3FBVi8\n2JXzLr00bTrsLemHRCQa4Y1jb7ChcQPbj20nqlHyc/O5ee7N3DL3FgrzCoMOMTu1tblL83fsgO3b\nXc0eXAftzTez//I5/HLPb2hocwu9TSyeyFU1V7Fy+kouLku/VqCJw6lTrtzz8suD/x5KS2HZMndb\nsiTUHfgJTfoisgr4H0Au8ANV/dqQ5wuB/w28AzgB/Lmq7vee+zLwKaAf+JyqPnW+90r3pN8d6eZw\nx2HqW+upb61n94ndA0v05UgOV9VcxZpFa6gsqgw40iwRibif7s3N0NTk5lk/cABaWs4+buFCt9ze\nZZcNdNSqKtuPb+c3b/+GplODy0JPK5vGwskLmTNxDnMmzmFyyWSbBTWTdHbCq6+65N/YOLhfBC66\nyNX/a2vd9pQpMHEi5AT/3z9hSd9b43Y3cBPQiFsz905VfSvmmHuA5ar6GRG5A/gzVf1zEVkC/AJY\nCVwM/B5YoKojdpWPN+n39XTRfbpt2OeG+4yKDuxX3H1Uo6h3fFSj9Gu/u0X76Yv2EYn20xvtpTvS\nTXekh85IJx29pznZc4qTvac4duY4p3rPvehjRtl0rpp2BSsvegflheVj/mxpaaR/V6pnP+dv+/v9\nWzTqbqqu0y0adfeRyOCtpwd6e92tq8v9z9rZ6S68OXXKXUTV3j58LEVFLtEvXQqXXOKG8434UZQ9\nrXvY2LSRLYe30NnXedbzeTl5TC6ZTHVJNRVFFZQVlFFWWEZxXjGFeYUU5RWRn5NPXk4eeTl55Obk\nkiu55ObkkiM5CIKIILhO4qHbQ/nPmSRTdctf7nzLLXa/d+/wo3zy8tyooPIKd19aAsUlUFIMhUVQ\nWOAaEvkFblBAXi7kerecXPeFkZPjvlRycpgwbRYyji+RRCb9q4G/V9VbvMdfdn8P/e8xxzzlHfOK\niOQBR4FqvLVy/WNjjxvp/cab9Lc8+1PWPvXgmM9LtDxymNJfzJz+MuZHKpjXX0FVtCjosLKXiLsS\ns7oapk2DmTPdbdo09z/dGEWiERraGtjbupeGtgYOnDzAye6TSQjchI5G3epoHR1w+gx0dUJXN/Qm\ndvnN7z6whfyisZeR4k368fRQTAcOxTxuBK4c6RhVjYjISWCyt3/DkHOnDxPs3cDdADNnzowjpHPl\n5RdQllca17Fy1vZgu0kQcrzHOQi5CLmaQy5CHjnkk0OB5lJILsWaRzF5lGkB5RRQoYVUazGTtMi9\nQi7ulikudKji0PP9x7H3sbeYls9gqyjHtary8lyLqaBg8FZc7OqtxcVQVua1vMrd0nkJ7IjLy8lj\nweQFLJi8YGBfT6SH5s5mWjpb6OjpoKO3g9O9p+nq66I70k1Pfw99/X1EohH6on30R/sHfkmqKor7\nZek3wKJ69tqu/i/ReIWtny6jFJbDpGln74v2u1+dPb3uC6CvD/oiEOnzfp32e79W+wd/wUb9X7Xe\nr1lXYgA06cOCQ9EtraprgbXgWvrjeY0V197OimtvT2hcxsSjMK+QmvIaasprgg7FmFHFUzhqAmbE\nPK7x9g17jFfeqcB16MZzrjHGmBSJJ+lvAuaLyGwRKQDuAIYuObQO8Jap4cPAc+p+Y64D7hCRQhGZ\nDcwHNiYmdGOMMWM1annHq9HfCzyFq1L/SFV3iMgDwGZVXQf8EPiJiNQDrbgvBrzjHgXeAiLAZ883\ncscYY0xy2cVZxhiTAeIdvRP8FQXGGGNSxpK+McZkEUv6xhiTRSzpG2NMFgldR66INAPnWaw0paqA\nllGPSj2La2wsrrGxuMYmLHHNUtXq0Q4KXdIPExHZHE9veKpZXGNjcY2NxTU2YY1rJFbeMcaYLGJJ\n3xhjsogl/fNbG3QAI7C4xsbiGhuLa2zCGtewrKZvjDFZxFr6xhiTRSzpG2NMFrGkHwcR+aKIqIhU\nBR0LgIh8Q0TeFpE3ROT/E5FAV1kXkVUisktE6kXkviBj8YnIDBF5XkTeEpEdIvL5oGOKJSK5IvKa\niPwu6Fh8IlIpIr/2/m3t9JZKDZyI/LX33/BNEfmFiAS2/qiI/EhEjovImzH7JonIMyKyx7ufGFR8\n8bCkPwoRmQHcDBwMOpYYzwCXqOpy3KL1Xw4qEBHJBR4CbgWWAHeKyJKg4okRAb6oqkuAq4DPhiQu\n3+eBnUEHMcT/AJ5U1UXACkIQn4hMBz4H1KnqJbjp3e8IMKR/B1YN2Xcf8Kyqzgee9R6HliX90f0r\n8H/DGBcqTSJVfVpVI97DDbgVyYKyEqhX1QZV7QUeAdYEGA8AqnpEVbd62x24BHbO+sxBEJEa4Dbg\nB0HH4hORCuBa3NoYqGqvqrYHG9WAPKDYW5WvBDgcVCCq+gfcmiGx1gAPe9sPAx9MaVBjZEn/PERk\nDdCkqq8HHct5/CXwRIDvPx04FPO4kZAkV5+I1AKXAa8GG8mAb+MaEtHRDkyh2UAz8GOv7PQDESkN\nOihVbQL+BfdL+whwUlWfDjaqc0xV1SPe9lFgapDBjCbrk76I/N6rFQ69rQH+Frg/hHH5x/wdrozx\nsyBiTAciMgF4DPivqnoqBPG8HziuqluCjmWIPOBy4P9V1cuAM4SgTOHVx9fgvpQuBkpF5GPBRjUy\nb5nY0FQFhjPqcomZTlVvHG6/iCzD/UN7XUTAlVC2ishKVT0aVFwx8X0SeD9wgwZ7sUUTMCPmcY23\nL3Aiko9L+D9T1ceDjsfzTmC1iLwPKALKReSnqhp0ImsEGlXV/zX0a0KQ9IEbgX2q2gwgIo8D1wA/\nDTSqsx0TkWmqekREpgHHgw7ofLK+pT8SVd2uqlNUtVZVa3H/U1yeioQ/GhFZhSsPrFbVzoDD2QTM\nF5HZIlKA62RbF3BMiPum/iGwU1W/FXQ8PlX9sqrWeP+m7gCeC0HCx/t3fUhEFnq7bsCtbR20g8BV\nIlLi/Te9gRB0MA+xDrjL274L+D8BxjKqrG/pp6nvAoXAM96vkA2q+pkgAlHViIjcCzyFG1nxI1Xd\nEUQsQ7wT+DiwXUS2efv+VlXXBxhT2P0X4Gfel3cD8BcBx4Oqvioivwa24kqZrxHgtAci8gvgOqBK\nRBqBrwJfAx4VkU/hpoW/Paj44mHTMBhjTBax8o4xxmQRS/rGGJNFLOkbY0wWsaRvjDFZxJK+McZk\nEUv6xhiTRSzpG2NMFvn/AdDFle2bqMF0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Init. Samples of P(x) : [ 5.55202053 7.32547706 5.77007986 5.29420197 5.56929033]\n", + "Init. Samples of Q(x) : [-1.00133037 0.41098088 -1.22261296 -0.19380835 0.29114829]\n", + "Entorpy of P(x) : +3.464382\n", + "DKL of P(x),Q(x) : +18.057248\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHhtJREFUeJzt3XuUXWWd5vHvU+fUJZX7pQiBEKItjQtdTdQaFJtx8MYE\nmpFuh1bQblGZFe2lvXQte1zaruWtp2fabi+j4sikhaF1FO8oo1GhUQdRVAIGCaImMIEkQFJJ5V73\nqt/8sfepnJycU7tyzqlUss/zWeusvfe73733+xbh977n3e/ZWxGBmZm1jrbZLoCZmZ1cDvxmZi3G\ngd/MrMU48JuZtRgHfjOzFuPAb2bWYhz4bdZI+qCk/z3F/oclXToD152p8/6ZpO2SDkt6XrPPP8V1\nXy/pjpN1PTv9OfDbjJH0RkkPSRqQ9LSkz0paNN3jI+I5EfHjBstwi6T/0uzz1vBR4O0RMS8ifjUD\n50fSakkhqVhKi4gvRsRlM3E9yycHfpsRkt4FfAT4z8BC4EXAucCdkjpms2wz6Fzg4dkuhFkWB35r\nOkkLgA8Bfx0R34+I0YjYBrwGWA38RVn2LklfkXRI0gOSLiw7zzZJr0jX2yS9R9KjkvZK+qqkJWV5\nL5H0M0n70+GWN0paB7weeHc6/PJ/ys8r6SxJgxXneZ6kPZLa0+03S3pE0j5JP5B0bpX6dko6DBSA\nByU9mqaHpGeV5Zv89iHpUkk7JL1L0m5JT0l6U1neOZI+JulxSQck3SNpDnB3mmV/WqeL07reU3bs\niyXdlx53n6QXl+37saS/k/TT9G9+h6Rl0/sva3nhwG8z4cVAF/DN8sSIOAxsAF5ZlnwV8DVgCfAl\n4FuloFvhr4E/Bf4dcBawD/gMQBqMvwd8GugB1gCbImI98EXgH9Phl/9QUZ4ngXuB/1iW/Drg6xEx\nKukq4G+BV6fn/Qlwa2XBImI4IualmxdGxB/U/tMc40ySb0NnA9cDn5G0ON33UeAFJH/LJcC7gQng\nJen+RWmd7i0/YdqIfRf4FLAU+DjwXUlLK+r4JuAMoAP4m2mW13LCgd9mwjJgT0SMVdn3VLq/5P6I\n+HpEjJIEqS6SYaFKbwXeFxE7ImIY+CBwdTrW/TrgXyPi1vTbxd6I2DTNsn4JuBZAkoBr0rTSNf9b\nRDyS1uW/Amuq9frrNAp8OC3zBuAwcL6kNuDNwDsiYmdEjEfEz9J6Z/kTYEtEfCEixiLiVuC3QHmj\n978i4vcRMQh8laShtBbiwG8zYQ+wrPwGZJkV6f6S7aWViJgAdpD06CudC9yWDuXsBx4BxoHlwDnA\no3WW9RvAxZJWkPSmJ0h69qVrfrLsmv2ASHrozbC3onEcAOaRNIxd1Fens4DHK9Ie59gyP13lmtZC\nHPhtJtwLDJMMkUySNA+4HLirLPmcsv1twErgySrn3A5cHhGLyj5dEbEz3VdreGXKx89GxD7gDuC1\nJN8cvhxHH1m7HXhLxTXnRMTPpjpnmQGgu2z7zGketwcYonqdsh6n+yRJg1VuFbBzmte2FuDAb00X\nEQdIbu5+WtJaSe2SVpMMK+wAvlCW/QWSXp1+O3gnSYPx8yqnvRH4+9Iwi6SedAweknH8V0h6jaSi\npKWSSsMXu4BnZhT5S8AbgKs5OsxTuuZ7JT0nveZCSX8+jT9BySbgdZIKktaS3J/IlH7zuRn4eHoD\nupDexO0E+ki+ldSq0wbgDyW9Lv1bvBa4APjOCZTbcs6B32ZERPwjyY3RjwIHgV+Q9KBfXjFW/W2S\n3vY+4C+BV6fj/ZU+CdwO3CHpEEnj8ML0Wk8AVwDvIhmO2QSUZgfdBFyQDtd8q0ZxbwfOA56OiAfL\n6nAbyZTUL0s6CGwm+cYyXe8gGVvfTzK7qNb1q/kb4CHgPpI6fQRoi4gB4O+Bn6Z1OuZ+SETsBa4k\n+VvsJbkpfGVElA+vWYuTX8RipypJTwB/ERF3Z2Y2s2lzj99OSZJ6SKZQbpvlopjljgO/nXIk/Rtg\nC/DpdBjHzJrIQz1mZi3GPX4zsxZT7Qc2s27ZsmWxevXq2S6Gmdlp4/77798TET3TyXtKBv7Vq1ez\ncePG2S6GmdlpQ1LlL7Zr8lCPmVmLceA3M2sxDvxmZi3Ggd/MrMU48JuZtRgHfjOzFuPAb2bWYnIV\n+D911xb+7+/7ZrsYZmantFwF/v/x4638dKsfO25mNpVcBX4h/NA5M7Op5SvwCxz3zcymlvmsHkk3\nk7zKbXdEPDdN+wpwfpplEbA/ItZUOXYbcAgYB8YiordJ5a5e1pk8uZlZTkznIW23ADcAny8lRMRr\nS+uSPgYcmOL4l57M9326w29mNrXMwB8Rd0taXW2fJAGvAV7W3GLVR5KHeszMMjQ6xv9vgV0RsaXG\n/gDukHS/pHVTnUjSOkkbJW3s66tvSqaAcJ/fzGxKjQb+a4Fbp9h/SUQ8H7gceJukl9TKGBHrI6I3\nInp7eqb1LoHj+eaumVmmugO/pCLwauArtfJExM50uRu4Dbio3utNq0wzeXIzs5xopMf/CuC3EbGj\n2k5JcyXNL60DlwGbG7hepmSM311+M7OpZAZ+SbcC9wLnS9oh6fp01zVUDPNIOkvShnRzOXCPpAeB\nXwLfjYjvN6/o1crqWT1mZlmmM6vn2hrpb6yS9iRwRbr+GHBhg+UzM7Mmy9cvd/HNXTOzLPkK/JKn\nc5qZZchX4Mc9fjOzLPkK/L65a2aWKVeBH/zIBjOzLLkK/BK4z29mNrV8Bf7ZLoCZ2WkgV4EffHPX\nzCxLrgK/38BlZpYtX4Efz+M3M8uSr8DvHr+ZWaZ8BX48p8fMLEu+Ar9fvWhmlilXgR/86kUzsyy5\nCvzyRH4zs0y5CvyAB/nNzDLkKvD7IW1mZtnyFfjxO3fNzLLkK/C7x29mlmk6L1u/WdJuSZvL0j4o\naaekTennihrHrpX0O0lbJb2nmQWvej38Ay4zsyzT6fHfAqytkv6JiFiTfjZU7pRUAD4DXA5cAFwr\n6YJGCpslefWimZlNJTPwR8TdQH8d574I2BoRj0XECPBl4Ko6zjNtSY/fod/MbCqNjPG/XdKv06Gg\nxVX2nw1sL9vekaZVJWmdpI2SNvb19TVQLDMzm0q9gf+zwB8Aa4CngI81WpCIWB8RvRHR29PTU99J\nfHPXzCxTXYE/InZFxHhETAD/TDKsU2kncE7Z9so0bcb4zYtmZtnqCvySVpRt/hmwuUq2+4DzJD1D\nUgdwDXB7Pdc7gXL5WT1mZhmKWRkk3QpcCiyTtAP4AHCppDUk/ettwFvSvGcBn4uIKyJiTNLbgR8A\nBeDmiHh4RmpRKiuezmlmliUz8EfEtVWSb6qR90ngirLtDcBxUz1nil/EYmaWLV+/3PWrF83MMuUr\n8LvHb2aWKVeB38zMsuUu8LvDb2Y2tVwFfr9z18wsW74CP+A+v5nZ1PIV+H1z18wsU/4C/2wXwszs\nFJevwO9XL5qZZcpV4Af3+M3MsuQq8EuzXQIzs1NfvgI/vrlrZpYlV4Efv3PXzCxTrgK/37lrZpYt\nX4HfY/xmZpnyFfjxGL+ZWZZ8BX6/etHMLFOuAr+ZmWXLDPySbpa0W9LmsrR/kvRbSb+WdJukRTWO\n3SbpIUmbJG1sZsGrXg8P9ZiZZZlOj/8WYG1F2p3AcyPij4DfA++d4viXRsSaiOitr4jT54e0mZll\nywz8EXE30F+RdkdEjKWbPwdWzkDZTpjfuWtmlq0ZY/xvBr5XY18Ad0i6X9K6qU4iaZ2kjZI29vX1\n1VcS9/jNzDI1FPglvQ8YA75YI8slEfF84HLgbZJeUutcEbE+Inojorenp6e+8uCHtJmZZak78Et6\nI3Al8Pqo8XPZiNiZLncDtwEX1Xu96ZUJR34zswx1BX5Ja4F3A6+KiIEaeeZKml9aBy4DNlfL20we\n4zczm9p0pnPeCtwLnC9ph6TrgRuA+cCd6VTNG9O8Z0nakB66HLhH0oPAL4HvRsT3Z6QWpbLiZzaY\nmWUpZmWIiGurJN9UI++TwBXp+mPAhQ2V7gR5OqeZWbZc/XLX79w1M8uWr8Dvd+6amWXKV+B3j9/M\nLFOuAj94jN/MLEuuAr/86kUzs0y5CvyAu/xmZhlyFfg9i9/MLFu+Ar9v7pqZZcpX4McjPWZmWfIV\n+P3OXTOzTPkK/LjHb2aWJV+B38/qMTPLlKvAD57Hb2aWJWeBHz+rx8wsQ64CvzyR38wsU74C/2wX\nwMzsNJCvwO+bu2ZmmfIV+PE8fjOzLNMK/JJulrRb0uaytCWS7pS0JV0urnHsdWmeLZKua1bBq1/L\nPX4zsyzT7fHfAqytSHsPcFdEnAfclW4fQ9IS4APAC4GLgA/UaiCawc/qMTPLNq3AHxF3A/0VyVcB\n/5Ku/wvwp1UO/ffAnRHRHxH7gDs5vgFpKk/nNDObWiNj/Msj4ql0/WlgeZU8ZwPby7Z3pGnHkbRO\n0kZJG/v6+uoqkDyvx8wsU1Nu7kbSzW6oqx0R6yOiNyJ6e3p66juJh3rMzDI1Evh3SVoBkC53V8mz\nEzinbHtlmjYjBI78ZmYZGgn8twOlWTrXAd+ukucHwGWSFqc3dS9L02aE37lrZpZtutM5bwXuBc6X\ntEPS9cA/AK+UtAV4RbqNpF5JnwOIiH7g74D70s+H07QZkTyW2aHfzGwqxelkiohra+x6eZW8G4H/\nVLZ9M3BzXaU7QZ7OaWaWLWe/3PUPuMzMsuQq8AN+ZIOZWYZcBX75ucxmZpnyFfjxUI+ZWZZcBX78\nkDYzs0y5Cvx+ZIOZWbZ8BX55Hr+ZWZZ8BX48j9/MLEuuAj94jN/MLEuuAn/yy11HfjOzqeQr8Pvm\nrplZpnwFfk/nNDPLlL/AP9uFMDM7xeUq8IPc4zczy5CrwC+/gsvMLFO+Aj8e4zczy5KrwA/u75uZ\nZclV4PcjG8zMsuUr8Hsev5lZproDv6TzJW0q+xyU9M6KPJdKOlCW5/2NF3mqMnmox8wsy7Retl5N\nRPwOWAMgqQDsBG6rkvUnEXFlvdc5Eb65a2aWrVlDPS8HHo2Ix5t0vrpI8hi/mVmGZgX+a4Bba+y7\nWNKDkr4n6Tm1TiBpnaSNkjb29fXVXRCHfTOzqTUc+CV1AK8CvlZl9wPAuRFxIfBp4Fu1zhMR6yOi\nNyJ6e3p66i+QI7+Z2ZSa0eO/HHggInZV7oiIgxFxOF3fALRLWtaEa1blm7tmZtmaEfivpcYwj6Qz\npeRBCpIuSq+3twnXrMrTOc3MstU9qwdA0lzglcBbytLeChARNwJXA38laQwYBK6JGbz76h9wmZll\nayjwR8QRYGlF2o1l6zcANzRyjRPhd+6amWXL1y93/SIWM7NMOQv88jt3zcwy5Cvw4x6/mVmWXAV+\n8Bi/mVmWfAV+3901M8uUq8DvefxmZtnyFfiFb+6amWXIV+DHN3fNzLLkK/D7WT1mZpnyFfjx8/jN\nzLLkK/C7x29mlilXgR88xm9mliVXgd+TOc3MsuUq8COHfjOzLLkK/KWw7xu8Zma15Svwp5Hfcd/M\nrLZ8Bf60z++4b2ZWW74C/2SP36HfzKyWhgO/pG2SHpK0SdLGKvsl6VOStkr6taTnN3rNLA77Zma1\nNfTO3TIvjYg9NfZdDpyXfl4IfDZdNt3Rm7szcXYzs3w4GUM9VwGfj8TPgUWSVszEhSaHetznNzOr\nqRmBP4A7JN0vaV2V/WcD28u2d6Rpx5C0TtJGSRv7+vrqKog8j9/MLFMzAv8lEfF8kiGdt0l6ST0n\niYj1EdEbEb09PT0NFchDPWZmtTUc+CNiZ7rcDdwGXFSRZSdwTtn2yjSt6dzhNzPL1lDglzRX0vzS\nOnAZsLki2+3AG9LZPS8CDkTEU41ct2Z5SvP43eM3M6up0Vk9y4Hb0rH1IvCliPi+pLcCRMSNwAbg\nCmArMAC8qcFr1uSbu2Zm2RoK/BHxGHBhlfQby9YDeFsj1znxcp3Mq5mZnV7y9cvddOm4b2ZWW74C\nv2/umpllylfgn7y56z6/mVkt+Qr8kzd3zcysllwF/hJ3+M3MastV4Je7/GZmmXIV+Es8j9/MrLZc\nBX4/ltnMLFu+Ar9HeszMMuUr8M92AczMTgP5CvzyPH4zsyw5C/zJ0mHfzKy2fAX+dOkOv5lZbbkK\n/KUuv6dzmpnVlq/AX+K4b2ZWU64Cvx/LbGaWLV+Bv3Rz15HfzKymfAV+z+Q3M8tUd+CXdI6kH0n6\njaSHJb2jSp5LJR2QtCn9vL+x4maVKVn65q6ZWW2NvHN3DHhXRDwgaT5wv6Q7I+I3Ffl+EhFXNnCd\nafN0TjOzbHX3+CPiqYh4IF0/BDwCnN2sgtXDP+AyM8vWlDF+SauB5wG/qLL7YkkPSvqepOc043pZ\n/MgGM7PaGhnqAUDSPOAbwDsj4mDF7geAcyPisKQrgG8B59U4zzpgHcCqVavqK8vkO3frOtzMrCU0\n1OOX1E4S9L8YEd+s3B8RByPicLq+AWiXtKzauSJifUT0RkRvT09PnQWq7zAzs1bSyKweATcBj0TE\nx2vkOTPNh6SL0uvtrfeamWVKl+7xm5nV1shQzx8Dfwk8JGlTmva3wCqAiLgRuBr4K0ljwCBwTczg\nAPzkO3fNzKymugN/RNxDxuBKRNwA3FDvNU7U0Uc2uMtvZlZLvn6560c2mJllymfgn91imJmd0nIV\n+Es8j9/MrLZcBf7JefyzXA4zs1NZvgK/x/jNzDLlKvCbmVm2hh/ZcCrpKCTt2JWf/gkrFs5h+YJO\nViycw5kLuzhzQRdL53WwpLuDxXM7WDK3g8XdHXQU3faZWWvJVeC/9Pwz+NCrnsP2/gGeOjjErgND\n/PL/9bP70BCj49XHf+Z3Flk8t4PF3e0smNPO/K4i8zqLzO86ur6gtN51NH1uR5E57QXmdBTceJjZ\naSVXgX9OR4HrXrz6uPSJiWDvkRH2DYzQf+ToZ9+REfrL0g4NjfHk/kEOD49xaGiMgZHxaV232KbJ\nRqC7o0BXe7Ls7iiWrR9Nn9NeoLO9jc5igc5i27HrxdK+WvvbKBbc0JhZ/XIV+GtpaxM98zvpmd95\nQseNjU9wZHicg0Ojk43BoaHRyUZhYGSModHxdH28yvoYew4PT6YPjowzMDrO+ERjd58LbZpsBKo1\nFB3pp72QrheST3tRdBQKaZqOyVNadpbWC220l44tW7anx02mp/mLbfIjM8xOEy0R+OtVLLSxsLuN\nhd3tTT3vyNgEI+MTDI+OMzw2kX7GGR6tsT6WkXdsIt1O1kfGJjgyPJasj08wOp6kjY7H5LVHxiaa\nWicJ2gttdFY0GElDUTiuoSk1LJ2F4xufWg1TZ3pcZ3sbHYVCumwrWx5t+Ep53RiZHc+BfxaUgtu8\nztn780cEo+NR1ihMVGkokrTJBmPs6L6R8SrbFWml44bL841NcHh4rOo5yhumZulIG5fyxuHYxiJd\nFgtHG4zisdvHNCwVx3YVC3Slw3dd7clyTnuBrg43PHbqcuBvUZLoKCa96rknNgI240qN0sj4BKNl\nDURpWfpWMzw2XnN7eIr0kbJvRkOjExwcHKtyromGG6E2MdkYdKX3gLra245tJDoKdBVL+0p52ya3\nuzsKzO1MJhnM7Sgyt/PodmfRDYvVx4HfTjnljRKz3ChNTCQNUK1GZGh0nMHRcYbT5eDIBIOjyT2e\nodHkvk6yfTTv0Og4h4fH6Ds0nOZLjhkcHT+hIbhCm+juKCSNQmeRuWkjUb4+ua+zyIKuIgvmtLNw\nTjsLutpZMKfIwjntzOssugFpMQ78ZlNoaxNdbUnv+2QYnwiGx9KJAGmjcXh4jIHhZHlkeIwjI2Mc\nGR7nyPDYZNrAyNH9+wYGk3zp/uGMxqRNsKCiMVjQlXwWdrezoKvIou4Ols5NfgOzNP0dzKLuDgpt\nbjBORw78ZqeQpBdfpLujyNImnbN8dtqBwVEODo5ycGiUg4NjyfZQkpasJ2m7Dx6ezD80Wr3hkGDR\nnHaWzO1g6dzO5EeRZQ1Dz/xOli/oYvmCZHmyGk/L5sBvlnPls9POqeP44bFx9g+MTv7eZe+REfoP\nD9M/MEr/keEk7fAIj+05TP/jSZ5qM5YXdBXThqCLM9LGYHnaOKxYNIeVi+ewdG6Hh51OAgd+M5tS\nZ7HA8gUFli/omlb+iYngwOAofYeH2XVwiF0Hk+Xu0vqhIX7x2BF2HRxirKKF6GpvY+XiblYuThqC\ncxZ3H7O9xA1DUzjwm1lTtbUpeQzK3A7+cPn8mvkmJoL+gRGePjDE0weG2LFvgB37BpPP/gE2bd/P\n/oHRY47p7iiwakk35yzp5twl3axamqyvWpI0Dp1FDydNR0OBX9Ja4JNAAfhcRPxDxf5O4PPAC4C9\nwGsjYlsj1zSzfGhrE8vmdbJsXifPPXth1TyHhkbZuX+QHf2DbN83wPb+QZ7oH+CJvQPcs2UPg6NH\nH6siwZkLuliVNgSryhqGc5d0+9tCmboDv6QC8BnglcAO4D5Jt0fEb8qyXQ/si4hnSboG+Ajw2kYK\nbGatY35XO88+s51nn7nguH0RwZ7DIzzRfyRtDJJGYXv/AHdv6WPXweFj8s/tKEx+Oyg1CquWdLNs\nXufktNf5Xa3x+4hGevwXAVsj4jEASV8GrgLKA/9VwAfT9a8DN0hS+N2IZtYg6egzuF5w7pLj9g+N\njrNj38DkN4TH00Zh294j3L2lr+ZspWJb8huSQpsotolCW1u6FMVC6T1/x5bjmO3jCjrl5jHHL+nu\n4Ktvvbh2pZukkcB/NrC9bHsH8MJaeSJiTNIBYCmwp/JkktYB6wBWrVrVQLHMzJJfTT/rjPk864zj\n7zNEBH2Hh3li7wD9R0YmfwNxaHiMw0NjjI5PMDYRjE9EshxPlmMTExXnqThvletMtb8yYX7Xybnt\nesrc3I2I9cB6gN7eXn8jMLMZI4kz5ndxxvzpzVTKm0Ye7L4TjpkWvDJNq5pHUhFYSHKT18zMZkkj\ngf8+4DxJz5DUAVwD3F6R53bgunT9auCHHt83M5tddQ/1pGP2bwd+QDKd8+aIeFjSh4GNEXE7cBPw\nBUlbgX6SxsHMzGZRQ2P8EbEB2FCR9v6y9SHgzxu5hpmZNZdf3mpm1mIc+M3MWowDv5lZi3HgNzNr\nMToVZ1dK6gMer/PwZVT5ZXALcL1bRyvWGVzvLOdGRM90TnhKBv5GSNoYEb2zXY6TzfVuHa1YZ3C9\nm3lOD/WYmbUYB34zsxaTx8C/frYLMEtc79bRinUG17tpcjfGb2ZmU8tjj9/MzKbgwG9m1mJyE/gl\nrZX0O0lbJb1ntsvTTJJulrRb0uaytCWS7pS0JV0uTtMl6VPp3+HXkp4/eyVvjKRzJP1I0m8kPSzp\nHWl6rusuqUvSLyU9mNb7Q2n6MyT9Iq3fV9LHoSOpM93emu5fPZvlb4SkgqRfSfpOut0Kdd4m6SFJ\nmyRtTNNm9N94LgJ/2YvfLwcuAK6VdMHslqqpbgHWVqS9B7grIs4D7kq3IfkbnJd+1gGfPUllnAlj\nwLsi4gLgRcDb0v+uea/7MPCyiLgQWAOslfQi4CPAJyLiWcA+4Po0//XAvjT9E2m+09U7gEfKtluh\nzgAvjYg1ZfP1Z/bfeESc9h/gYuAHZdvvBd472+Vqch1XA5vLtn8HrEjXVwC/S9f/J3BttXyn+wf4\nNvDKVqo70A08QPI+6z1AMU2f/DdP8k6Mi9P1YppPs132Ouq6Mg1yLwO+Q/Je8lzXOS3/NmBZRdqM\n/hvPRY+f6i9+P3uWynKyLI+Ip9L1p4Hl6Xou/xbpV/nnAb+gBeqeDnlsAnYDdwKPAvsjYizNUl63\nyXqn+w8AS09uiZvivwPvBkpvNF9K/usMySvX75B0v6R1adqM/hs/ZV62bvWLiJCU23m5kuYB3wDe\nGREHJU3uy2vdI2IcWCNpEXAb8OxZLtKMknQlsDsi7pd06WyX5yS7JCJ2SjoDuFPSb8t3zsS/8bz0\n+Kfz4ve82SVpBUC63J2m5+pvIamdJOh/MSK+mSa3RN0BImI/8COSYY5FkkqdtfK6TdY73b8Q2HuS\ni9qoPwZeJWkb8GWS4Z5Pku86AxARO9PlbpJG/iJm+N94XgL/dF78njflL7K/jmT8u5T+hvTu/4uA\nA2VfGU8rSrr2NwGPRMTHy3bluu6SetKePpLmkNzXeISkAbg6zVZZ79Lf42rgh5EOAJ8uIuK9EbEy\nIlaT/P/7w4h4PTmuM4CkuZLml9aBy4DNzPS/8dm+sdHEGyRXAL8nGQt932yXp8l1uxV4ChglGdO7\nnmQ88y5gC/CvwJI0r0hmOD0KPAT0znb5G6j3JSTjn78GNqWfK/Jed+CPgF+l9d4MvD9NfybwS2Ar\n8DWgM03vSre3pvufOdt1aLD+lwLfaYU6p/V7MP08XIpdM/1v3I9sMDNrMXkZ6jEzs2ly4DczazEO\n/GZmLcaB38ysxTjwm5m1GAd+M7MW48BvZtZi/j+0zJrYAEi/1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ITER:491, COST:+0.000009, mu:+5.994762, sigma:+1.250326\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8XHeZ7/HPo24VV8lNspot2ZZjxw6K4zQTSLNJsANL\ncSg3lN3csGRhgb27CctNdsNSFpayXLJAlg2QADEhBHCCiRMncbp7byqW1V3kLstqo3nuH3MUFMW2\nRvbM/KY879dLL8+cOeWrxP7OzPmdIqqKMcaYxJDkOoAxxpjIsdI3xpgEYqVvjDEJxErfGGMSiJW+\nMcYkECt9Y4xJIFb6xoSBiFwnIs2ucxgzmJW+SQgiUi8inSJyWkQOisjPRSQ7wtu/IVLbM+ZcrPRN\nInmvqmYDc4F5wL2O8xgTcVb6JuGo6kFgFYHyR0TSReQ/RKRRRA6JyI9FZIT3Wq6IPC0iJ0TkmIi8\nIiJJ3msqItP61+t9e/i3wdsTkUeBQuAp75vGP0bi9zTmbKz0TcIRkQJgMVDrTfomUE7gTWAakA/c\n5732JaAZyAMmAF8GhnXtElX9ONCI901DVb91sb+DMRfKSt8kkj+ISDvQBBwG7hcRAe4EvqCqx1S1\nHfg6sMxbpheYBBSpaq+qvqJ2wSoTw6z0TSK5TVVzgOuAGUAugU/wmcAmbxfOCeAZbzrAtwl8I3hW\nROpE5J7IxzYmdKz0TcJR1ZeAnwP/ARwBOoFZqjra+xnlDfiiqu2q+iVVLQWWAF8Ukeu9VZ0h8IbR\nb+L5Nhvq38OYC2GlbxLV94EbgdnAfwPfE5HxACKSLyI3e49vFZFp3m6gk0Af4PfWsRX4iIgki8gi\n4J3n2d4hoDQ8v4oxwbPSNwlJVduARwgM2P4TgV04a0XkFLAamO7NWuY9Pw28AfyXqr7ovfZ54L3A\nCeCjwB/Os8lvAF/xdiH9Q4h/HWOCJjYmZYwxicM+6RtjTAKx0jfGmARipW+MMQnESt8YYxJIiusA\ng+Xm5mpxcbHrGMYYE1M2bdp0RFXzhpov6kq/uLiYjRs3uo5hjDExRUQagpnPdu8YY0wCsdI3xpgE\nYqVvjDEJxErfGGMSiJW+McYkECt9Y4xJIFb6xhiTQKLuOH1jjBvNu9eyetWPmDKhnIW3fpbUkaNd\nRzJhYKVvTII7dewAKx7/Kq/WrUFR3jiwnme2/Y5F09/Dwvd9gdQx41xHNCFku3eMSWCNNRv4v9+5\nhVfqXkREuHbquynKncYp7eTxvb/jB99fhvb0uI5pQsg+6RuToPz+Ph55/Ct09XYyc/Q0bv/QvzFh\n2qWoKjt2rObRJ++n+kwzLz32Da67437XcU2I2Cd9YxLUC3/6IU0nGxmXOorP3P0IE6ZdCoCIMGfO\njXzk1i8DwpO7nuDY3i1uw5qQsdI3JgEdO9LEijd+DsCyd91N+sgxb5tnXuWtXFZ2Ld34+NXyL6O9\nvRFOacLBSt+YBLT8N/+Xbl8Xl42dxZzrP3rO+W6//etkjhjFzjP1rP/t9yOY0ISLlb4xCWbX1ufY\n1rCeDFL48LJ/A5FzzjsyexwfWPRFAH637TH6Ok5HKqYJEyt9YxLMiy//AlAWz1zC6OIZQ85/1YIP\nMmHMFE5qJzteXB7+gCasrPSNSSAnjh9gZ+tWkkni6pv/JqhlRISF85YC8MqmJ0E1nBFNmAVV+iKy\nSESqRKRWRO45y+t3icgOEdkqIq+KSMWA1+71lqsSkZtDGd4YMzyvr3kU9fdx6dgKciYXB73cgoUf\nJSU1nV0d9XYkT4wbsvRFJBl4EFgMVAC3Dyx1z69VdbaqzgW+BXzXW7YCWAbMAhYB/+WtzxgTYarK\nazv/DMA1le8f1rLZmaOZV3IVivLai4+EI56JkGA+6c8HalW1TlV7gOXA0oEzqOqpAU+zgP7vf0uB\n5ararar7gVpvfcaYCKva8wpH2g8yJjmLmQuHV/oA1177MQBebXgZvw3oxqxgSj8faBrwvNmb9hYi\n8lkR2Ufgk/7nhrnsnSKyUUQ2trW1BZvdGDMMr776awCuLnknSWnpw16+vPxKxo+ZwgntZOcLj4U6\nnomQkA3kquqDqjoV+CfgK8Nc9iFVrVTVyry8vFBFMsZ4Os6cZEvDWgThqnd+/ILWISJc2z+gu/kP\noYxnIiiY0m8Bpgx4XuBNO5flwG0XuKwxJgw2vPobfL3dzMwqYlz5pRe8niuv/QhJKans7NjPmZb6\n0AU0ERNM6W8AykSkRETSCAzMrhg4g4iUDXh6C1DjPV4BLBORdBEpAcqA9Rcf2xgzHFt3vwDAFZcs\nOu/JWEPJyRrDtLwZ+FF2r/9TqOKZCBqy9FXVB9wNrAL2AI+r6i4ReUBElniz3S0iu0RkK/BF4A5v\n2V3A48Bu4Bngs6raF4bfwxhzDt09ndQc3osgzJp/60Wvb870hQBsr375otdlIi+oSyur6kpg5aBp\n9w14/PnzLPs14GsXGtAYc3H2bFuNz9dNacYkcgpKL3p9cy6/hSde+i92Ht2Lv+M0SVnZIUhpIsXO\nyDUmzu3Y8TwAs4vmX9SunX7jc4sZPyqfDnrYv3H1Ra/PRJaVvjFxTFXZ2bwJgNlzbgjJOkWE2SVX\nALB9h5V+rLHSNyaONTfv4sTpI4yWTAouXRiy9c6ZtwiA7c2bwO8P2XpN+FnpGxPHdmwKXHbhkvGX\nIGlpIVvvtPIFZIzIodV/gqO7N4ZsvSb8rPSNiWM7al8HYM7Md4Z0vSlJKVTkzw1sw3tjMbHBSt+Y\nONXecZz9R2tJIYkZly8O+fovnXU9ANvr3gj5uk34WOkbE6d2bVmF9vkozyokPW9SyNc/a97NSHIK\nVZ1N9Bw5FPL1m/Cw0jcmTu3e/RIAl3hH2oRaTuZoCsYU4cNP3bY1YdmGCT0rfWPikKpSfWg3ANMv\nuS5s2ykvCFzHp6ZmXdi2YULLSt+YOHT0eAvH29vIJJX8igVh2075jKsBqG7dEbZtmNCy0jcmDtXs\nfAlQykaVIhkZYdtOWcW1kJxCXVcrvUftXhixwErfmDhU7e1uKZ9y4ZdRDkZWRg4FYwrx4ad+h12A\nLRZY6RsTh2oO7gKgbPrVYd9WWf4cAKqr7NDNWGClb0ycOXHqMG2nDpJBClNmh7/0y8uvBKC6dXvY\nt2UunpW+MXGmZufLoH6mZheSlJkV9u2VzVoIycns62zBd+JY2LdnLo6VvjFxpromsJul/3DKcMvJ\nHM2kUQX04qdhm+3Xj3ZW+sbEmf7DJ/t3u0RCef9+/erXI7ZNc2Gs9I2JI+0dxzl4soVUkiicfU3E\ntls+/SoAqltsv360s9I3Jo7U7HoZ/H6mZhaQMmpMxLZbPmshJCWzr6OZvpMnIrZdM3xW+sbEkf79\n+WWTZ0d0uyOzxjJ+5CS6pY/mPWsjum0zPFb6xsSRupbA8fnTps2P+LZLJ0wHYH+t3VQlmlnpGxMn\nen09NJ1oRBCKK66K+PZLi+cBUNeyM+LbNsELqvRFZJGIVIlIrYjcc5bXvygiu0Vku4g8LyJFA17r\nE5Gt3s+KUIY3xvxFY/1W/L4eJqeMIWNCfsS3XzojcLTQ/mN1dt/cKDZk6YtIMvAgsBioAG4XkYpB\ns20BKlV1DvAE8K0Br3Wq6lzvZ0mIchtjBqmrCuxLL80tA5GIbz9/8gxSM7I4rO2cbqyN+PZNcIL5\npD8fqFXVOlXtAZYDSwfOoKovquoZ7+laoCC0MY0xQ9nfFDg+v6TgEifbT5IkiseUBLLsseP1o1Uw\npZ8PNA143uxNO5dPAwPvlJwhIhtFZK2I3Ha2BUTkTm+ejW1tdnlWYy5EXVs1AKVlkR/E7VeaH3jD\nqavf4iyDOb+QDuSKyMeASuDbAyYXqWol8BHg+yIydfByqvqQqlaqamVeXl4oIxmTEE60t3H89BEy\nSGHijMud5SiZWgnA/kNVzjKY8wum9FuAKQOeF3jT3kJEbgD+GViiqt3901W1xfuzDlgDzLuIvMaY\ns9hftRbUT0lWPjJihLMcpdMXQFIS+zta8HecdpbDnFswpb8BKBOREhFJA5YBbzkKR0TmAT8hUPiH\nB0wfIyLp3uNc4Gpgd6jCG2MC9u8LHBtfMn6G0xyjsscxLns8XeLj4J4NTrOYsxuy9FXVB9wNrAL2\nAI+r6i4ReUBE+o/G+TaQDfx20KGZM4GNIrINeBH4pqpa6RsTYnWtgX9WpSXuv0iXjC8HoK52veMk\n5mxSgplJVVcCKwdNu2/A4xvOsdzrQGTPBzcmwfjVT8Px/QAUTw/fTdCDVVo0l421L1PXtIPIXfLN\nBMvOyDUmxrW07qWnq4M8ySanqMx1HEq8N579R/eBquM0ZjArfWNi3P693klZY0shyf0/6cIpl5CS\nNoID/pN0ttS7jmMGcf83xBhzUeoatgJQku/mpKzBUpJTKRg9BUVpqLL9+tHGSt+YGFfvHRNfUvoO\nx0n+oti74mZDwzbHScxgVvrGxLDu3i4OtreSTBIFM9ydiTtYUVHg/rz1B/c6TmIGs9I3JoY17t+K\n+nzkp44jZWyu6zhvKp5+BQANJxvsiptRxkrfmBjWsG8TAEXjSh0neauJ40tJy8jiqJ6hvaHGdRwz\ngJW+MTGs3ruyZtHkmY6TvFWSJFE4phiAxmobzI0mVvrGxLCGI4Hr1hdH0SBuv6L+wdzGHY6TmIGs\n9I2JUWe6T3O4/SApJDF5eqXrOG9TVDwXsMHcaGOlb0yMaqzbDH19TEnLI3nUaNdx3qZ4euBooob2\nJvD5HKcx/az0jYlRDfs2A1A07m23qIgK48cWkjFiJCfo4kSdXWcxWljpGxOj6pt3AlCUP/iW1dFB\nRCgaWwxAY+0mt2HMm6z0jYlRDUf2AVA8Lfr25/crnhg4qqjezsyNGlb6xsSg012nOHr6MGmazMTy\ny1zHOaci7/r+DW12rH60sNI3JgY11GwAv5/CjAkkZee4jnNOReWXA0LD6Ra0u3vI+U34WekbE4Ma\n6rYAUJQ3zXGS8xs3ahJZWaNpp5tjdTtdxzFY6RsTk+pbdgFQlD/LcZLzExGKxwYuEdFQs9FxGgNW\n+sbEpIajdQAUlbq/J+5QCicGzsxtbN7lOIkBK31jYs6pM8c50XGEdE1mwvTou/zCYIXFgcssN7bV\nOk5iwErfmJjTWLspMIg7YiKSmek6zpCKyrzB3I4WtKfHdZyEZ6VvTIxp2B8YxC3Mjc4zcQcbO2oi\nWVmjOE0Px/fZYK5rQZW+iCwSkSoRqRWRe87y+hdFZLeIbBeR50WkaMBrd4hIjfdzRyjDG5OIGlv2\nANE/iNtPRCgcUwJAg52Z69yQpS8iycCDwGKgArhdRAaf970FqFTVOcATwLe8ZccC9wNXAPOB+0Vk\nTOjiG5N4Go4GzsQtLJ3rOEnwiibNAKCx2T7puxbMJ/35QK2q1qlqD7AcWDpwBlV9UVXPeE/XAgXe\n45uB51T1mKoeB54DFoUmujGJp/3MCY73D+JG8Zm4g/XfM7fBBnOdC6b084GmAc+bvWnn8mngz8NZ\nVkTuFJGNIrKxra0tiEjGJKbGfYFB3CkjJpCUle06TtAKvTNzG0/bYK5rIR3IFZGPAZXAt4eznKo+\npKqVqlqZl5cXykjGxJU3z8SN0sspn8u4UZPIzBpFO912mWXHgin9FmDKgOcF3rS3EJEbgH8Glqhq\n93CWNcYEp7E1MIhbGKWXUz4XEaFodDEADbV2Zq5LwZT+BqBMREpEJA1YBqwYOIOIzAN+QqDwDw94\naRVwk4iM8QZwb/KmGWMuQP8gblFp7OzP79d/Zm5Dkw3mujRk6auqD7ibQFnvAR5X1V0i8oCILPFm\n+zaQDfxWRLaKyApv2WPAVwm8cWwAHvCmGWOG6XTXKY6dbiNNk5lQHv2XXxis/565dmauWynBzKSq\nK4GVg6bdN+DxDedZ9mHg4QsNaIwJaKjdGBjEzZgU1ZdTPpe/XGa5Ge3pQdLSXEdKSHZGrjExotEb\nxC0cV+o4yYUZN3oymZkjA4O5+/e4jpOwrPSNiRENrYGjXmLlTNzBAmfmFgPeoafGCSt9Y2JE4xHv\ncspTY28Qt1/RxMCZuQ2NOxwnSVxW+sbEgFi5J+5Q+i+z3HDY7pnripW+MTHgL4O442NyELdf0Ztn\n5jbbmbmOWOkbEwNifRC3X+7ofDIzR3LKBnOdsdI3Jgb0D+IWx+ggbj8bzHXPSt+YGNDgDeIWxvAg\nbr83B3MbtjtOkpis9I2JcoEzcWN/ELdf/5m5dpllN6z0jYly8TKI22/wmbkmsqz0jYly/YO4xbnT\nHCcJDTsz1y0rfWOiXENLYBA31i6nfC5vuWduzQbHaRKPlb4xUe7NyynHwSBuvyK7zLIzVvrGRLH2\nzpMcO90Wc/fEHYpdZtkdK31jolhj/yBujN0Tdyg2mOuOlb4xUezNe+LGySBuPxvMdcdK35go1n9P\n3KLJ8TGI209EKPIGc+ur1ztOk1is9I2JYvXeIG7h1Ni7PeJQiibNBKChyS6zHElW+sZEqVNnjnP8\ndBsZmhJXg7j9iksDb2T1bdWOkyQWK31jolR99Xrw+ynMnBhXg7j9isuvABEaTreiXV2u4yQMK31j\nolR93WYASvLKHScJj9E5eYzMGssZ6aWtZqvrOAnDSt+YKFXfsguA4sLZjpOEh4hQPG4qAPV2Zm7E\nBFX6IrJIRKpEpFZE7jnL6wtFZLOI+ETkA4Ne6xORrd7PilAFNyaeqSr1x7x74pZd7jhN+BQXXAJA\nfbOdmRspQ5a+iCQDDwKLgQrgdhEZfPxYI/AJ4NdnWUWnqs71fpZcZF5jEsLRE610dJwgh3TGTo3P\nT/oAxaWBAer6NrtnbqQE80l/PlCrqnWq2gMsB5YOnEFV61V1O+APQ0ZjEs7+qrWAUpxdgKSluY4T\nNsVl8yEpicbuQ/SdOuk6TkIIpvTzgaYBz5u9acHKEJGNIrJWRG472wwicqc3z8a2trZhrNqY+FS/\nPzCwWezdZSpeZWXkkJszgV78tFbZfv1IiMRAbpGqVgIfAb4vIlMHz6CqD6lqpapW5uXlRSCSMdGt\n/mDgTNzioksdJwm/ktwyAOrtnrkREUzptwBTBjwv8KYFRVVbvD/rgDVA/J1aaEwI+dVP4/F6AIqn\nX+E2TAQUF84B/nLfABNewZT+BqBMREpEJA1YBgR1FI6IjBGRdO9xLnA1YP9njTmP1gPV9HR1kCtZ\nZBfG14XWzqZo6jsA2H90H6g6ThP/hix9VfUBdwOrgD3A46q6S0QeEJElACJyuYg0Ax8EfiIiu7zF\nZwIbRWQb8CLwTVW10jfmPBqqA/u2i0eXQFL8n0pTWDIXSUml1XeMnqOHXceJeynBzKSqK4GVg6bd\nN+DxBgK7fQYv9zoQv8ebGRMG+xsSYxC3X3pqBpNH5tNyrJ6mveuYeo0d2R1O8f8xwpgYU3+oCvjL\nBckSQfGEwO0T+y89YcLHSt+YKNLr66HlZDOCUDgj/gdx+5UUBW6fWNeya4g5zcWy0jcmitTXb8Hf\n201+8mjSx092HSdiSmdeBUDdiTro63OcJr5Z6RsTRer2rgWgNLccRByniZxJE6eRMSKHY3qGE/vs\n0344WekbE0X2NW0DYGph/J+UNVCSJFEyNnDeZt3eNxyniW9W+sZECVWlzruLVOn0BY7TRF5pQeBA\nv7oGu7Z+OFnpGxMljp5opb3jGNmkkVeeOEfu9Cstmw9A3eEqx0nim5W+MVFi357XQJXSnEIkI8N1\nnIgrnb4AkpNp6D6E7+Rx13HilpW+MVGiri5wwbHSSYNvV5EYMtOzmZgzGR9+mnbZfv1wsdI3Jkrs\nOxC4QsnUqfF7p6yhlHpnIdfVrnecJH5Z6RsTBbp7u2g53kgSQlHFla7jOFNaHLiTVl2rHbYZLlb6\nxkSBhrrN+H095KeMTaiTsgab6p2kte94HfjtRnzhYKVvTBTYVxXYhz01b3pCnZQ12KSJZWRk5HDc\nTtIKGyt9Y6JAXdN2AEoT7KSswUSEknF2klY4Wekb45iqUnekBoCpCXhS1mBTCwJ30tpXb1fcDAcr\nfWMcO3y0gdMdJ8ghnXHlc13HcW7ajMB+/ZqDu+1OWmFgpW+MY9U7XwKUslGlSFqa6zjOlZZfQVJK\nGo29R+g6FPTtuE2QrPSNcazGOya9fEpi78/vl56aQdHYEhRl3/Y1ruPEHSt9YxxSVaoPBo5SKZ95\njeM00aP/DbDGTtIKOSt9Yxw6eqKV4+2HydJUJl9yles4UaNs+tUAVB/Y6ThJ/LHSN8ah6h1rQJWy\nkSXIiBGu40SNqTOvQpJTqO8+RM+RQ67jxBUrfWMcqqldB0CZ7c9/i8z0bArGFNGHn/07XnEdJ64E\nVfoiskhEqkSkVkTuOcvrC0Vks4j4ROQDg167Q0RqvJ87QhXcmHjQv/uifMbVjpNEn/L8wPH61TV2\nklYoDVn6IpIMPAgsBiqA20Vk8LVfG4FPAL8etOxY4H7gCmA+cL+IjLn42MbEvuMnD3Hk1CFGkELB\nbCv9wcrKAyeq1bTafv1QCuaT/nygVlXrVLUHWA4sHTiDqtar6nZg8BWSbgaeU9VjqnoceA5YFILc\nxsS86p1rQP1Myy4iKSvbdZyoM63iWkhKou5Ms91UJYSCKf18oGnA82ZvWjCCWlZE7hSRjSKysa2t\nLchVGxPbamoC+/PLC2x//tnkZI1h0qgCevHTYPv1QyYqBnJV9SFVrVTVyry8PNdxjImI6tYdgO3P\nP5+yyYGbpVdXve44SfwIpvRbgCkDnhd404JxMcsaE7dOth/h0KlW0jWZKbPtpKxzmT49cO5CVdNW\nx0niRzClvwEoE5ESEUkDlgErglz/KuAmERnjDeDe5E0zJqHt2f48+P1Myy4kOWek6zhRa8acdyPJ\nKdScabLj9UNkyNJXVR9wN4Gy3gM8rqq7ROQBEVkCICKXi0gz8EHgJyKyy1v2GPBVAm8cG4AHvGnG\nJLTde14GYFZR4t4PNxjZmaMpHFuCDz81m59zHScupAQzk6quBFYOmnbfgMcbCOy6OduyDwMPX0RG\nY+KKqrK7dRsAFXOud5wm+lUUX05DWw27q15l1k0fcx0n5kXFQK4xiaS5dQ/tp48yRjKZeIndNGUo\n/W+Mu1u32/X1Q8BK35gI27U5MKxVkTvTrp8fhNJpl5OenkVr33FO1NqJWhfLSt+YCNtdtxaAWWV2\nVc1gpCSnMn3CLAB2b7X9+hfLSt+YCOru7aL2cBWCMOOym13HiRkV3hvk7rp1jpPEPit9YyKoavfL\n9PV2U5w2nqwppa7jxIyKeTcCwp5jVWhXl+s4Mc1K35gI2r3zBQBmFcwDEcdpYsf4vBLG5YzntHbT\ntN0uyXAxrPSNiaDdDZsAqKi4zm2QGCMiVBTMA2CX98ZpLoyVvjERcvREK4dOtjKCFEreYcfnD1fF\nrOsA2Fm/3g7dvAhW+sZEyLb1T4H6mTmqzC6lfAEq5t5ISmo6+7oO0N5Q4zpOzLLSNyZCtuwJ7JaY\nN+M6t0FiVEZaJjMmzkZRtq37o+s4MctK35gIaO84Ts2hPSSTxOwFS1zHiVlzZwV2i22tftlxkthl\npW9MBGzf9CfU18uMrEJG5Be7jhOzLp3/XiQ5hT3tdXS1HXAdJyZZ6RsTAVt3rAZgXtlCx0li28js\ncZTmluHDz643gr3CuxnISt+YMOvqOcPu1m0IwqVXLB16AXNe/WMi/WMkZnis9I0Js51bn8XX20Vp\n+kRGls50HSfmzb1iKYiw4+hufO0nXceJOVb6xoTZ1q3PADCv9Go7CzcE8nKLyB9TSBc+qtb9yXWc\nmGOlb0wY+fp62dEUOAt33nw7aidU5k4L3Fd46w676uZwWekbE0a7d75IV/dpClLGkVtR6TpO3Jh3\nxW2AsOngFtvFM0xW+saE0RvrngCgsuQq27UTQgUFs5g8tpAO7Wbny0+4jhNTrPSNCZOOzlNsb1iP\nICxY+FHXceKKiHDl7PcAsHbr047TxBYrfWPCZMPrv8XX283MzELGlM9xHSfuXHHNMiQ5he0nq+lo\n2e86Tsyw0jcmTN7Y+hQAV81+j+3aCYNRo8ZTMflS+vCzfs2vXMeJGUGVvogsEpEqEakVkXvO8nq6\niPzGe32diBR704tFpFNEtno/Pw5tfGOi04EDNdQfriaDFOa+6yOu48StK99xGwBr9662yy0HacjS\nF5Fk4EFgMVAB3C4iFYNm+zRwXFWnAd8D/n3Aa/tUda73c1eIchsT1d545degyuXj55E6Ntd1nLg1\nd/4SMtKzqO8+xIHtr7mOExOC+aQ/H6hV1TpV7QGWA4PPJV8K/MJ7/ARwvYh9nzWJya/+wCdP4Mr5\nf+U4TXxLTUmjsiRwzP4br/3GcZrYEEzp5wNNA543e9POOo+q+oCTwDjvtRIR2SIiL4nItWfbgIjc\nKSIbRWRjW1vbsH4BY6LN7h0vcPL0EcYnj6R0wWLXceLegqs/DMAbDa/ZMftBCPdA7gGgUFXnAV8E\nfi0iIwfPpKoPqWqlqlbm5eWFOZIx4bX65Z8BcM3UdyFpaY7TxL9p5QvIH1fMKe1kw6qHXceJesGU\nfgswZcDzAm/aWecRkRRgFHBUVbtV9SiAqm4C9gHlFxvamGjV3LKHPc1bSSeFaxf9b9dxEoKIcMOC\nwHkQq7c8ifp8jhNFt2BKfwNQJiIlIpIGLAMGX8h6BXCH9/gDwAuqqiKS5w0EIyKlQBlQF5roxkSf\n1at+BH4/V02aT2ZBies4CWP+NR9mZOYYmnuPUPXyk67jRLUhS9/bR383sArYAzyuqrtE5AER6b+C\n1P8A40SklsBunP7DOhcC20VkK4EB3rtU9ViofwljosGJU4dZX/sSgnDDjfYpP5JSklO5bk7g+JLV\nrz1qh2+eR0owM6nqSmDloGn3DXjcBXzwLMv9DvjdRWY0JiasefYh+nw9XDZqBrmzLncdJ+EsvPGv\n+fPGx9jRXsuhneuYMHuB60hRyc7INSYEuns6eWl74AzcGxd+0s7AdSAnZxwLyq4DYPXqh9yGiWJW\n+saEwCsv/IwzXacoTZ9E6dW3uo6TsK6/6S5ISuL1A+s4VrvDdZyoZKVvzEU609XOyjceAWDxgo9B\nkv2zcmVWyeNLAAALxklEQVRS/gwuL70WH37++OQ3XMeJSva305iL9MxT36Wj8yTlGQXMvvl/uY6T\n8G677R6Sk1NZd2QrzZtedB0n6ljpG3MRjh5r5vktvwfgA4u+gKQEdWyECaPc8cVcN+sWFOXJld+x\nI3kGsdI35iL88clv4PN1M3/MbIqutEsuRIv33PZ/yEjLYlf7PvausTtrDWSlb8wFati/lXW1a0gh\nidved68dsRNFsrPHsqhyGQBPvPBD/F2djhNFDyt9Yy6Ar6+XR377z+D38+4p72TcjHmuI5lBrr/l\nbsZk5dLUfZhVv/xX13GihpW+MRfg6T98i+YjdeQm53DL7fcNvYCJuLTUDO54/7+CCE9VP0Xz5jWu\nI0UFK31jhmlf9Tqe2fAYgvDJRfeSkTvRdSRzDjNnv5vrZt1KH35+9vv78J057TqSc1b6xgxDd/cZ\nfvabe1B/HzcVvotp73yf60hmCO//8L+QlzOR5u42nn7kK67jOGelb0yQVJVHH/0H2toPUpCWy5JP\n2Mk/sSA9PZNPfvBrSFISz9Q9y9aViX3NfSt9Y4L0+ye+yobqF0knhU9/4OukZL/tfkAmSk2dcRVL\nrvwkivLTNd+lfv2zriM5Y6VvTBDWPPffrNqwnCSEu264h8lzz3rnTxPFFi/5ElfPuIle+vjhk/dw\npHa760hOWOkbM4TNa3/P8ue/Dygff8enqLjpo64jmQsgInz0ju8wc9Ic2v2d/ODnn+F4Y5XrWBFn\npW/MebzwzI946A9fQf1+3jvtFq760JdcRzIXITk5hbvu+ikFows51HOMb/74Y7TsfN11rIiy0jfm\nLPz+Ph7/5b385oUfoH4/S6bdwi2f/nc76zYOZIzI4Yt/9xhT86Zzwneabz36Gfa+8nvXsSLGSt+Y\nQY62NfCDH3yU57f/gWSS+NSCz3DL33wbSU52Hc2ESFbOWL7w97/hsqIr6dIe/vOpr/D0w/fQlwCX\na7DSN8ajfj9rnvkx//q929jTuo0sSefv3/s1rnj/5+wTfhxKTU3nzs/8lJsufT9+UZ7a+0e+8fXF\nNG9/1XW0sBKNssuOVlZW6saNG13HMAlE/X62b3iaP734ExqO1QFw2dhLuP3j/87I/FLH6UwkVG1/\ngUeevJ8jZ46QhLBg8nwW3/oFxk+71HW0oInIJlWtHHI+K32TqLo629n82hOsXvcYLSebABiZnMnt\n1/4tly3+lH26TzDdXR38/rH7eGnvKvzahyBcPukdXHvlMsouXxT1u/es9I05i1PHDlC17QU273iW\nHQe20tvXA8DolGxumn0b1976WdJyRjtOaVxqa63lz099lzfqXsavfQCMSR3J5SXXMGvWdUy99F2k\nZmY7Tvl2IS19EVkE/CeQDPxUVb856PV04BHgHcBR4MOqWu+9di/waaAP+Jyqrjrftqz0TSio38/J\nI80caNhFS/NuWg5Ws+9wFYc6Dr1lvrKcYq68ZBFXLPprUkZkOUprotHRA3W88vzDrK95kaOdx96c\nnkIypaOKKRw/jfxJ08kvnk1ewXQyR+U6/XYYstIXkWSgGrgRaAY2ALer6u4B8/wtMEdV7xKRZcD7\nVPXDIlIBPAbMByYDq4FyVe/t8ywutPR9PV10th8bekYTEer3v/W5+r0/9W3z+Pt8b87j7/Ohqvj9\nPvr6etE+Pz5fD32+Hny93fT2dtHb00VPTyddXafp7u6gs7Odjs5TnO48SXvXSY53Hed490n6/L63\n5UqXVKaOLqGieD6V13yQMVPKw/WfwMQJ9fvZt/Nltmx6mqqWbTSdagHe3psZSemMGzGGkemjyBkx\nipwRoxkxYiQjMrJJz8giPT2L1LQM0tIySU3LIDkllZSUNJKSU0lKTiYpOYWkpBTGF1UgScM/xibY\n0g/mhp7zgVpVrfNWvBxYCuweMM9S4F+8x08APxQR8aYvV9VuYL+I1HrreyPYXyRY2155godWfS3U\nqzUxLCc5k/FZ48kfW0T+hDIKS+ZSNOtqktMzXEczMUSSkpg25zqmzbkOgI6TR9i38yWam3bTcqiW\n1pNNHO08RldfNy0dB2npOHhR2/t/D2wkLSN83zqDKf18oGnA82bginPNo6o+ETkJjPOmrx20bP7g\nDYjIncCdAIWFhcFmf4uU1DSyU+zrebhc7LdWQd7yWLwV9k8XEZIk6c3XkiWJJO8nOSmFZEkmOSmZ\ntOR0UlPSSE1OJSMtk4z0LDLSs8jKHE1Ozjiyc3IZnVvA2EmlUbnf1cS+rFG5zLn6r5jDX705Tf1+\nOk4d4djB/Zw6fpDTp45w+vRROjtP09nVTmd3Bz2+Lnp9PfT4uunz+/D5+/D5e/GrH7/66dM+VJWk\n5GBq+cKFd+1BUtWHgIcgsHvnQtZx6cIP8Z2FHwppLmOMCYYkJZE9ejzZo8e7jjKkYHYctQBTBjwv\n8KaddR4RSQFGERjQDWZZY4wxERJM6W8AykSkRETSgGXAikHzrADu8B5/AHhBAyN2K4BlIpIuIiVA\nGbA+NNGNMcYM15C7d7x99HcDqwgcsvmwqu4SkQeAjaq6Avgf4FFvoPYYgTcGvPkeJzDo6wM+e74j\nd4wxxoSXnZxljDFxINhDNu2Ca8YYk0Cs9I0xJoFY6RtjTAKx0jfGmAQSdQO5ItIGNLjO4ckFjrgO\ncRaWa3gs1/BYruGJllxFqpo31ExRV/rRREQ2BjMaHmmWa3gs1/BYruGJ1lznYrt3jDEmgVjpG2NM\nArHSP7+HXAc4B8s1PJZreCzX8ERrrrOyffrGGJNA7JO+McYkECt9Y4xJIFb6QRCRL4mIikiu6ywA\nIvJtEdkrIttF5PciMtpxnkUiUiUitSJyj8ss/URkioi8KCK7RWSXiHzedaaBRCRZRLaIyNOus/QT\nkdEi8oT3d2uPiFzpOhOAiHzB+3+4U0QeExFn97sUkYdF5LCI7BwwbayIPCciNd6fY1zlC4aV/hBE\nZApwE9DoOssAzwGXqOocAjetv9dVEBFJBh4EFgMVwO0iUuEqzwA+4EuqWgEsAD4bJbn6fR7Y4zrE\nIP8JPKOqM4BLiYJ8IpIPfA6oVNVLCFzefZnDSD8HFg2adg/wvKqWAc97z6OWlf7Qvgf8IxA1I96q\n+qyq+rynawnckcyV+UCtqtapag+wHFjqMA8AqnpAVTd7j9sJFNjb7s/sgogUALcAP3WdpZ+IjAIW\nErg3Bqrao6on3KZ6UwowwrsrXybQ6iqIqr5M4J4hAy0FfuE9/gVwW0RDDZOV/nmIyFKgRVW3uc5y\nHp8C/uxw+/lA04DnzURJufYTkWJgHrDObZI3fZ/ABwm/6yADlABtwM+83U4/FZEs16FUtQX4DwLf\ntA8AJ1X1Wbep3maCqh7wHh8EJrgMM5SEL30RWe3tKxz8sxT4MnBfFObqn+efCezG+JWLjLFARLKB\n3wF/r6qnoiDPrcBhVd3kOssgKcBlwI9UdR7QQRTspvD2jy8l8KY0GcgSkY+5TXVu3m1io2avwNkM\nebvEeKeqN5xtuojMJvAXbZuIQGAXymYRma+qB13lGpDvE8CtwPXq9mSLFmDKgOcF3jTnRCSVQOH/\nSlWfdJ3HczWwRETeA2QAI0Xkl6rqusiagWZV7f829ARRUPrADcB+VW0DEJEngauAXzpN9VaHRGSS\nqh4QkUnAYdeBzifhP+mfi6ruUNXxqlqsqsUE/lFcFonCH4qILCKwe2CJqp5xHGcDUCYiJSKSRmCQ\nbYXjTEjgnfp/gD2q+l3Xefqp6r2qWuD9nVoGvBAFhY/397pJRKZ7k64ncG9r1xqBBSKS6f0/vZ4o\nGGAeZAVwh/f4DuCPDrMMKeE/6ceoHwLpwHPet5C1qnqXiyCq6hORu4FVBI6seFhVd7nIMsjVwMeB\nHSKy1Zv2ZVVd6TBTtPs74Ffem3cd8EnHeVDVdSLyBLCZwK7MLTi87IGIPAZcB+SKSDNwP/BN4HER\n+TSBy8J/yFW+YNhlGIwxJoHY7h1jjEkgVvrGGJNArPSNMSaBWOkbY0wCsdI3xpgEYqVvjDEJxErf\nGGMSyP8Hxo0pyfvIc80AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Samples of P(x) : [ 6.08387116 7.72948787 5.73906567 5.14606368 5.671743 ]\n", + "Samples of Q(x) : [ 7.41969975 6.05231346 6.73068703 6.02675761 4.28135528]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "#A normal continuous random variable.\n", + "from scipy.stats import norm\n", + "from scipy import stats\n", + "\n", + "h = 0.01 #미분을 위한 작은 구간\n", + "epsilon = 1.e-5 #수렴 판단을 위한 매우 작은 수\n", + "alpha = 0.1 #step size\n", + "\n", + "#확률변수의 구간\n", + "x = np.linspace(-5, 11, 100)\n", + "\n", + "#진짜 확률 분포를 가지는 확률변수\n", + "P = norm(6, 1.25)\n", + "\n", + "#params theta = [μ, σ] 확률분포를 조정하는 파라메터는 평균과, 표준편차\n", + "mu, sigma = 0, 1.0\n", + "\n", + "#P와는 많이 다른 확률분포를 가지는 확률변수\n", + "Q = norm(mu, sigma)\n", + "\n", + "plt.plot(x, P.pdf(x), 'r-', lw=2, alpha=0.6, label='P pdf')\n", + "plt.plot(x, Q.pdf(x), 'g-', lw=2, alpha=0.6, label='Q pdf')\n", + "plt.title('Init. P(x) and Q(x)')\n", + "plt.show()\n", + "\n", + "\"\"\"\n", + "두 확률분포는 다르기 때문에 임의로 5개씩 샘플을 추출하면 \n", + "p는 0 근처의 값이, q는 5 근처의 값이 추출됨.\n", + "\"\"\"\n", + "p = P.rvs(size=5)\n", + "q = Q.rvs(size=5)\n", + "print(\"Init. Samples of P(x) : {}\".format(p))\n", + "print(\"Init. Samples of Q(x) : {}\".format(q))\n", + "\n", + "#P의 확률분포 엔트로피\n", + "print(\"Entorpy of P(x) : {:+f}\".format(stats.entropy(P.pdf(x))))\n", + "\n", + "#P와 Q의 확률분포 간의 DKL\n", + "dkl = stats.entropy(P.pdf(x), Q.pdf(x))\n", + "print(\"DKL of P(x),Q(x) : {:+f}\".format(dkl))\n", + "dkls = [dkl]\n", + "\n", + "for i in range(1000):\n", + " #경사 구하기 미분 {f(x+h)-f(x-h)} / 2h\n", + " dmu = (stats.entropy(P.pdf(x), norm(mu+h, sigma).pdf(x))-stats.entropy(P.pdf(x), norm(mu-h, sigma).pdf(x))) / (h*2)\n", + " dsigma = (stats.entropy(P.pdf(x), norm(mu, sigma+h).pdf(x))-stats.entropy(P.pdf(x), norm(mu, sigma-h).pdf(x))) / (h*2)\n", + " \n", + " #경사하강 w = w - η* ∇f\n", + " mu -= alpha*dmu\n", + " sigma -= alpha*dsigma\n", + " \n", + " #업데이트된 파라메터로 확률변수를 다시 만든다.\n", + " Q = norm(mu, sigma)\n", + " \n", + " #목적함수를 평가하고 입실론보다 작으면 그만\n", + " dkl = stats.entropy(P.pdf(x),Q.pdf(x))\n", + " dkls.append(dkl)\n", + " \n", + " if dkl < epsilon :\n", + " break;\n", + " \n", + "plt.plot(dkls)\n", + "plt.title('Objective function')\n", + "plt.show() \n", + "print(\"ITER:{}, COST:{:+f}, mu:{:+f}, sigma:{:+f}\".format(i, dkl, mu, sigma))\n", + "\n", + "plt.plot(x, P.pdf(x), 'r-', lw=2, alpha=0.6, label='P pdf')\n", + "plt.plot(x, Q.pdf(x), 'g-', lw=2, alpha=0.6, label='Q pdf')\n", + "plt.title('Result')\n", + "plt.show()\n", + "\n", + "\"\"\"\n", + "이제 Q에서 뽑은 샘플을 P에서 뽑은 샘플과 구별할 수 없어졌다.\n", + "\"\"\"\n", + "p = P.rvs(size=5)\n", + "q = Q.rvs(size=5)\n", + "print(\"Samples of P(x) : {}\".format(p))\n", + "print(\"Samples of Q(x) : {}\".format(q))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Keras를 이용한 100줄 짜리 확률분포 모델 GAN \n", + "
\n", + "
\n", + "GANs를 살짝 맛보기 위해서 정규분포를 근사하는 문제를 풀어보겠습니다. 인터넷에 이미 시도된 몇몇 글 \n", + "GANs in 50 lines of code (PyTorch)[4], \n", + "tensorflow-GAN-1d-gaussian-ex-hwalsuklee[5], \n", + "아주 간단한 GAN 구현하기-홍정모[6]을 볼 수 있습니다. 해결해야하는 문제는 임의의 평균과 표준편차를 가지는 정규분포로 부터 획득된 학습데이터만을 가지고(평균과 표준편차는 뭔지 모름) 그 데이터의 분포를 흉내내는 모델을 만드는 것입니다. 쿨벡-라이블러 발산을 코스트로한 예제에서는 추정해야하는 모델이 정규분포라는 것을 알고 또 조정하는 설계변수가 평균과 표준편차라는 것을 알고 그것을 조절해서 최적화를 수행하였습니다. 하지만 GANs는 흉내내야하는 모델의 설계변수등 아무런 정보없이 단지 그 모델로 부터 획득된 데이터만 사용하여 그 모델처럼 동작하는 모델을 만들어내는 것입니다. 기본개념은 위 확률분포 최적화 문제와 같지만 훨씬 일반화된 상태로 문제를 풀어나갑니다. \n", + "\n", + "GANs를 numpy만으로 구현하기에는 코드양이 꽤 되고 GPU의 힘을 빌리지 않고는 훈련시키기에 많은 인내가 필요하므로 케라스를 쓰도록 하겠습니다. 우선 필요한 모듈을 로딩하고 보조 함수를 만듭니다. GAN은 D와 G를 따로 훈련시키는데 Ian Goodfellow의 최초 GANs 논문[6]에 의하면 G를 훈련할 때 D는 훈련하지 않습니다. 케라스에는 모델과 레이어에 trainable이라는 속성을 제공합니다. 이 속성을 false 또는 true로 만드는 보조함수 make_trainable을 정의합니다.[8] (https://github.com/osh/KerasGAN)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using Theano backend.\n", + "WARNING (theano.sandbox.cuda): The cuda backend is deprecated and will be removed in the next release (v0.10). Please switch to the gpuarray backend. You can get more information about how to switch at this URL:\n", + " https://github.com/Theano/Theano/wiki/Converting-to-the-new-gpu-back-end%28gpuarray%29\n", + "\n", + "Using gpu device 0: GeForce GTX 1070 (CNMeM is enabled with initial size: 80.0% of memory, cuDNN 5105)\n" + ] + } + ], + "source": [ + "import sys\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.mlab as mlab\n", + "\n", + "from keras.models import Sequential, Model\n", + "from keras.layers import Dense, Activation, Input\n", + "from keras import optimizers\n", + "from keras.utils import np_utils\n", + "\n", + "#np.random.seed(78)\n", + "#np.random.seed(0)\n", + "\n", + "batch_size = 200\n", + "print_interval = 5000\n", + "\n", + "def make_trainable(net, val):\n", + " \"\"\"\n", + " D의 param.들을 학습안되게 했다가 학습되게 했다가 전환시키기 위한 보조함수\n", + " \"\"\"\n", + " net.trainable = val\n", + " for l in net.layers:\n", + " l.trainable = val" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "그 다음 학습데이터를 생성합니다. 평균 6, 표준편차 1.25인 정규분포에서 원하는 개수만큼 숫자를 생성하여 리턴하는 get_distribution_sampler함수를 정의합니다. 이 때 생성된 숫자는 진짜 데이터이므로 라벨 1을 붙여서 되돌립니다. \n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "################################################################\n", + "# 학습 데이터 생성\n", + "################################################################\n", + "mu, sigma = 6, 1.25\n", + "\n", + "def get_distribution_sampler(mu, sigma, N):\n", + " \"\"\"\n", + " 주어진 평균과 표준편차로 N개의 정규분포 난수를 발생시키고 그 라벨로 1을 붙여서 되돌림\n", + " \"\"\"\n", + " data_xp, data_yp = np.random.normal(mu, sigma, N), np.ones(N)\n", + " data_p = np.vstack((data_xp, data_yp)).T\n", + " \n", + " return data_p" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "이후 모델을 생성합니다. 생성할 모델은 D와 G 그리고 이 둘이 중첩된 모델 GAN을 생성합니다. \n", + "모델 정의를 위해 우선 GAN에 대한 기초 구조를 이야기 하도록 하겠습니다. \n", + " 어떤 확률변수 $\\boldsymbol{X}$가 있어서 이 변수가 어떤 데이터를 나타낸다고 합시다. 쉬운 예로 28x28 픽셀의 사람 얼굴이라면 요소를 784개 가지는 벡터로 생각할 수 있고 $\\boldsymbol{X}$는 그 벡터를 값으로 가지는 확률 변수가 됩니다. 784개의 요소에 아무값이나 집어 넣은 임의의 벡터 $\\boldsymbol{x}$는 사람 얼굴이 아닐 것입니다. 하지만 어떤 규칙에 의해 784개의 값을 적당히 잘 지정하면 벡터 $\\boldsymbol{x}$는 사람얼굴 처럼 보일 수 도 있습니다. 여기서 어떤 규칙 즉, 확률변수 $\\boldsymbol{X}$가 얼굴로 보이는 $\\boldsymbol{x}$를 가질 확률을 나타내는 확률분포 $p(\\boldsymbol{X})$가 있을 수 있습니다. 존재할 수 있는 모든 길이 784짜리 벡터가 모여있는 공간에는 사람 얼굴처럼 보이는 $\\boldsymbol{x}$도 있고 전혀 아닌 $\\boldsymbol{x}$도 있는데 어떤 확률변수 $\\boldsymbol{X}$가 이들 표본을 가질 때 얼굴을 닮은 $\\boldsymbol{x}$에 대해서 높은 확률을 부여하는 $p(\\boldsymbol{X}=\\boldsymbol{x})$가 존재한는 것입니다. $\\boldsymbol{x}$가 $p(\\boldsymbol{X})$에 따르면 즉, $\\boldsymbol{x} \\sim p(\\boldsymbol{x})$이면 $\\boldsymbol{x}$는 사람 얼굴이 될 것입니다. 문제는 $p(\\boldsymbol{X})$가 무엇인지 전혀 알지 못합니다. 다만 $\\boldsymbol{x} \\sim p(\\boldsymbol{X})$인 $\\boldsymbol{x}$ 여러개는 가질 수 있습니다. 바로 우리가 모은 데이터입니다. 이 데이터를 이용하여 입력된 $\\boldsymbol{x}$가 $p(\\boldsymbol{X})$에서 추출된 것인지 아닌지를 구별하는 D를 만들고, $\\boldsymbol{x}$를 무작위로 만들어 D에게 검사를 받는 G를 만들어 둘을 훈련시키는 네트워크가 GANs입니다. 여기서 $p(\\boldsymbol{X})$가 무엇인지 전혀 알지 못하므로 모아둔 데이터의 분포를 나타내는 $p_{\\text{data}}(\\boldsymbol{X})$를 생각 해볼 수 있습니다. $p_{\\text{data}}(\\boldsymbol{X})$는 $p(\\boldsymbol{X})$와 완전히 같지는 않겠지만 우리가 할 수 있는 최선입니다. 그리고 G도 어떤 규칙으로 데이터를 만들어 낼테니까 G에서 생성되는 데이터의 확률분포 $p_{g}(\\boldsymbol{X})$를 생각해 볼 수 있습니다. 이제 $p_{\\text{data}}(\\boldsymbol{X})$와 최대한 비슷한 $p_{g}(\\boldsymbol{X})$를 만드는것이 우리의 목표입니다. \n", + "우선 D를 훈련 시키기 위한 코스트를 살펴보겠습니다.\n", + "

\n", + "$$ J^{D} \\left( \\boldsymbol{\\theta}^{(D)} , \\boldsymbol{\\theta}^{(G)} \\right) \n", + "= - \\frac{1}{2} \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\log D( \\boldsymbol{x} ) \n", + "- \\frac{1}{2} \\mathbb{E}_{\\boldsymbol{z}} \\log \\left(1-D\\left(G(\\boldsymbol{z})\\right) \\right)\n", + "$$\n", + "
\n", + "위 식은 일반적인 바이너리 크로스엔트로피 식인데 보통의 경우와 약간 다른 점이 있습니다. 아래 그림을 보면 첫째 행에 일반적인 바이너리 크로스엔트로피 식을 적었고 두번째 행에 논문에서 사용하는 형태의 표기로 바꾼 식이 적혀 있습니다. 대응되는 같은 부분을 같은 색으로 표시했습니다. 여기서 두번째 항에 확률분포를 살짝 바꾼식이 세번째 행에 있는 식, 즉 위 식이 됩니다. 이렇게 해놓고 보면 세번째 식의 각 항은 앞서 알아보았던 크로스엔트로피가 된다는 것을 알 수 있습니다. 그리고 그것들이 더해진 형태입니다. NIPS 2016 Tutorial:Generative Adversarial Networks[9]의 설명문을 그림밑에 인용하였습니다.\n", + "\n", + "\n", + "\n", + "
\n", + "\n", + ">\"This is just the standard cross-entropy cost that is minimized when training\n", + "a standard binary classifier with a sigmoid output. The only difference is that\n", + "the classifier is trained on two minibatches of data; one coming from the dataset,\n", + "where the label is 1 for all examples, and one coming from the generator, where\n", + "the label is 0 for all examples.\"\n", + "\n", + "
\n", + "\n", + "위 식에서 $\\boldsymbol{\\theta}^{(D)}$는 $D(x)$를 조정하는 매개변수, $\\boldsymbol{\\theta}^{(G)}$는 $G(z)$를 조정하는 매개변수입니다. 먼저 첫번째 항에 대해 이야기하면 $D(\\boldsymbol{x})$는 데이터 $\\boldsymbol{x}$를 입력받아 0~1을 출력하는 함수입니다. $\\boldsymbol{x} \\sim p_{\\text{data}}$는 우리가 모은 데이터의 확률분포에서 추출한 데이터 $\\boldsymbol{x}$라는 뜻으로 그냥 우리의 데이터셋에서 뽑은 데이터라는 뜻입니다. 즉, 진짜 데이터가 되겠습니다. 이 진짜 데이터에 대한 기대값이란 의미이며 또는 $\\boldsymbol{x}$에 대한 평균으로 생각해도 되겠습니다. 두번째 항에서 $G(\\boldsymbol{z})$는 잠재변수latent variable $\\boldsymbol{z}$를 입력받아 우리가 원하는 데이터를 출력하는 함수입니다. 잠재변수는 보통 노이즈인데 우리 예제에서는 균등분포 난수를 사용하겠습니다. 이는 목표로 하는 확률분포가 정규분포인데 G의 입력을 정규분포로 넣어주는 것보다 균등분포로 넣어주는 것이 문제를 더 어렵게 만들기 때문입니다. 이것이 다시 D에 입력되니 결국 0~1의 값이 되고 D가 똑똑하다면 0 근처의 값을 출력해야 합니다. G를 고정시키고(지금 G는 그냥 열심히 가짜 데이터를 만들기만 하면 됨) $\\boldsymbol{\\theta}^{(D)}$에 대해서 위 식을 최소화 시킵니다. 자세한 상황은 아래 그림과 같습니다.\n", + "\n", + " \n", + "\n", + "즉, 아래 식과 같이 그래디언트를 구하고 $\\boldsymbol{\\theta}^{(D)}$를 업데이트 시켜 나가면 D는 점점 똑똑해집니다. 아래 식은 Goodfellow et al[6]의 Algorithm 1에 나와 있는 식입니다. 각 항의 부호가 바뀐것과 기대값 표시가 평균을 구하는 방법으로 바뀐것만 빼면 위 식과 동일한 식입니다. 부호가 바뀌었으므로 이 경우는 $\\boldsymbol{\\theta}^{(D)}$에 대해 최대화 시켜야 합니다.\n", + "

\n", + "$$ \n", + "\\bigtriangledown_{\\theta^{(D)}} \\frac{1}{m} \\sum_{i=1}^{m} \\left[ \\log D\\left(x^{(i)}\\right) + \\log \\left( 1-D\\left(G(z^{(i)})\\right) \\right)\\right] \n", + "$$\n", + "
\n", + "실제 구현에 있어서 $\\log D\\left(x^{(i)}\\right)$에 대한 함수를 만들고 라벨값으로 1을 넣어주고,\n", + "$\\log \\left( 1-D\\left(G(z^{(i)})\\right)\\right)$데 대한 함수를 만들고 라벨값으로 0을 넣어주고, \n", + "두 함수를 더하는 방식으로 구현하면 됩니다. 아래는 김남주님의 GAN 슬라이드[10]에 나오는 구현 부분입니다.\n", + "
\n", + "\n", + "```python\n", + "#loss for discriminator\n", + "loss_disc_real = tf.nn.sigmoid_cross_entropy_with_logits(disc_real, targets=tf.ones(batch_size))\n", + "loss_disc_fake = tf.nn.sigmoid_cross_entropy_with_logits(disc_fake, targets=tf.zeros(batch_size))\n", + "\n", + "loss_disc = 0.5 * loss_disc_real + 0.5 * loss_disc_fake\n", + "```\n", + "\n", + "
\n", + "텐서플로로 구현되어 있는데 리얼 데이터와 라벨로 1을, 페이크 데이터와 라벨 0을 크로스엔트로피 로스에 넘기고 그 둘을 더해서 수식과 동일하게 처리하고 있습니다. 또는 라벨값은 0 아니면 1이므로 리얼과 페이크를 구별하지 않고 그냥 모두 트레이닝 배치에 집어넣고 아래와 같이 바이너리 크로스엔트로피 식으로 처리해도 됩니다. 우리는 Keras에 있는 binary_crossentropy 함수를 사용하도록 하겠습니다.\n", + "

\n", + "$$ \\bigtriangledown_{\\theta^{(D)}} \\frac{1}{m} \\sum_{i=1}^{2m} \\left[ y^{(i)}\\log D\\left(x^{(i)}\\right) + (1-y^{(i)})\\log \\left( 1-D\\left(G(z^{(i)})\\right) \\right)\\right] \n", + "$$\n", + "
\n", + "이제 G에 대한 코스트를 살펴보겠습니다. \n", + "G에 대한 코스트는 D에 대한 코스트에 - 부호를 붙여서 그것을 최소화 하면 됩니다.\n", + "

\n", + "$$J^{G} = - J^{D} $$\n", + "
\n", + "그래서 아래처럼 다시 함수를 정의 하면\n", + "

\n", + "$$ V \\left( \\boldsymbol{\\theta}^{(D)} , \\boldsymbol{\\theta}^{(G)} \\right) = -J^{(D)} \\left( \\boldsymbol{\\theta}^{(D)} , \\boldsymbol{\\theta}^{(G)} \\right) $$\n", + "
\n", + "으로 쓸 수 있고 GANs가 해결해야하는 문제를 종합적으로 말하자면 이 벨류펑션을 $\\boldsymbol{\\theta}^{(D)}$에 대해서 최대화, $\\boldsymbol{\\theta}^{(G)}$에 대해서 최소화하는 문제가 됩니다.\n", + "

\n", + "$$\n", + "\\boldsymbol{\\theta}^{(G)*} = \\underset{\\boldsymbol{\\theta}^{(G)}}{\\text{argmin}} \\, \\underset{\\boldsymbol{\\theta}^{(D)}}{\\text{argmax}} = \\frac{1}{2} \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\log D( \\boldsymbol{x} ) \n", + "+ \\frac{1}{2} \\mathbb{E}_{\\boldsymbol{z}} \\log \\left(1-D \\left( G(\\boldsymbol{z}) \\right) \\right)\n", + "$$\n", + "
\n", + "위 식에서 $\\log D(\\boldsymbol{x})$ 부분은 G와 아무 상관이 없는 항입니다. 따라서 G는 식의 뒷부분인 $\\frac{1}{2} \\mathbb{E}_{z} \\log \\left(1-D(G(\\boldsymbol{z}) \\right)$를 최소화시키면 됩니다. 그런데 전체 식이 D에 대해서 최대화 되었다는 말은 코스트 함수에서 어느정도 평탄한 부분에 도달했다는 말이 됩니다. 그 상태에서 뒷 부분을 코스트로 해서 그래디언트를 계산하고 이를 다시 최소화 시킨다고 했을 때 기울기 값이 크지 않아 최소화 시키기가 힘들 수 있습니다. D는 최대화된 최적점에 가버리고 거기서 G는 다시 낮은 곳으로 가야하는데 기울기가 없어서 꾸물꾸물 거리게 되는 것입니다. 그래서 논문에서는 식을 약간 변형한 형태인 아래 식으로 코스트 함수를 설정하는 것이 효율적이라 합니다.\n", + "

\n", + "$$ J^{G} = -\\frac{1}{2} \\mathbb{E}_{z} \\log \\left(D(G(\\boldsymbol{z}) \\right) $$\n", + "
\n", + "각 형태에 대한 상황을 그림으로 정리했습니다.\n", + "\n", + " \n", + "\n", + "둘 다 최소화 시키는 코스트로 사용 가능한데 우리 실험에서는 아래와 같이 그래디언트를 구하고 G를 업데이트 하도록하겠습니다.\n", + "

\n", + "$$ \\bigtriangledown_{\\theta^{(G)}} \\left( - \\frac{1}{m}\\sum_{i=1}^{m} \\log D\\left(G(z^{(i)})\\right) \\right)$$\n", + "
\n", + "Keras에서 제공하는 mean_squared_logarithmic_error 함수를 사용하겠습니다. GANs의 구조는 대충 알아보았으므로 Keras를 이용해서 모델을 만들겠습니다. 특별히 신기술(?)은 적용하지 않고 활성함수로 relu정도만 사용하고 나머지는 평이하게 구성했습니다.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_13 (Dense) (None, 30) 60 \n", + "_________________________________________________________________\n", + "dense_14 (Dense) (None, 30) 930 \n", + "_________________________________________________________________\n", + "dense_15 (Dense) (None, 2) 62 \n", + "=================================================================\n", + "Total params: 1,052\n", + "Trainable params: 1,052\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_16 (Dense) (None, 20) 40 \n", + "_________________________________________________________________\n", + "activation_5 (Activation) (None, 20) 0 \n", + "_________________________________________________________________\n", + "dense_17 (Dense) (None, 40) 840 \n", + "_________________________________________________________________\n", + "activation_6 (Activation) (None, 40) 0 \n", + "_________________________________________________________________\n", + "dense_18 (Dense) (None, 1) 41 \n", + "=================================================================\n", + "Total params: 921\n", + "Trainable params: 921\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_3 (InputLayer) (None, 1) 0 \n", + "_________________________________________________________________\n", + "sequential_6 (Sequential) (None, 1) 921 \n", + "_________________________________________________________________\n", + "sequential_5 (Sequential) (None, 2) 1052 \n", + "=================================================================\n", + "Total params: 1,973\n", + "Trainable params: 921\n", + "Non-trainable params: 1,052\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "################################################################\n", + "# 모델 생성\n", + "################################################################\n", + "\n", + "#Discriminator\n", + "D = Sequential()\n", + "D.add(Dense(30, activation='relu', input_dim=1))\n", + "D.add(Dense(30, activation='relu'))\n", + "D.add(Dense( 2, activation='softmax'))\n", + "D_opt = optimizers.Adam(lr=0.001*1.58, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)\n", + "D.compile(loss='binary_crossentropy', optimizer=D_opt, metrics=['accuracy'])\n", + "D.summary()\n", + "\n", + "#Generator\n", + "G = Sequential()\n", + "G.add(Dense(20, input_dim=1))\n", + "G.add(Activation('sigmoid'))\n", + "G.add(Dense(40))\n", + "G.add(Activation('sigmoid'))\n", + "G.add(Dense(1))\n", + "#G.add(Activation('linear'))\n", + "G.summary()\n", + "\n", + "#GAN 1 - D(G(z))\n", + "# 이 모델을 훈련시킬때 D는 업데이트 되면 안되므로 D의 trainable 을 False로 세팅\n", + "make_trainable(D, False)\n", + "gan_input = Input(shape=[1])\n", + "GAN = Model( gan_input, D(G(gan_input)) )\n", + "G_opt = optimizers.Adam(lr=0.001*1.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)\n", + "GAN.compile(loss='mean_squared_logarithmic_error', optimizer=G_opt )\n", + "GAN.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "일단 초기 G가 균등분포 노이즈를 받아서 어떤 값을 출력하는지 그려보도록하겠습니다.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG/FJREFUeJzt3XuUnHWd5/H3xxDIaFgIptUQwm3EFoIrSjYw6g6dETGw\nSvSMOybrJbhw4g3d9bIz4AVa0B1GR+eMCy7kMBlQ12DUQSMniFGsQRejCS63RhNCRMlFIgQjLSQm\n8N0/nl8zT1equ57ufrqrqp/P65w6Xc/tV99fV/XzqefaigjMzKy6ntXqAszMrLUcBGZmFecgMDOr\nOAeBmVnFOQjMzCrOQWBmVnEOAmtK0tWSPl5SW0dL6pc0JQ3XJF1QRtupvZslLS2rvRG87iclPSLp\nN2NsZ9Dvp11Ieq2kbxac96eS5o53TVYeB0HFSXpQ0pOSHpf0O0m3S3qXpGc+GxHxroi4vGBbZw43\nT0T8OiKmR8RTJdTeK+nLde2fHRHXj7XtEdZxNPAh4KSIeEGD6T2SthZpq/73M9KglHSepKdSmPxe\n0p2SXld0+WF8Crii4Lx/D1xWwmvaBHEQGMDrI+JQ4BiyP/a/Af6p7BeRdFDZbbaJo4FHI2JnqwtJ\nfhwR04HDyd7HVZJmjLYxSf8BOCwi1hVcZDWwQNIBoWjtyUFgz4iI3RGxGngzsFTSyQCSrpP0yfR8\npqSb0tbDLkk/lPQsSV8iWyF+O30b/WtJx0oKSedL+jVwa25cPhT+NO1O+L2kb0k6Ir3WAd+kB7Y6\nJC0EPgK8Ob3eXWn6M9+gU10fk/QrSTslfVHSYWnaQB1LJf067db56FC/G0mHpeV/m9r7WGr/TGAt\ncGSq47pmv+dU4+WS/m/aEvuupJl1dR0k6VPAfwSuTG1f2fRNzImIp4EVwJ8Af9qkpr+WtEPSdkkX\npBpemCafDfxrbt5XpN/XnDT8UkmPSXpxet09wB3Aa0dSr7WOg8AOEBE/BbaSrYTqfShN6wKeT7Yy\njoh4G/Brsq2L6RHx6dwyZwAnMvSK4e3AfwVmAfuBzxeo8TvA/wS+ml7vpQ1mOy89FgDHA9OB+pXp\nq4Bu4NXAJZJOHOIl/xdwWGrnjFTzOyLie2Qryu2pjvOa1Z78F+AdwPOAg4EPN+jjR4EfAhemti8s\n2DbwzBbYBUA/cP8w8y0EPgicCbwQ6Kmb5SXAxlxdtwPXANdL+hPgy8DHI+IXuWV+DjR6T6wNOQhs\nKNuBIxqM30e2wj4mIvZFxA+j+Q2reiPiDxHx5BDTvxQR90bEH4CPA39V0sHStwCfi4gtEdEPXAws\nrtsa+UREPBkRdwF30WDllWpZDFwcEY9HxIPAZ4G3jaG2f46ITel3sgo4ZQxt1Ttd0u+A3wBLgDdG\nxO5h5v+rVE9fRDwB9NZNPxx4vG5cL1kw/hTYBlxVN/3xtJx1AAeBDWU2sKvB+M8Am4HvStoi6aIC\nbT00gum/AqYCMwtVObwjU3v5tg8i25IZkD/L5wmyrYZ6M1NN9W3NHkNtRV53tNZFxOERMTMiTk9b\nLcM5ksHvQf379RhwaH5EROwDrgNOBj7b4MvAocDvRly5tYSDwA6QDg7OBn5UPy19I/5QRBwPnAt8\nUNKrByYP0WSzLYY5uedHk211PAL8AXh2rq4pZLukira7newAeL7t/cDDTZar90iqqb6tbSNsZzQm\n4vbAO4CjcsNz6qbfDbwoP0LSbOBS4J+Bz0o6pG6ZE8m2sKwDOAjsGZL+XTrV8AbgyxFxT4N5Xifp\nhZIE7AaeAp5Okx8m24c+Um+VdJKkZ5Oddvj1dPrkJmCapP8kaSrwMSC/wnkYODZ/qmudlcAHJB0n\naTr/dkxh/0iKS7WsAj4l6VBJx5DtU//y8EuWYrS/05FYBbxD0onpPai/ZmQN2XERANJ7fx3ZGUnn\nkwXJ5bnp04BTyQ6iWwdwEBhkZ/o8TrZL4KPA58gOZDZyAvA9sgOQPwa+EBE/SNP+FvhYOqPogIOf\nw/gS2YrlN8A04P2QncUEvAe4luzb9x/IDlQP+Fr6+aiknzVod0Vq+zbgl8Ae4H0jqCvvfen1t5Bt\nKX0ltT/e/hF4Uzor5/MAkvokvaWsF4iIm8kO0P+AbLffwGmie9P0nwG7JZ2Wxr+f7CD3x9MuoXeQ\nBcnAyQWvB2oRsb2sGm18yf+Yxszy0plT9wKHDGw9SToLeE9EvKHA8j8Bzo+Ie8e3UiuLg8DMkPRG\nsl1AzwauB54ustK3yaHpriFJcyT9QNJ9aZP0vzWYR5I+L2mzpLslvTw3bamk+9Njwu8BY2Yg6SPp\norT6x81plncCO4EHyI77vLtlxdqEa7pFIGkWMCsifibpULIrBt8QEffl5jmHbB/qOcBpwD9GxGnK\nrhDdAMwjO/vhDuDUiHhsXHpjZmYj1nSLICJ2pINFRMTjZFcM1p8/vQj4YmTWAYenAHktsDYidqWV\n/1pgYak9MDOzMRnRTcAkHQu8DPhJ3aTZDL4IZWsaN9T4Rm0vA5YBTJs27dSjjz56JKV1jKeffppn\nPWvynqzl/nW2SvZv377Bw1OnTlxBJdq0adMjEdHVfM4DFQ6CdB72N4D/HhG/H82LDScilgPLAbq7\nu2Pjxo1NluhMtVqNnp6eVpcxbty/zlbJ/vX2Dj/cIST9qvlcjRWK/nQxzzeA/xMR/9Jglm0Mvhrx\nqDRuqPFmZtYmipw1JLIrCH8eEZ8bYrbVwNvT2UOnA7sjYgdwC3CWpBnK7od+VhpnZmZtosiuoVeS\n3WXxHkl3pnEfIbvXChFxNdn5x+eQXZX4BOmq1IjYJelyYH1a7rKIaHQjMzMza5GmQRARPwLUZJ4A\n3jvEtBVMzKX4ZmY2CpP39AAzMyvEQWBmVnEOAjOzinMQmJlVnIPAzKziHARmZhXnIDAzqzgHgZlZ\nxTkIzMwqzkFgZlZxDgIzs4pzEJiZVZyDwMys4hwEZmYV5yAwM6s4B4GZWcU5CMzMKs5BYGZWcU3/\nVaWkFcDrgJ0RcXKD6f8DeEuuvROBrvT/ih8EHgeeAvZHxLyyCjczs3IU2SK4Dlg41MSI+ExEnBIR\npwAXA/9a9w/qF6TpDgEzszbUNAgi4jZgV7P5kiXAyjFVZGZmE6q0YwSSnk225fCN3OgAvivpDknL\nynotMzMrjyKi+UzSscBNjY4R5OZ5M/DWiHh9btzsiNgm6XnAWuB9aQuj0fLLgGUAXV1dp65atWok\n/egY/f39TJ8+vdVljBv3r7NVsn87dgwenjVr4goq0YIFC+4Y7S74pgeLR2AxdbuFImJb+rlT0o3A\nfKBhEETEcmA5QHd3d/T09JRYWvuo1WpM1r6B+9fpKtm/3t7Bw0uWTFQ5baOUXUOSDgPOAL6VG/cc\nSYcOPAfOAu4t4/XMzKw8RU4fXQn0ADMlbQUuBaYCRMTVabY3At+NiD/kFn0+cKOkgdf5SkR8p7zS\nzcysDE2DICKabidFxHVkp5nmx20BXjrawszMbGL4ymIzs4pzEJiZVZyDwMys4hwEZmYV5yAwM6s4\nB4GZWcU5CMzMKs5BYGZWcQ4CM7OKcxCYmVWcg8DMrOIcBGZmFecgMDOrOAeBmVnFOQjMzCrOQWBm\nVnEOAjOzinMQmJlVnIPAzKzimgaBpBWSdkq6d4jpPZJ2S7ozPS7JTVsoaaOkzZIuKrNwMzMrR5Et\nguuAhU3m+WFEnJIelwFImgJcBZwNnAQskXTSWIo1M7PyNQ2CiLgN2DWKtucDmyNiS0T8EbgBWDSK\ndszMbBwdVFI7fybpLmA78OGI6ANmAw/l5tkKnDZUA5KWAcsAurq6qNVqJZXWXvr7+ydt38D963SV\n7F939+DhSdz/oZQRBD8DjomIfknnAN8EThhpIxGxHFgO0N3dHT09PSWU1n5qtRqTtW/g/nW6Svav\nt3fw8JIlE1VO2xjzWUMR8fuI6E/P1wBTJc0EtgFzcrMelcaZmVkbGXMQSHqBJKXn81ObjwLrgRMk\nHSfpYGAxsHqsr2dmZuVqumtI0kqgB5gpaStwKTAVICKuBt4EvFvSfuBJYHFEBLBf0oXALcAUYEU6\ndmBmZm2kaRBExLA7zCLiSuDKIaatAdaMrjQzM5sIvrLYzKziHARmZhXnIDAzqzgHgZlZxTkIzMwq\nzkFgZlZxDgIzs4pzEJiZVZyDwMys4hwEZmYV5yAwM6s4B4GZWcU5CMzMKs5BYGZWcQ4CM7OKcxCY\nmVWcg8DMrOIcBGZmFdc0CCStkLRT0r1DTH+LpLsl3SPpdkkvzU17MI2/U9KGMgs3M7NyFNkiuA5Y\nOMz0XwJnRMRLgMuB5XXTF0TEKRExb3QlmpnZeCryz+tvk3TsMNNvzw2uA44ae1lmZjZRFBHNZ8qC\n4KaIOLnJfB8GXhwRF6ThXwKPAQFcExH1Wwv5ZZcBywC6urpOXbVqVcEudJb+/n6mT5/e6jLGjfvX\n2SrZvx07Bg/PmjVxBZVowYIFd4x2z0vTLYKiJC0AzgdelRv9qojYJul5wFpJv4iI2xotn0JiOUB3\nd3f09PSUVVpbqdVqTNa+gfvX6SrZv97ewcNLlkxUOW2jlLOGJP174FpgUUQ8OjA+IralnzuBG4H5\nZbyemZmVZ8xBIOlo4F+At0XEptz450g6dOA5cBbQ8MwjMzNrnaa7hiStBHqAmZK2ApcCUwEi4mrg\nEuC5wBckAexP+6meD9yYxh0EfCUivjMOfTAzszEoctbQsDvM0oHhCxqM3wK89MAlzMysnfjKYrMW\n2r59O9u3b291GVZxDgIzs4pzEJiZVZyDwMys4hwEZmYV5yAwM6s4B4GZWcWVdq8hMytuIk8ZHXit\nI488csJe0zqLtwjMzCrOQWBmVnEOAjOzivMxArNJyLetsJHwFoFZm/P9iIrx72n0HARm1la8Qp94\nDgKzDuEVpI0XHyMws1EZ7+sT8qHnayDGl4PArA2UtdJrxRaDL1jrfA4Cs5J02gqx7G/cjdpr5e+k\n096PVip0jEDSCkk7JTX85/PKfF7SZkl3S3p5btpSSfenx9KyCjdrd+22T3809bRbH2x8FD1YfB2w\ncJjpZwMnpMcy4H8DSDqC7J/dnwbMBy6VNGO0xZpZtTmYxkehXUMRcZukY4eZZRHwxYgIYJ2kwyXN\nAnqAtRGxC0DSWrJAWTmWos2sXO2+cq2vz7t9yqVs3V1gxiwIboqIkxtMuwm4IiJ+lIa/D/wNWRBM\ni4hPpvEfB56MiL9v0MYysq0Jurq6Tl21atUoutP++vv7mT59eqvLGDdV7t++ffsAmDp1asPhRvM2\nUj9//bwjbW8k9u7dO6h/Y+1DkeWb9Xc4+WWL/P4bvn87dgwenjWr8Ou3kwULFtwREfNGs2zbHCyO\niOXAcoDu7u7o6elpbUHjpFarMVn7BtXpX6NvpPXjhvvWOtw38Pr56+cdaXsj0dfXx4te9KKmNTV7\nzZH8Dpr1dzgj/f03/Hz29g4eXrKk8OtPFmUFwTZgTm74qDRuG9lWQX58raTXNKu8dt+lY52hrCuL\nVwNvT2cPnQ7sjogdwC3AWZJmpIPEZ6VxZjaJ+aBuZym0RSBpJdk3+5mStpKdCTQVICKuBtYA5wCb\ngSeAd6RpuyRdDqxPTV02cODYzCxvNMHRaBkH0MgVPWto2J1m6Wyh9w4xbQWwYuSlmVVTu58RM5YV\nbSuvfLahtc3BYjObvLwybm8OArM25ZWnTRQHgdkI7Nu3r+UraO9esbI5CMwmkFeo1o78j2nMzCrO\nQWBmVnEOAjOzinMQmJlVnA8Wm42BD/6OnX+HrectAjOzinMQmJlVnIPAzKziHARmZhXng8Vm48wH\nQ63deYvAzKzivEVgVjJvAVin8RaBmVnFOQjMzCquUBBIWihpo6TNki5qMP0fJN2ZHpsk/S437anc\ntNVlFm9mZmPX9BiBpCnAVcBrgK3AekmrI+K+gXki4gO5+d8HvCzXxJMRcUp5JZuZWZmKbBHMBzZH\nxJaI+CNwA7BomPmXACvLKM7MzMZfkbOGZgMP5Ya3Aqc1mlHSMcBxwK250dMkbQD2A1dExDeHWHYZ\nsAygq6uLWq1WoLTO09/fP2n7BpO/f3v27KGvr6/VZYybyd6/vXv3Hvj57O4ePDyJP79DKfv00cXA\n1yPiqdy4YyJim6TjgVsl3RMRD9QvGBHLgeUA3d3d0dPTU3Jp7aFWqzFZ+waTv39r165l7ty5rS5j\n3PT19U3q/m3atOnAz2dv7+DhJUsmqpy2UWTX0DZgTm74qDSukcXU7RaKiG3p5xagxuDjB2Zm1mJF\ngmA9cIKk4yQdTLayP+DsH0kvBmYAP86NmyHpkPR8JvBK4L76Zc3MrHWa7hqKiP2SLgRuAaYAKyKi\nT9JlwIaIGAiFxcANERG5xU8ErpH0NFnoXJE/28jMzFqv0DGCiFgDrKkbd0ndcG+D5W4HXjKG+szM\nbJz5ymIzs4pzEJiZVZyDwMys4hwEZmYV5yAwM6s4B4GZWcU5CMzMKs5BYGZWcQ4CM7OKcxCYmVWc\ng8DMrOIcBGZmFecgMDOrOAeBmVnFOQjMzCrOQWBmVnEOAjOzinMQmJlVXKEgkLRQ0kZJmyVd1GD6\neZJ+K+nO9LggN22ppPvTY2mZxZuZ2dg1/Z/FkqYAVwGvAbYC6yWtbvBP6L8aERfWLXsEcCkwDwjg\njrTsY6VUb2ZmY1Zki2A+sDkitkTEH4EbgEUF238tsDYidqWV/1pg4ehKNTOz8dB0iwCYDTyUG94K\nnNZgvr+U9OfAJuADEfHQEMvObvQikpYBywC6urqo1WoFSus8/f39k7ZvMPn7t2fPHvr6+lpdxriZ\n7P3bu3fvgZ/P7u7Bw5P48zuUIkFQxLeBlRGxV9I7geuBvxhJAxGxHFgO0N3dHT09PSWV1l5qtRqT\ntW8w+fu3du1a5s6d2+oyxk1fX9+k7t+mTZsO/Hz29g4eXrJkosppG0V2DW0D5uSGj0rjnhERj0bE\n3jR4LXBq0WXNzKy1igTBeuAEScdJOhhYDKzOzyBpVm7wXODn6fktwFmSZkiaAZyVxpmZWZtoumso\nIvZLupBsBT4FWBERfZIuAzZExGrg/ZLOBfYDu4Dz0rK7JF1OFiYAl0XErnHoh5mZjVKhYwQRsQZY\nUzfuktzzi4GLh1h2BbBiDDWamdk48pXFZmYV5yAwM6s4B4GZWcU5CMzMKs5BYGZWcQ4CM7OKcxCY\nmVWcg8DMrOIcBGZmFecgMDOrOAeBmVnFOQjMzCrOQWBmVnEOAjOzinMQmJlVnIPAzKziHARmZhXn\nIDAzq7hCQSBpoaSNkjZLuqjB9A9Kuk/S3ZK+L+mY3LSnJN2ZHqvrlzUzs9Zq+j+LJU0BrgJeA2wF\n1ktaHRH35Wb7f8C8iHhC0ruBTwNvTtOejIhTSq7bzMxKUmSLYD6wOSK2RMQfgRuARfkZIuIHEfFE\nGlwHHFVumWZmNl6KBMFs4KHc8NY0bijnAzfnhqdJ2iBpnaQ3jKJGMzMbR013DY2EpLcC84AzcqOP\niYhtko4HbpV0T0Q80GDZZcAygK6uLmq1WpmltY3+/v5J2zeY/P3bs2cPfX19rS5j3Ez2/u3du/fA\nz2d39+DhSfz5HUqRINgGzMkNH5XGDSLpTOCjwBkRsXdgfERsSz+3SKoBLwMOCIKIWA4sB+ju7o6e\nnp7CnegktVqNydo3mPz9W7t2LXPnzm11GeOmr69vUvdv06ZNB34+e3sHDy9ZMlHltI0iu4bWAydI\nOk7SwcBiYNDZP5JeBlwDnBsRO3PjZ0g6JD2fCbwSyB9kNjOzFmu6RRAR+yVdCNwCTAFWRESfpMuA\nDRGxGvgMMB34miSAX0fEucCJwDWSniYLnSvqzjYyM7MWK3SMICLWAGvqxl2Se37mEMvdDrxkLAWa\nmdn48pXFZmYV5yAwM6s4B4GZWcU5CMzMKs5BYGZWcQ4CM7OKcxCYmVWcg8DMrOIcBGZmFecgMDOr\nOAeBmVnFOQjMzCrOQWBmVnEOAjOzinMQmJlVnIPAzKziHARmZhXnIDAzqzgHgZlZxRUKAkkLJW2U\ntFnSRQ2mHyLpq2n6TyQdm5t2cRq/UdJryyvdzMzK0DQIJE0BrgLOBk4Clkg6qW6284HHIuKFwD8A\nf5eWPQlYDMwFFgJfSO2ZmVmbKLJFMB/YHBFbIuKPwA3Aorp5FgHXp+dfB14tSWn8DRGxNyJ+CWxO\n7ZmZWZs4qMA8s4GHcsNbgdOGmici9kvaDTw3jV9Xt+zsRi8iaRmwLA3ulXRvgdo60UzgkVYXMY7c\nv87m/n3iExNTSfm6R7tgkSCYEBGxHFgOIGlDRMxrcUnjYjL3Ddy/Tuf+dS5JG0a7bJFdQ9uAObnh\no9K4hvNIOgg4DHi04LJmZtZCRYJgPXCCpOMkHUx28Hd13TyrgaXp+ZuAWyMi0vjF6ayi44ATgJ+W\nU7qZmZWh6a6htM//QuAWYAqwIiL6JF0GbIiI1cA/AV+StBnYRRYWpPlWAfcB+4H3RsRTBepaPrru\ndITJ3Ddw/zqd+9e5Rt03ZV/czcysqnxlsZlZxTkIzMwqruVBIOk/S+qT9LSkIU/rkvSgpHsk3TmW\n06Qm2gj6N+xtPNqVpCMkrZV0f/o5Y4j5nkrv3Z2S6k82aDtjua1KuyvQt/Mk/Tb3fl3QijpHS9IK\nSTuHuhZJmc+n/t8t6eUTXeNoFehbj6TduffukkINR0RLH8CJZBdC1IB5w8z3IDCz1fWOR//IDsI/\nABwPHAzcBZzU6toL9u/TwEXp+UXA3w0xX3+rax1Bn5q+H8B7gKvT88XAV1tdd4l9Ow+4stW1jqGP\nfw68HLh3iOnnADcDAk4HftLqmkvsWw9w00jbbfkWQUT8PCI2trqO8VKwf0Vu49Gu8rcXuR54Qwtr\nKctYbqvS7jr5s1ZIRNxGdvbiUBYBX4zMOuBwSbMmprqxKdC3UWl5EIxAAN+VdEe6HcVk0ug2Hg1v\nxdGGnh8RO9Lz3wDPH2K+aZI2SFonqd3Dosj7Mei2KsDAbVXaXdHP2l+m3SZflzSnwfRO1sl/b0X8\nmaS7JN0saW6RBSbkFhOSvge8oMGkj0bEtwo286qI2CbpecBaSb9I6dhyJfWvbQ3Xv/xARISkoc5H\nPia9f8cDt0q6JyIeKLtWK8W3gZURsVfSO8m2fP6ixTVZMT8j+1vrl3QO8E2yC3mHNSFBEBFnltDG\ntvRzp6QbyTZx2yIISuhfW9+KY7j+SXpY0qyI2JE2r3cO0cbA+7dFUg14Gdm+6nY0ktuqbK27rUq7\na9q3iMj341qy40CTSVv/vY1FRPw+93yNpC9ImhkRw95oryN2DUl6jqRDB54DZwGT6e6kRW7j0a7y\ntxdZChywBSRphqRD0vOZwCvJrjZvV2O5rUq7a9q3uv3l5wI/n8D6JsJq4O3p7KHTgd253ZsdTdIL\nBo5VSZpPto5v/gWlDY6Cv5FsH91e4GHgljT+SGBNen482dkNdwF9ZLtcWl57Wf1Lw+cAm8i+JXdS\n/54LfB+4H/gecEQaPw+4Nj1/BXBPev/uAc5vdd0F+nXA+wFcBpybnk8Dvkb2PzZ+Chzf6ppL7Nvf\npr+zu4AfAC9udc0j7N9KYAewL/3tnQ+8C3hXmi6yf7b1QPo8Dnm2Yrs9CvTtwtx7tw54RZF2fYsJ\nM7OK64hdQ2ZmNn4cBGZmFecgMDOrOAeBmVnFOQjMzCrOQWBmVnEOAjOzivv/NChwsanGlmUAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G가 만들어낸 값 10개\n", + "[[ 1.05592656]\n", + " [ 1.06276715]\n", + " [ 1.0556128 ]\n", + " [ 1.07961988]\n", + " [ 1.06597352]\n", + " [ 1.06071043]\n", + " [ 1.0703969 ]\n", + " [ 1.08249021]\n", + " [ 1.06915987]\n", + " [ 1.07442129]]\n" + ] + } + ], + "source": [ + "################################################################\n", + "#학습전에 G로 부터 숫자 생성하고 분포를 그려봄\n", + "################################################################\n", + "Z1 = np.random.uniform(0,1,10000)\n", + "fake1 = G.predict(Z1)\n", + "n, bins1, patches = plt.hist(Z1, 50, normed=1, facecolor='grey', alpha=0.2)\n", + "plt.title('Distribution of Init. P_g(x)')\n", + "n, bins, patches = plt.hist(fake1, 50, normed=1, facecolor='red', alpha=0.5)\n", + "plt.grid(True)\n", + "plt.axis([-1.5, 1.5, 0, 2])\n", + "plt.show()\n", + "print(\"G가 만들어낸 값 10개\")\n", + "print(fake1[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "G가 토해내는 $p_{g}(\\boldsymbol{x})$는 빨간색으로 표시되는데 한마디로 엉망입니다. 이 G를 훈련시켜서 6을 중심으로 종모양으로 퍼지는 모델을 만드는 것이 목표입니다. 경험적으로 알 수 있는 사실이지만 G의 학습보다는 D의 학습이 더 중요하므로 D를 미리 학습을 한번 시킵니다. Ian Goodfellow의 비유처럼 G는 위폐범인데 D가 위폐를 잘 골라내지 못한다면 G가 적당히 만들어도 D 위폐가 아니라고 판단할 것이고 G는 집중적으로 그 위폐만 만들게 됩니다. 실제로 G가 더 잘 훈련이 되면 우리의 문제에서 G는 거의 모든 값을 6근처의 값으로 집중적으로 만드는 모습을 확인할 수 있습니다. 그래서 왠만하면 D가 G의 결과를 잘 판단하도록 훈련시켜야 합니다. 그의 논문에서 정확히 언급하고 있습니다. \n", + "
\n", + "\n", + ">\"in particular, G must not be trained too much without updating D, in order to avoid “the Helvetica scenario” in which G collapses too many values of $\\boldsymbol{z}$ to the same value of $\\boldsymbol{x}$ to have enough diversity to model $p_{\\text{data}}$\"\n", + "\n", + "
\n", + "G가 너무 많은 $\\boldsymbol{z}$ 값을 같은 $\\boldsymbol{x}$값으로 몰리게 해서 $p_{data}$를 묘사하기에 충분한 다양성을 가지지 못하는 문제를 피해야한다는 말인데 어떤 결과를 놓고 이야기하는지 아래에서 실험적으로 확인 해보도록 하겠습니다. 먼저 D를 선학습 시킵니다. (여러번 실험해보면 이 과정이 꼭 필요한것 같지는 않은데 왠지 하면 좀 더 잘되는 느낌은 있습니다.;;)\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "*----------------------------------------------------------------\n", + "* Discriminator 미리 학습\n", + "*----------------------------------------------------------------\n", + "- 진짜 샘플 5개\n", + "[[ 6.57336939 1. ]\n", + " [ 5.63364694 1. ]\n", + " [ 5.64404928 1. ]\n", + " [ 7.33483853 1. ]\n", + " [ 5.3510401 1. ]]\n", + "\n", + "\n", + "- 가짜 샘플 5개\n", + "[[ 1.06687319 0. ]\n", + " [ 1.05815434 0. ]\n", + " [ 1.0738405 0. ]\n", + " [ 1.07440543 0. ]\n", + " [ 1.05417192 0. ]]\n", + "\n", + "\n", + "Epoch 1/1\n", + "80000/80000 [==============================] - 0s - loss: 0.0690 - acc: 0.9699 \n", + "\n", + "\n", + "*----------------------------------------------------------------\n", + "* 선학습된 Discriminator 테스트\n", + "*----------------------------------------------------------------\n", + "- Discriminator의 예측\n", + " 입력 출력1 출력2\n", + "[[ 6.57336939e+00 3.48270440e-10 1.00000000e+00]\n", + " [ 5.63364694e+00 3.58078154e-08 1.00000000e+00]\n", + " [ 5.64404928e+00 3.40177131e-08 1.00000000e+00]\n", + " [ 7.33483853e+00 8.15678341e-12 1.00000000e+00]\n", + " [ 5.35104010e+00 1.44235727e-07 9.99999881e-01]\n", + " [ 1.06687319e+00 9.97244358e-01 2.75568222e-03]\n", + " [ 1.05815434e+00 9.97232378e-01 2.76764832e-03]\n", + " [ 1.07384050e+00 9.97253835e-01 2.74615781e-03]\n", + " [ 1.07440543e+00 9.97254670e-01 2.74538621e-03]\n", + " [ 1.05417192e+00 9.97226894e-01 2.77313124e-03]]\n" + ] + } + ], + "source": [ + "################################################################\n", + "# Discriminator 미리 학습\n", + "################################################################\n", + "print(\"*----------------------------------------------------------------\")\n", + "print(\"* Discriminator 미리 학습\")\n", + "print(\"*----------------------------------------------------------------\")\n", + "make_trainable(D, True)\n", + "k = 200\n", + "real_mb = get_distribution_sampler(mu, sigma, batch_size*k)\n", + "fake_mb = np.hstack(\n", + " ( G.predict( np.random.uniform(0,1,batch_size*k) ) , \n", + " np.zeros(batch_size*k).reshape(batch_size*k,1) \n", + " )\n", + " )\n", + "\n", + "print(\"- 진짜 샘플 5개\")\n", + "print(real_mb[:5])\n", + "\n", + "print(\"\\n\")\n", + "print(\"- 가짜 샘플 5개\")\n", + "print(fake_mb[:5])\n", + "print(\"\\n\")\n", + "\n", + "train_D = np.vstack((real_mb, fake_mb))\n", + "train_D = train_D[np.random.permutation(train_D.shape[0]), :]\n", + "train_Dx = train_D[:,0]\n", + "train_Dy = np_utils.to_categorical(train_D[:,1], 2)\n", + "\n", + "D.fit(train_Dx, train_Dy, epochs=1, batch_size=batch_size)\n", + "\n", + "print(\"\\n\")\n", + "print(\"*----------------------------------------------------------------\")\n", + "print(\"* 선학습된 Discriminator 테스트\")\n", + "print(\"*----------------------------------------------------------------\")\n", + "Z = np.concatenate((real_mb[:5,0], fake_mb[:5,0]))\n", + "detec = D.predict(Z)\n", + "\n", + "print(\"- Discriminator의 예측\")\n", + "print(\" 입력 출력1 출력2\")\n", + "print(np.hstack((Z.reshape(10,1), detec)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "D가 선학습되어 트레이닝 데이터에 대해 매우 높은 정확도를 보이게 되었습니다. 이제 본 학습에 들어가는데 GANs에서 제안한 대로 D와 G의 업데이트 비율을 조절하면서 학습합니다. 여기서는 D 3번 업데이트하고 G를 한번 업데이트하는 식으로 학습을 진행하였습니다.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "*----------------------------------------------------------------\n", + "* 본 학습 시작\n", + "*----------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXm7ATtgiiIApUaMUdIup1SwQRq0JrrYVa\nLm6lWqlt1dufVouKervYWtvrSt3aaomovRK9KIqSuiuLogICARXBhSUgRNlCPr8/zokO0yyTySTn\nJPN5Ph7zyJxzvufMezLJ+czZvkdmhnPOuezTKuoAzjnnouEFwDnnspQXAOecy1JeAJxzLkt5AXDO\nuSzlBcA557KUFwDnnMtSXgBcvUm6U9KvMrSsfSWVS8oJh0skXZCJZYfLe1LShEwtrx6ve4Ok9ZI+\nacTXeF/SiEZc/o8k3ZJCu3aS3pXUs7GyuMbhBcDtJlypbJW0RdImSS9LulDSl38rZnahmV2f4rJq\nXUGZ2SozyzWzXRnIfq2kB5KWf4qZ/bWhy65njn2By4DBZrZXNdMLJFWGhW+LpKWSzm3kTCZp/3q0\nbwtcDdxUV1sz2w7cC1yRfkIXBS8Arjqnm1lnYD/gN8D/A+7J9ItIap3pZcbEvsAGM1tbS5uPzCwX\n6ELw+/2LpMFNki41Y4B3zWxNiu3/AUyQ1K4RM7kM8wLgamRmn5lZMfA9gn/ugwAk3S/phvB5D0lP\nhFsLZZJekNRK0t8JVoSPh990fyGpX/hN9HxJq4DnEsYlFoOvSXpd0mZJMyTlha9VIGl1YsaqrQxJ\no4BfAt8LX29hOP3LXUphrqslfSBpraS/SeoaTqvKMUHSqnD3zVU1/W4kdQ3nXxcu7+pw+SOAZ4De\nYY776/gdm5k9BmwEai0AksaHr7UhOZukYZJeCT+HjyXdGn6LR9LzYbOFYabvSeoefm7rJG0Mn++T\nsMhTgH8lLP97kt6T1CUcPkXSJ1W7fcxsdfgejqrtPbh48QLg6mRmrwOrgeOqmXxZOK0n0ItgJWxm\nNh5YRbA1kWtmv0uY5wTgAODkGl7yP4HzgL2BCuDPKWR8Cvhv4KHw9Q6tptk54aMQGADkArcmtTkW\n+DowHJgs6YAaXvJ/gK7hck4IM59rZrMJVp4fhTnOqS13WDS+DXQD3q6l3WDgDmA80BvYA0hcYe8C\nfg70AI4O8/8YwMyOD9scGmZ6iOB//z6Crbx9ga1Jv4uDgaVVA+E8LwN/lrQHwRbhBWa2LmGeJUB1\nv3cXU14AXKo+AvKqGb+TYEW9n5ntNLMXrO4eBq81s8/NbGsN0/9uZu+Y2efAr4Czqg4SN9DZwM1m\nttLMyoErgbFJWx/XmdlWM1sILKSaFVqYZSxwpZltMbP3gT8QrJxT1VvSJmA9cA0w3syW1tL+TOAJ\nM3s+3Of+K6CyaqKZzTezV82sIsxzF0FhqpaZbTCzR83sCzPbAtyY1L4bsCVptouBE4ES4HEzeyJp\n+pZwPtdMeAFwqeoDlFUz/iagFHha0kpJqRwI/LAe0z8A2hB8s22o3uHyEpfdmmDLpUriWTtfEGwl\nJOsRZkpeVp96ZPnIzLqZWZ6ZHWZmRXW0703C7yUsjhuqhiUNCnfjfCJpM8HWUI2/M0kdJd0V7lLa\nDDwPdEsotBuBzonzmNkm4GHgIIKCl6wzsKmO9+FixAuAq5OkIwhWbi8mTwu/AV9mZgOA0cClkoZX\nTa5hkXVtIfRNeL4vwVbGeuBzoGNCrhyCXU+pLvcjgl0eicuuAD6tY75k68NMyctK9YBpOj4m4fci\nqSPBbqAqdwDvAgPNrAvBrjjVsrzLCHZ1HRm2r9pNVDXPW8CgxBkkHUawa24a1e+WO4Bgq8k1E14A\nXI0kdZF0GlAEPGBm/7aPWtJpkvaXJOAzgn3RVbsmPiXYR15fP5A0OFzJTQEeCU8TXQa0l3SqpDYE\npykmnnXyKdBPCaesJpkG/FxSf0m5fHXMoKI+4cIs04EbJXWWtB9wKfBA7XM2yCPAaZKODQ/uTmH3\n/9/OwGagXNI3gIuS5k/+LDoT7PffFB5kvyap/UwSdglJak/w/n4JnAv0kfTjhOl9CHYRvpr2O3RN\nzguAq87jkrYQ7HK4CriZ4J++OgOB2UA58Apwu5nNCaf9Grg6PDPl8nq8/t+B+wl2x7QHLoHgrCSC\nA5t3E3zb/pzgAHSVh8OfGyQtqGa594bLfh54D9gG/KQeuRL9JHz9lQRbRv8Il98ozGwRwT74fxBs\nDWxk9/d+OfB9gv3wfwEeSlrEtcBfw8/iLOAWoAPB1syrwFNJ7R8HviGpdzj8a+BDM7sjPAbxA+AG\nSQPD6d8H/hpOc82E/I5gzrnqSJpIcDHbz+po145g18/xdVz74GImpQIQnmP9JyAHuNvMflNDu+8Q\nbKoeYWbzJPUjODWs6uyGV83swgzkds4510B1XokZHmi7DTiJYJNzrqRiM1uc1K4z8FPgtaRFrDCz\nwzKU17kWS9LZBKdvJvvAzA5s6jyu5UvlGMAwoDQ8d3oHwQHBMdW0ux74LcF+VedcPZnZg+GFWskP\nX/m7RpFKXyx92P287NXAkYkNJA0B+prZ/0n6r6T5+0t6g+AMhavN7IXkFwj3NU4E6NChw9C+ffsm\nN0lbZWUlrVrF91h3nPN5tvTFOZ9nS1+c8y1btmy9mdWvR1Yzq/VBcAXi3QnD44FbE4ZbEVwZ2C8c\nLgHyw+ftgD3C50MJCkmX2l5v6NChlklz5szJ6PIyLc75PFv64pzPs6UvzvmAeVbH+jz5kUopW8Pu\nF+bsw+4XvHQmuDKwRNL7BJ1BFUvKN7PtZrYhLDTzgRUkXVzinHMuGqkUgLnAwPDimbYEfaAUV020\noMfIHmbWz8z6EZxTPNqCs4B66qsbfQwgOGd8ZcbfhXPOuXqr8xiAmVVImgTMIjgN9F4zWyRpCsEm\nR3Etsx8PTJG0k+Dq0AvNrLr+ZJxzzjWxlG7IYWYzCS4NTxw3uYa2BQnPHwUebUA+55xzjSSeh7Od\nc841Oi8AzjmXpbwAOOdclvIC4JxzWcoLgHPOZSkvAM45l6W8ADjnXJbyAuCcc1nKC4BzzmUpLwDO\nOZelvAA451yW8gLgnHNZyguAc85lKS8AzjmXpbwAOOdclkqpAEgaJWmppFJJV9TS7juSTFJ+wrgr\nw/mWSjo5E6Gdc841XJ03hAlv6XgbcBKwGpgrqdjMFie16wz8FHgtYdxggltIHgj0BmZLGmRmuzL3\nFpxzzqUjlS2AYUCpma00sx1AETCmmnbXA78FtiWMGwMUhTeHfw8oDZfnnHMuYqkUgD7AhwnDq8Nx\nX5I0BOhrZv9X33mdc85FI6V7AtdGUivgZuCcBixjIjARoFevXpSUlDQ01pfKy8szurxMi3M+z5a+\nOOfzbOmLe756M7NaH8DRwKyE4SuBKxOGuwLrgffDxzbgIyC/mrazgKNre72hQ4daJs2ZMyejy8u0\nOOfzbOmLcz7Plr445wPmWR3r8+RHKruA5gIDJfWX1JbgoG5xQgH5zMx6mFk/M+sHvAqMNrN5Ybux\nktpJ6g8MBF5vQL1yzjmXIXXuAjKzCkmTCL695wD3mtkiSVMIKk5xLfMukjQdWAxUABebnwHknHOx\nkNIxADObCcxMGje5hrYFScM3Ajemmc8551wj8SuBnXMuS3kBcM65LOUFwDnnspQXAOecy1JeAJxz\nLkt5AXDOuSzlBcA557KUFwDnnMtSXgCccy5LeQFwzrks5QXAOeeylBcA55zLUl4AnHMuS3kBcM65\nLOUFwDnnspQXAOecy1IpFQBJoyQtlVQq6Ypqpl8o6W1Jb0p6UdLgcHw/SVvD8W9KujPTb8A551x6\n6rwjmKQc4DbgJGA1MFdSsZktTmj2DzO7M2w/GrgZGBVOW2Fmh2U2tnPOuYZKZQtgGFBqZivNbAdQ\nBIxJbGBmmxMGOwGWuYjOOecag8xqX1dLOhMYZWYXhMPjgSPNbFJSu4uBS4G2wIlmtlxSP2ARsAzY\nDFxtZi9U8xoTgYkAvXr1GlpUVNTAt/WV8vJycnNzM7a8TItzPs+Wvjjn82zpi3O+wsLC+WaWX6+Z\nzKzWB3AmcHfC8Hjg1lrafx/4a/i8HbBH+Hwo8CHQpbbXGzp0qGXSnDlzMrq8TItzPs+Wvjjn82zp\ni3M+YJ7VsT5PfqSyC2gN0DdheJ9wXE2KgG+FxWW7mW0In88HVgCDUqpMzjnnGlUqBWAuMFBSf0lt\ngbFAcWIDSQMTBk8Flofje4YHkZE0ABgIrMxEcOeccw1T51lAZlYhaRIwC8gB7jWzRZKmEGxyFAOT\nJI0AdgIbgQnh7McDUyTtBCqBC82srDHeiHPOufqpswAAmNlMYGbSuMkJz39aw3yPAo82JKBzrvEV\nFu4+PGdONDlc0/IrgZ1zLkt5AXDOuSzlBcA557KUFwDnnMtSXgCccy5LeQFwzrks5QXAOeeylBcA\n55zLUildCOaca+ZWrYJOnWCPPcgtLYWHHuI7CydT1m7vqJO5CPkWgHMt3WuvwdChsHAhADu7doVO\nnbh9wZHsv+WNiMO5KHkBcK4le/ttGD0a7r+fwutPpLAQ3t7Yk8L5v+f2r93MTW+N5Lh1/4w6pYuI\n7wJyrqUqLYVRo+BPf4JTT4Xf7z75+T3P5JMO/bn+nW9R3robb3Q/MZqcLjJeAJxriSor4ayz4Jpr\nYOzYGpst6zyUiUMXsKVNXhOGc3HhBcC5lqhVK3j6aejRo86mn7XtCUDe9o8pa7sXSI2dzsWEHwNw\nrqVZvz7YAkhh5f8lM254ZwzHrn+s8XK52EmpAEgaJWmppFJJV1Qz/UJJb0t6U9KLkgYnTLsynG+p\npJMzGd4595XCQigsMBbufwaTD3ksGE541Eri7gG/5qIVl9Fm17YmyeuiV2cBCG/peBtwCjAYGJe4\ngg/9w8wONrPDgN8BN4fzDia4heSBwCjg9qpbRDrnMi9/4zN037GWl/YYXe95F3QfTmnuYXx39R8b\nIZmLo1S2AIYBpWa20sx2ENz0fUxiAzPbnDDYCbDw+RigKLw5/HtAabg851ymmXHee1dzX/8pVLZK\n7/DenV/7PWd9+AdYsybD4VwcycxqbyCdCYwyswvC4fHAkWY2KandxcClQFvgRDNbLulW4FUzeyBs\ncw/wpJk9kjTvRGAiQK9evYYWFRVl5M0BlJeXk5ubm7HlZVqc83m29EWRb/v0F8l//D4eveovwUHg\nGuTllVNWVnO2/MfuIXdgHh99+9uNEbNW/rmmr7CwcL6Z5ddnnoydBWRmtwG3Sfo+cDVf3Rg+lXmn\nAlMB8vPzraCgIFOxKCkpIZPLy7Q45/Ns6Ysi37wzbuTmPn/k5YdqP59/3LgSpk0rqHH6NDuBOX8S\ngzKcLxX+uTatVArAGqBvwvA+4biaFAF3pDmvcy5FyQd22x00g+2tOjR8wVWngW7fDu3aNXx5LrZS\nOQYwFxgoqb+ktgQHdYsTG0gamDB4KrA8fF4MjJXUTlJ/YCDwesNjO+d2Y8b2nI6ZO4d/7lw47rjM\nLMvFVp0FwMwqgEnALGAJMN3MFkmaIqnqVINJkhZJepPgOMCEcN5FwHRgMfAUcLGZ7WqE9+Fc1srb\n/jF3zj8C6jieVy9DhsDatTB/fuaW6WInpWMAZjYTmJk0bnLC85/WMu+NwI3pBnTO1W7Epw+yIvfQ\nzF7Bm5MDF1wAU6fCXXdlbrkuVvxKYOeaMzNGfXI/s/ZK+ZyL1J13HkyfDlu2ZH7ZLha8ADjXjA0q\nX0Dbyq283fXYzC+8d28oKIAMnpbt4sU7g3OuGTv5k/t5eq8JmBrpu9yvfw0dMnBmkYslLwDONWNv\ndivk3c5HZHy5X51i+g0A5szJ+Eu4GPBdQM41Yy/0PIN17fvW3bABBpS/BQ8+2Kiv4aLhBcC5Zur4\ndY/SoaLxD9C2sl3BjWUyeZqpiwUvAM41R2vX8l/vno/R+DdvKc09DHbtgrfeavTXck3LC4BzzVFx\nMfPyRrKtdRN0TCbBGWfAP/3m8S2NFwDnmqMZM3ipx5i622WKF4AWyQuAc83N55/Dv/7Fq3nfbLrX\nPProoGO4DRua7jVdo/PTQJ1rbl55BYYNo3xX96Z7zVatYN68pns91yS8ADjX3IwYAcceG9yktYl8\neV2AGUh+XUAL4buAnGuO2rdv+tc04+55h9Fz24dN/9quUXgBcK45eeUV+MUvonltiWWdh3Ds+sei\neX2XcV4AnGtOHn000r55XuhxBset97OBWoqUCoCkUZKWSiqVdEU10y+VtFjSW5KelbRfwrRdkt4M\nH8XJ8zrnUmQGM2bAmCY8/TPJvO4nMXDLG7BuXWQZXObUWQAk5QC3ERxyGgyMkzQ4qdkbQL6ZHQI8\nAvwuYdpWMzssfIzGOZeeJUuC+/QefnhkEXbmtGdB9xNh1qzIMrjMSWULYBhQamYrzWwHwU3fd/sK\nYmZzzOyLcPBVgpu/O+cyacYMGD06s3f+SsP/9vkJ9O8faQaXGbI6OniSdCYwyswuCIfHA0ea2aQa\n2t8KfGJmN4TDFcCbQAXwGzP7tyNIkiYCEwF69eo1tCiDN6AoLy8nN7cJLpdPU5zzebb0NUa+Po8+\nypZBg9h88MEALFuW3nLy8sopK2tYtkGDGjR7jbLxc82UwsLC+WaWX595MnodgKQfAPnACQmj9zOz\nNZIGAM9JetvMViTOZ2ZTgakA+fn5VlBQkLFMJSUlZHJ5mRbnfJ4tfY2SL2l5112X3mLGjSth2rSC\nOtvVZs7dK4KD0b17N2g5ybLyc41QKgVgDZDY4fg+4bjdSBoBXAWcYGbbq8ab2Zrw50pJJcDhwIrk\n+Z1ztdi4Ebp0oXBETtRJArffDt26wa9+FXUS1wCpHAOYCwyU1F9SW2AssNvZPJIOB+4CRpvZ2oTx\n3SW1C5/3AI4BFmcqvHNZ4+c/h7/8JeoUXxk1Cp56KuoUroHqLABmVgFMAmYBS4DpZrZI0hRJVWf1\n3ATkAg8nne55ADBP0kJgDsExAC8AztWHGTz9dNAFRFwcdxy8/TaUlUWdxDVASscAzGwmMDNp3OSE\n59X+ZZrZy8DBDQnoXNZ7++1gf/v++0ed5EuFp7Tnv9scz9PHzeaaRWdFHcelya8Edi7uZs2Ck0+O\nOsW/eT1vFMPKnow6hmsALwDOxd3TT8eyAMzudTb39r8h6hiuAbw7aOfi7pJL/u0U0Dgob9Odcprw\nngQu43wLwLm4O/106Nw56hTVOmjTi36ryGbMtwCci7HLDp3Nqk4HsL5dn6ijVKvTrs3w5z8H9wx2\nzY5vATgXY5eU/oS8HZ9EHaNGb3YrCG4VuWVL1FFcGrwAOBdXq1bRZecGludG1/tnXbbndIRhw+D5\n56OO4tLgBcC5uJo1i/ndT8IU83/TESNg9uyoU7g0xPwvy7ksNmsW8/JGRp2ibiNGwPLlUadwafAC\n4FwcVVbCv/7FvO4nRZ2kbkccAU88EXUKlwYvAM7FUatWsGwZG9pltrvlRhHxDWpc+rwAOBdX3ZvR\nRVazZsHPfhZ1CldPXgCci5HCwuDx4H6/5OyjmtFtMwYMgEceCXoudc2GFwDnYqbNrm18e83/8Fmb\nHlFHSd3++0NODixdGnUSVw9eAJyLmYM2v8x7nQ7i89Zdo46SksJCKDxRzNwxgj+f/kzUcVw9pFQA\nJI2StFRSqaQrqpl+qaTFkt6S9Kyk/RKmTZC0PHxMyGR451qioRtnM797jG7+kqL53UcwdKNfD9Cc\n1FkAJOUAtwGnAIOBcZIGJzV7A8g3s0OAR4DfhfPmAdcARwLDgGskNaMjW841vSEbZ7OgGRaABd2H\ns7rDwKhjuHpIZQtgGFBqZivNbAdQBIxJbGBmc8zsi3DwVYIbxwOcDDxjZmVmthF4BhiVmejOtTw5\nlTupUFsWdzkq6ij1tqntnty5/++jjuHqQVbHUXtJZwKjzOyCcHg8cKSZTaqh/a3AJ2Z2g6TLgfZm\ndkM47VfAVjP7fdI8E4GJAL169RpaVFTUwLf1lfLycnJzczO2vEyLcz7Plr508y1b1ghhkuTllVNW\n1ki/u8pKDtxrMzu7dUtr9pb6uTaFwsLC+WaWX595MtodtKQfAPnACfWZz8ymAlMB8vPzrSCDN78o\nKSkhk8vLtDjn82zpSzffdddao19YNW5cCdOmFTTKsvPLnmZi15vT7hyupX6ucZXKLqA1QN+E4X3C\ncbuRNAK4ChhtZtvrM69zLnDX/Hz23roy6hhpe6frMbBgAZSXRx3FpSCVAjAXGCipv6S2wFigOLGB\npMOBuwhW/msTJs0CRkrqHh78HRmOc84l+/BD9ty+ik/a94s6Sdq25XSC/Hx44YWoo7gU1FkAzKwC\nmESw4l4CTDezRZKmSBodNrsJyAUelvSmpOJw3jLgeoIiMheYEo5zziV79lkWdBse/+6f6zJ8uHcP\n3UykdAzAzGYCM5PGTU54XuM5a2Z2L3BvugGdyxqzZ7Og+/CoUzTciBFw0UVRp3ApaOZfNZxrIcxg\n9uzm0f1zXY44Aq680vsFagb8pvDOxcHWrXDRRXxa0i/qJA1WeFJr4HtwZzA8Z06kcVwtfAvAuTjo\n2BGuuSbqFBnTbcdahpZ5v0Bx5wXAuThYsgQqKqJOkTFdd67n8qU/9N1AMecFwLmo7dgBRx0Fn30W\ndZKM+aDjAbS2HfTe1nyvacgGXgCci9prr8HAgbDHHlEnyRyJBd2HM2Tjs1EncbXwAuBc1GbPDk6d\nbGEWePfQsecFwLmotdACML/bcA7bNAcqK6OO4mrgBcC5KH32GSxcCMccE3WSjFvffh/OPWIRtPLV\nTFz5J+NclNq3h1mzoEOHqJM0ik1t94w6gquFFwDnotSuXYv89l+l19b3YfLkOtu5aHgBcC5Cfxp0\nG6OO/yK4sXph1Gkyb0ubPPjjH+GLL+pu7JqcFwDnorJmDee8N5mdrdpFnaTRfNG6Cxx+eNo3iHGN\nywuAc1GZPZs3up9IpXKiTtK4Tj45OM7hYscLgHNReeop5nY/OeoUjW/kSHj66ahTuGqkVAAkjZK0\nVFKppCuqmX68pAWSKsKbyCdO2xXeJObLG8U4l/V27YJnnmFuXhYUgCFDoFs3v01kDNXZHbSkHOA2\n4CRgNTBXUrGZLU5otgo4B7i8mkVsNbPDMpDVuZbj3XehTx/Wte9bd9vmLicHXnop6hSuGqlsAQwD\nSs1spZntAIqAMYkNzOx9M3sL8Ev+nEvFgQfCvHlRp2ha3jNo7Mjq+FDCXTqjzOyCcHg8cKSZTaqm\n7f3AE2b2SMK4CuBNoAL4jZk9Vs18E4GJAL169RpaVFSU9htKVl5eTm5ubsaWl2lxzufZ0pdqvmXL\nmiBMkry8csrKmu53N2gQtC4vZ+iPfsRrf/tbsEVQg5byuUahsLBwvpnl12eeprgj2H5mtkbSAOA5\nSW+b2YrEBmY2FZgKkJ+fbwUFBRl78ZKSEjK5vEyLcz7Plr5a823cCBMmwIwZXHedmjQXwLhxJUyb\nVtBkr/flHcG6daOgS5fglpE1aNafazOUSgFYAyTuqNwnHJcSM1sT/lwpqQQ4HFhR60zOtVCFhXD8\n2mf55ic7ueLEpl/5R6HqArcfbx7JZ997mgtW1lwAXNNK5RjAXGCgpP6S2gJjgZTO5pHUXVK78HkP\n4Bhgce1zOdeyHbFxFnPzRkUdo8nN7X4yR5T59QBxUmcBMLMKYBIwC1gCTDezRZKmSBoNIOkISauB\n7wJ3SVoUzn4AME/SQmAOwTEALwAue5kxrOwpXs+G8/+TvNXteAZtWQCbN0cdxYVSOgZgZjOBmUnj\nJic8n0uwayh5vpeBgxuY0bkWY78vllBJDh92/HrUUZrc9pyO3NP/BiZ98QV06RJ1HIdfCexck+pc\nsZEZfS4CZcf+/2SP9v0Z7LVX1DFcqCnOAnLOhd7pegzvdG253T/XyYwf5S9gee7hmILvn1+eJeSa\nnG8BONdUdu6kza5tUaeIlsRVi7/PwPI3ok7i8ALgXNN56ilueOdbUaeI3Ct7nM5RG56IOobDC4Bz\nTae4mNez8PTPZK/scRpHewGIBS8AzjWFykp4/HFe6XF61Eki907XY+iztZS87R9HHSXreQFwrim8\n/jr06MFHHb4WdZLI7WrVhrndT+aospl1N3aNys8Ccq4pFBfD6NHwStRB4mHq135LeU7XqGNkPS8A\nzjWF0aOhRw8vAKFP2+8XdQSHFwDnmsZRR0WdIHYK1k4PC8GRUUfJWn4MwLnG9uKLsHRp1CliZ69t\n73HSJ3+POkZW8wLgXGObPNkLQDVerTod1O8UFhkvAM41po0bg1s/jhgRdZLYeb/jYCrVChYujDpK\n1vIC4FxjevJJKCiAjh2jThI/Es/3PBMefjjqJFnLC4Bzjanq9E9XrTk9z6LkL8spLPzqzmGu6aRU\nACSNkrRUUqmkK6qZfrykBZIqwpvIJ06bIGl5+JiQqeDOxV5FBTz/PGfce5qv4GqwrEs+1x04PeoY\nWavOAiApB7gNOAUYDIyTNDip2SrgHOAfSfPmAdcQnOc1DLhGUveGx3auGWjdGlasYGM77/++LrLK\nqCNkpVS2AIYBpWa20sx2AEXAmMQGZva+mb0FJH+KJwPPmFmZmW0EngG8NyyXPTp0iDpB7PXeuoK/\nzDvczwaKQCoXgvUBPkwYXk3qV25UN2+f5EaSJgITAXr16kVJSUmKi69beXl5RpeXaXHO59nSt3Xt\nWjYOGcLCm25i3LicqOPsJi+vnHHjSqKO8RUzel61louPu4fy8r1i/bnG/e+uvmJxJbCZTQWmAuTn\n51tBQUHGll1SUkIml5dpcc7n2dK3+Kqr6N67NwXDh3PdDVGn2d24cSVMm1YQdYzddOk4np1/e58e\nw/eP9eca97+7+kplF9AaoG/C8D7huFQ0ZF7nmqXCQuj0+HPcuGKsH/hN0ZyeZ1GwbrrvBmpiqRSA\nucBASf0ltQXGAsUpLn8WMFJS9/Dg78hwnHMtVuedZey9/G1e6jGm7sYOgGWdh9LadtJpxYqoo2SV\nOguAmVUAkwhW3EuA6Wa2SNIUSaMBJB0haTXwXeAuSYvCecuA6wmKyFxgSjjOuRbruHX/ZPXgfLa2\n7hx1lOZOq0COAAAN2UlEQVRD4n/2/zO7/IK5JpXSMQAzmwnMTBo3OeH5XILdO9XNey9wbwMyOtes\nbGmTx6KCMbAg6iTNyys9Tmdk75KoY2QVvxLYuQx7oecZfPz1w6OO0SzlLl0KixdHHSNreAFwLpOW\nLqVDxZaoUzRb3RYuhN/+NuoYWcMLgHOZdPbZHPTZS1GnaLY+HTkSZsyAzz6LOkpW8ALgXKbMmwcb\nNjAvb2TUSZqtnd26BV1nFxVFHSUreAFwLlPuugt++ENM/m/VIOefD/fcE3WKrOB/qc5lwubN8Mgj\ncN55USdp/kaOhC1b4OOPo07S4sWiKwjnmr3HHoPhw2Ev7/mzwXJyYNEiaOXfTxubFwDnMmH8eBjj\nV/5mTKtWQbcQZl4IGpEXAOcaKOjvR0DXiJO0MBdeGGxVnXVW1ElaLC+tzjXQj0svZUjZ7KhjtDwF\nBXDHHVGnaNG8ADjXEJs2MeqT+1iZe0jUSVqEZcv48vaZI+48E1asgLlzo47VYnkBcK4h7ruPud1P\nZlPbPaNO0uLsatUGLr0Ufve7qKO0WF4AnEvXtm3whz9QtO8vok7Scl1wAZSUQGlp1ElaJD8I7Fw9\nVd3k5fQ19/MfWw9leechkeZp0XJzobjYT69tJF4AnEvT8s5DeKfrMVHHaPmOPjrqBC1WSruAJI2S\ntFRSqaQrqpneTtJD4fTXJPULx/eTtFXSm+HjzszGdy4673YZxnu5B0cdIzu8/DLcfnvUKVqcOguA\npBzgNuAUYDAwTtLgpGbnAxvNbH/gj0Bif64rzOyw8HFhhnI7F5lWlRWcv/Iq2lRujzpK9thrL5g8\nOegiwmVMKlsAw4BSM1tpZjuAIiD5kscxwF/D548AwyUpczGdi48T1z3EIZ89z061jTpK9hgwIOgl\n9NZbo07SoqRyDKAP8GHC8GrgyJramFmFpM+APcJp/SW9AWwGrjazFxoW2bkIVVZy9gc3ctv+t4B/\nx2l0VQfcAfp8cT0PzD466HCvV6/oQrUgMrPaG0hnAqPM7IJweDxwpJlNSmjzTthmdTi8gqBIbAFy\nzWyDpKHAY8CBZrY56TUmAhMBevXqNbQog32Bl5eXk5ubm7HlZVqc83m2f7fXU0/RffrjzPh/t9Za\nAPLyyikri+fvrjlnO+XZO8j5/HOWXX55E6b6Spz/JwoLC+ebWX595kllC2AN0DdheJ9wXHVtVktq\nTdApygYLqst2ADObHxaGQcC8xJnNbCowFSA/P98KCgrq8x5qVVJSQiaXl2lxzufZkmzcCGPH8qM+\nT7CsqPb/s3HjSpg2raBpctVTc85WvPMwjl3/GLOuC9rMmdM0uarE+X8iHakcA5gLDJTUX1JbYCxQ\nnNSmGJgQPj8TeM7MTFLP8CAykgYAA4GVmYnuXBP74gu49lqWdanXlyyXQZ+36casvc+JOkaLUecW\nQLhPfxIwC8gB7jWzRZKmAPPMrBi4B/i7pFKgjKBIABwPTJG0E6gELjSzssZ4I841uj59gh4qH4o6\niDth7cNsb9UBOC3qKM1aSheCmdlMYGbSuMkJz7cB361mvkeBRxuY0bloVVbCFVfAVVdBV+/yOQ62\ntMnjsqU/hG0joH37qOM0W34lsHPVSDz75LSP7ubkT17iktc7Y37iTyws6D6cZZ2H0vuXv4Sbb446\nTrPlncE5V4s9t63ivPeu5pZBt/vN3mPm5kF3Bfdhnjmz7sauWv4X7VwN2lRu59pF3+Whvv/FitxD\no47jkmxpkwcPPADnnw+bNkUdp1nyAuBcDSa8fy3r2vXhob7RnHPuUnD88fDMM9CtW9RJmiU/BuBc\nDf7Z5xK253T0K35jLDhWcxAAuTs38viL3SPN09z4FoBzydasoZXtoqzd3nze2s/6aQ7aVG5n6vwh\nMGNG1FGaFS8AziV6/3049liGbvSbvDcnO1u149rBD8MPfxjsEnIp8QLgXJUVK+CEE+Dyy5mbd3LU\naVw9LeuSz0/6/JNNp36fSw73PidT4QXAOYClS6GgILjY6+KLo07j0vROt2O54YB/cN2i78DixVHH\niT0/COzc9u3wzW/ClClw7rlRp3ENND/vJK46+HGWX7Q/FQlfcZu647jmwLcAXPaq6gq9XTt46SVf\n+bcgS7ocSUWrtnTZsZ6zP7iRVpUVUUeKJd8CcFnp9GM3ctmyH/HcnmN5oecZwF5RR3KNQeLQTf9i\nyMZn4dNpfiOZJL4F4LJCYWH4KDCuPngGf5l3GBva7s2red+MOpprRJvb7MEVhzzJO12PhYMOCvoN\n2u73cq7iBcBljUM2Pc/tC47i3Pd+xc1fn8qtA//EzhzvSbKlq1QO9/WfAi+8AM895wf5E/guINey\nbd0a7uvvSOedZTzc91JKen7XO3bLQoUXfQN4grbLtrKjEObctSzoSG78eNhjjzrnb4n8v8C1PFu3\nwjPP8OTe57GlS2+uPjK4MOilnt9izp7f85V/ltuR0+GrgXnz4Gtfg7PPhunTYcOG6IJFIKX/BEmj\nJC2VVCrpimqmt5P0UDj9NUn9EqZdGY5fKsmvrnGZVVkJW7YA8M3jtvBWt+PYmtuTRWdO5r1OB3Hu\nEYt4qceYiEO6OCr80SAK1zzA6INW8qe5/wF/+xsMHAjl5UGDt96CJUugouWeQVTnLqDwnr63AScB\nq4G5korNLPEqi/OBjWa2v6SxwG+B70kaTHB7yAOB3sBsSYPMbFem34hrQcxgx47gH3HTJsjJgX79\nKCyE73x4C722f8CQXm+wbOkW+n6xlKf3+k9uGXQ75ORyf7/rWNJ5GNta50b9LlwzsaVNHo/1uZjH\nPr+YVgdXUHl6sFo8+4PHOeXj+8jb8TEdDh4I++7LgE6dggsGARYsgJ07g91HXbpAbi506NCsOg9M\n5RjAMKDUzFYCSCoCxgCJBWAMcG34/BHgVkkKxxeZ2XbgvfCewcOAVzIT3zU7p54K69YF36p27Qr+\ngU44Ae64I5g+YACsWhWs9Dt2DLr5HTMGbrkFgM4VG1nftg/vH5bLo5WnsqrTAV912CbxRvcTI3pj\nriWobPXVKvHB/a7iwf2uon1FOftuXUrPlR8y/IjXmBDeLW7iioc4fNNzdNm5gY67ttBhVznr2/bm\nB0etAODqxd/nG5tfo0/RzcHfcAzJqi6GqamBdCYwyswuCIfHA0ea2aSENu+EbVaHwyuAIwmKwqtm\n9kA4/h7gSTN7JOk1JgITw8GvA0sb/ta+1ANYn8HlZVqc83m29MU5n2dLX5zzfd3MOtdnhlicBWRm\nU4GpjbFsSfPMLL8xlp0Jcc7n2dIX53yeLX1xzidpXn3nSeUg8Bqgb8LwPuG4attIag10BTakOK9z\nzrkIpFIA5gIDJfWX1JbgoG5xUptiYEL4/EzgOQv2LRUDY8OzhPoDA4HXMxPdOedcQ9S5C8jMKiRN\nAmYBOcC9ZrZI0hRgnpkVA/cAfw8P8pYRFAnCdtMJDhhXABdHcAZQo+xayqA45/Ns6YtzPs+Wvjjn\nq3e2Og8CO+eca5n8kkjnnMtSXgCccy5LZVUBkHSZJJPUI+osVSTdJOldSW9J+l9J3WKQqdauP6Ik\nqa+kOZIWS1ok6adRZ0omKUfSG5KeiDpLMkndJD0S/s0tkXR01JmqSPp5+Jm+I2mapEi7apV0r6S1\n4XVOVePyJD0jaXn4s3uMstV7XZI1BUBSX2AksCrqLEmeAQ4ys0OAZcCVUYZJ6PrjFGAwMC7s0iMu\nKoDLzGwwcBRwcczyAfwUWBJ1iBr8CXjKzL4BHEpMckrqA1wC5JvZQQQnnIyNNhX3A6OSxl0BPGtm\nA4Fnw+Eo3M+/Z6v3uiRrCgDwR+AXQKyOepvZ02ZW1dvUqwTXSkTpy64/zGwHUNX1RyyY2cdmtiB8\nvoVgBdYn2lRfkbQPcCpwd9RZkknqChxPcNYeZrbDzDZFm2o3rYEO4bVEHYGPogxjZs8TnNWYaAzw\n1/D5X4FvNWmoUHXZ0lmXZEUBkDQGWGNmC6POUofzgCcjztAH+DBheDUxWsEmCnudPRx4Ldoku7mF\n4ItGZdRBqtEfWAfcF+6iultSp6hDAZjZGuD3BFvoHwOfmdnT0aaqVi8z+zh8/gkQ13tMprQuaTEF\nQNLscN9h8mMM8EtgckyzVbW5imD3xoNR5WxOJOUCjwI/M7PNUecBkHQasNbM5kedpQatgSHAHWZ2\nOPA50e3C2E24L30MQZHqDXSS9INoU9UuvNg1VnsUoH7rklj0BZQJZjaiuvGSDib4o1oYdFDKPsAC\nScPM7JMos1WRdA5wGjDcor8wI/bdd0hqQ7Dyf9DM/hl1ngTHAKMlfRNoD3SR9ICZxWVFthpYbWZV\nW0yPEJMCAIwA3jOzdQCS/gn8B/BApKn+3aeS9jazjyXtDayNOlCi+q5LWswWQE3M7G0z29PM+plZ\nP4J/giFNtfKvi6RRBLsMRpvZF1HnIbWuPyITdjN+D7DEzG6OOk8iM7vSzPYJ/87GEnSJEpeVP+Hf\n/IeSvh6OGs7u3bpHaRVwlKSO4Wc8nJgcoE6S2O3NBGBGhFl2k866pMUXgGbgVqAz8IykNyXdGWWY\n8CBSVdcfS4DpZrYoykxJjgHGAyeGv683w2/cLjU/AR6U9BZwGPDfEecBINwqeQRYALxNsG6KtNsF\nSdMI7l3ydUmrJZ0P/AY4SdJygq2W38QoW73XJd4VhHPOZSnfAnDOuSzlBcA557KUFwDnnMtSXgCc\ncy5LeQFwzrks5QXAOeeylBcA55zLUv8ff0Q1xJHoWrUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 0, D:[array(0.0017670195084065199, dtype=float32), array(1.0, dtype=float32)], G loss:0.47773754596710205\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8FPW9//HXmygIoiCisSIVVLTipUgi6LFaEESsCrZF\ni7ZUjxeO/Ulv9nK0etBiPW2ttdqiVStqrwfxUo0eFMGC15aCInoQ0YBUoCgKKKQiAvn8/vhOdFmT\n7GYzyczufp6Pxz6yc933bpL57Hxn5jsyM5xzzpWfDkkHcM45lwwvAM45V6a8ADjnXJnyAuCcc2XK\nC4BzzpUpLwDOOVemvAC4VpNkkg5I8PUXSRoS07q+LOnRjOFY35ukOkn7xbW+PF+zs6QHJb0r6e52\nfN3/kHR9HvN1kvSypD3aI5f7iBeAEiNpuaRN0Yam4TE56VyZJH1b0huSNki6XVKnJubrE22AG97H\nm5IeknRC5nxmdoiZzcnxmg3r2qG5+czsj2Y2osVvqvHXnCPp/Kz1dzWzZXGsvwXGAJXA7mZ2evZE\nSVdK2hJ9xu9IekbS0a15QUkdgcuBn+Wa18w2A7cDl7TmNV3LeQEoTadGG5qGx4SkAzWQdCLhH30Y\nsC+wH/DDHIt1N7OuwKeBmcCfJZ3TBtmaLQ5FbF/gFTPb2sw8d0Wf8R7AU8B9ktSK1xwNvGxmq/Kc\n/0/A2U19GXBtwwtAGZF0jqSnJU2OmgNeljQsY/rekmokrZNUK+mCjGkVkn4gaamkjZKeldQ7Y/XD\nJb0afYO8sZmNx9nAFDNbZGbrgauAc/LJb2ZvmNkNwJXATyV1iLItlzQ8ej5I0vxo7+JNSddFiz8R\n/Xwn+qZ7dMbn8QtJa4Ero3FPZb305yQtk/S2pJ9lvO6Vkv6Q8Rl9uJch6WrgWGBy5l5YZpOSpG6S\nfifpLUn/kHR5xrrPkfSUpGslrZf0mqSTmvpsJB0c7XG8EzWJjYrG/xCYCHwpynFejs94C/BbYC9g\n92Zer0LSz6PP5DVJE7L2sE4CHs+Y/0vRfLtGwydFe4F7RK+7ElgPHNVcPhcvLwDlZzCwFOgJXEH4\nptcjmjYVWAnsTWg2+G9Jx0fTLgbOBD4H7AqcC7yXsd5TgCOBw4EzgBObeP1DgIUZwwuBSklNbmwa\ncR+wJ3BQI9NuAG4ws12B/YFp0fjjop/do72iv0bDg4FlhCaSq5t4vc8D1cBAwjfbc3MFNLPLgCeB\nCc3shf0K6EbYC/os8FXg3zOmDwaWEH5X1wBTGiusknYEHgQeJXwuXwf+KOkgM7sC+G+ib/hmNqW5\n3NE38HOAFWb2djOzXkDYyA8gfC6nZU0/LMoOgJndBTwD/DL6XU8BzjeztzKWWUzYy3PtxAtAabo/\n+ibY8LggY9oa4Hoz2xL9Uy4BTo6+zR8D/KeZvW9mzwO3ETZKAOcDl5vZEgsWmtnajPX+xMzeMbPX\ngdmEDUNjugLvZgw3PN+lBe/vn9HPHo1M2wIcIKmnmdWZ2d9yrcvMfmVmW81sUxPz/NTM1kXv7XpC\nIWwVSRXAWOBSM9toZsuBnwPjMmb7h5n9xsy2Eb6Vf4JQqLIdRfhcf2JmH5jZX4CHWpjzDEnvACuA\nKkLRa3Z+QqFdGe3J/SRrendgY9a4i4DjgTnAg2b2UNb0jdFyrp14AShNp5lZ94zHbzKmrbLtewD8\nB+Eb/97AOjPbmDWtV/S8N2HPoSlvZDx/j7BBakwdYQ+iQcPz7I1FcxoyrWtk2nnAgcDLkuZJOiXH\nulbk8XqZ8zR8Xq3VE9gxWl/muntlDH/4mZpZw95WY5/r3oRv7PXNrCuXadHfyp5mdryZPZtj/r3Z\n/nPJ/hzXk1XUzewd4G7gUEKxy7YL8E4LMrtW8gJQfnplNSN8kvCN+p9AD0m7ZE1rOIi3gtCk0lqL\n2H43/9PAm1l7E7l8nrAnsyR7gpm9amZnEppCfgrcI2lnoKlub/PpDjfzWEfD5wXwL6BLxrS9WrDu\ntwl7K/tmrTvfg6aZ/gn0bjh+0Mp15Ws1sE/GcO+s6S8QCvGHJA0gNJ/9D/DLRtZ5MNs3D7o25gWg\n/OwJfEPSjpJOJ/zTTTezFYQ22h9L2knS4YRv0w0HOW8DrpLUT8HhLWy3b/A74DxJ/SV1J5wqeGc+\nC0qqlDSBcOzi0qxvvA3zfEXSHtG0hm+T9cBb0c9CzsH/nqTdomaybwJ3ReOfB46T9ElJ3YBLs5Z7\ns6nXi5p1pgFXS9pF0r6E4yx/aGz+HOYS9rq+H/1ehwCnEo7ptJVpwDcl9Yp+j/+ZNX064bgGAJJ2\nIry3HxCOc/SS9P8ypvciNOnlarJzMfICUJoe1PbXAfw5Y9pcoB/hG+jVwJiMb99nAn0I3yj/DFxh\nZrOiadcR/ukfBTYQDuJ1bmkwM3uEcEBzNvA6oaniihyLvSPpX8CLhIPQp5vZ7U3MOxJYJKmOcEB4\nrJltippQrgaejo6LtORskweAZwkb/P8lvHfMbCahGLwQTc9u074BGBOdxdPYN96vE/YilhFOvfwT\n4Xz4FjGzDwgb/JMIv9ebgK+a2cstXVcL/Ibwt/ACsICwwd8KbIumPwh8SlJDc9mPCc1Uv47O+/8K\n8CNJ/aLpZwG/jaa5diK/IUz5UDh3/nwz+0zSWVxpiU5RvdnM9s0YNx7ob2bfyrFsJ0LTz3FmtqZt\nk7pMpXrhi3OuDUnqDAwl7AVUEvbiMvc0MbNb81lX9K3/U3FndLnl1QQkaaSkJQoXBzV5ubakL0YX\ng1RHw30UuiV4PnrcHFdw51zbknRzVlNiw+NmQIQruNcTmoAWEy44c0UkZxNQdL7yK8AJhIuE5gFn\nmtlLWfPtQmgf7Ui4+GW+pD7AQ2Z2aPzRnXPOtUY+ewCDgFozWxYdbJpKuBoy21WE0+7ejzGfc865\nNpLPMYBebH+Rx0rCJeofkjQQ6G1m/yvpe1nL95W0gHDmyOVm9mT2C0QHi8YDdO7cuap37+xTigtX\nX19Phw7pPdkpzfk8W+HSnM+zFS7N+V555ZW3zaxlXWqbWbMPQp8wt2UMjwMmZwx3IFza3ScangNU\nR887EbqghXB5+Qpg1+Zer6qqyuI0e/bsWNcXtzTn82yFS3M+z1a4NOcD5luO7Xn2I59Stortr/Lb\nh+2vMNyFcGn3HEnLCf2S1EiqNrPNFp1jbuHS8qVkXR3onHMuGfkUgHlAP0l9FW7yMBaoaZhoZu+a\nWU8z62NmfQhX8o2ycBB4j+ggMgp3QepHuOjFOedcwnIeAzCzrdHl9zOACuB2M1skaRJhl6OmmcWP\nAyZJ2kK4DP9CM2usAy/nnHPtLK8LwcxsOuFS78xxjZ7za2ZDMp7fC9zbinzOOefaSDoPZzvnnGtz\nXgCcc65MeQFwzrky5QXAOefKlBcA55wrU14AnHOuTHkBcM65MuUFwDnnypQXAOecK1NeAJxzrkx5\nAXDOuTLlBcA558qUFwDnnCtTXgCcc65MeQFwzrkylVcBkDRS0hJJtZIuaWa+L0oySdUZ4y6Nllsi\n6cQ4QjvnnGu9nDeEiW7peCNwArASmCepxsxeyppvF+CbwNyMcf0Jt5A8BNgbmCXpQDPbFt9bcM45\nV4h89gAGAbVmtszMPgCmAqMbme8q4KfA+xnjRgNTo5vDvwbURutzzjmXsHwKQC9gRcbwymjchyQN\nBHqb2f+2dFnnnHPJyOuewM2R1AG4DjinFesYD4wHqKysZM6cOa2N9aG6urpY1xe3NOfzbIVLcz7P\nVri052sxM2v2ARwNzMgYvhS4NGO4G/A2sDx6vA/8E6huZN4ZwNHNvV5VVZXFafbs2bGuL25pzufZ\nCpfmfJ6tcGnOB8y3HNvz7Ec+TUDzgH6S+krqSDioW5NRQN41s55m1sfM+gB/A0aZ2fxovrGSOknq\nC/QD/t6KeuWccy4mOZuAzGyrpAmEb+8VwO1mtkjSJELFqWlm2UWSpgEvAVuBi8zPAHLOuVTI6xiA\nmU0HpmeNm9jEvEOyhq8Gri4wn3POuTbiVwI751yZ8gLgnHNlyguAc86VKS8AzjlXprwAOOdcmfIC\n4JxzZcoLgHPOlSkvAM45V6a8ADjnXJnyAuCcc2XKC4BzzpUpLwDOOVemvAA451yZ8gLgnHNlyguA\nc86VKS8AzjlXpvIqAJJGSloiqVbSJY1Mv1DSi5Kel/SUpP7R+D6SNkXjn5d0c9xvwDnnXGFy3hFM\nUgVwI3ACsBKYJ6nGzF7KmO1PZnZzNP8o4DpgZDRtqZkNiDe2c8651spnD2AQUGtmy8zsA2AqMDpz\nBjPbkDG4M2DxRXTOOdcWZNb8tlrSGGCkmZ0fDY8DBpvZhKz5LgIuBjoCx5vZq5L6AIuAV4ANwOVm\n9mQjrzEeGA9QWVlZNXXq1Fa+rY/U1dXRtWvX2NYXtzTn82yFS3M+z1a4NOcbOnTos2ZW3aKFzKzZ\nBzAGuC1jeBwwuZn5zwJ+Gz3vBOwePa8CVgC7Nvd6VVVVFqfZs2fHur64pTmfZytcmvN5tsKlOR8w\n33Jsz7Mf+TQBrQJ6ZwzvE41rylTgtKi4bDaztdHzZ4GlwIF5VSbnnHNtKp8CMA/oJ6mvpI7AWKAm\ncwZJ/TIGTwZejcbvER1ERtJ+QD9gWRzBnXPOtU7Os4DMbKukCcAMoAK43cwWSZpE2OWoASZIGg5s\nAdYDZ0eLHwdMkrQFqAcuNLN1bfFGnHPOtUzOAgBgZtOB6VnjJmY8/2YTy90L3NuagM4559qGXwns\nnHNlyguAc86VKS8AzjlXprwAOOdcmfIC4JxzZcoLgHPOlSkvAM45V6a8ADjnXJnyAuBcOXj9dVi7\nFoCutbXwta/B6tUJh3JJ8wLgXKmbOxeqqmDhQgC2dOsGO+8MgwfDggUJh3NJ8gLgXCl78UUYNQru\nvBOOPx6AzXvsAddeC9ddByNGwH33JZvRJSavvoCcc0WothZGjoQbboCTT/749DFjoG9fOO006N79\nwwLhyocXAOdKUX09nHEGXHEFjB3b9HxVVfDcc9CjR/tlc6nhBcC5UtShAzz6KPTsmXvePfYIP1ev\nhr32Aqlts7nU8GMAzpWat98OewD5bPwbmMHo0XD//W2Xy6VOXgVA0khJSyTVSrqkkekXSnpR0vOS\nnpLUP2PapdFySySdGGd451wWM/jCF1q+IZfgxz+G73wH3n+/bbK51MlZAKJbOt4InAT0B87M3MBH\n/mRmh5nZAOAa4Lpo2f6EW0geAowEbmq4RaRzrg3MnAlr1oQzf1pq2DAYMAB+8Yv4c7lUymcPYBBQ\na2bLzOwDwk3fR2fOYGYbMgZ3Bix6PhqYGt0c/jWgNlqfcy5uZnD55TBpEuxQ4OG9a6+Fn/8cVq2K\nN5tLpXz+SnoBKzKGVwKDs2eSdBFwMdARaDifrBfwt6xlezWy7HhgPEBlZSVz5szJI1Z+6urqYl1f\n3NKcz7MVLol8uz/1FH3XrmV+z57QzGvnytb3pJPYfM01/PPzn48/ZA7+e21nZtbsAxgD3JYxPA6Y\n3Mz8ZwG/jZ5PBr6SMW0KMKa516uqqrI4zZ49O9b1xS3N+Txb4RLJN3y42QMP5JwtZ7b6+njyFMB/\nr4UD5luO7Xn2I589gFVA74zhfaJxTZkK/LrAZZ1zhXrgAejcufXraTgNdPNm6NSp9etzqZXPMYB5\nQD9JfSV1JBzUrcmcQVK/jMGTgVej5zXAWEmdJPUF+gF/b31s59x2zKBLl/jO4Z83D449Np51udTK\nWQDMbCswAZgBLAammdkiSZMkNZxqMEHSIknPE44DnB0tuwiYBrwEPAJcZGbb2uB9OFe+Vq+GI48M\nRSAuAweGs4mefTa+dbrUyetUATObDkzPGjcx4/k3m1n2auDqQgM653L44x/h05+O9wreigo4/3y4\n9Va45Zb41utSxa8Edq6YmYWePs8+O/51n3suTJsGGzfGv26XCl4AnCtmzz0HmzbBZz4T/7r33huG\nDIGpU+Nft0sF7wzOuWLW8O2/Qxt9l/vxj+M5s8ilkhcA54rZ0KHhAHBb+dSn2m7dLnHeBORcMfvC\nF6B379zztcYLL4QDza7keAFwrljde2/7HKDdti3cWCbO00xdKngBcK4YrVkD553XPjdvGTAgFIEX\nXmj713LtyguAc8Wopibc0L1r17Z/LSk0NfnN40uOFwDnitEDD4Q7eLUXLwAlyQuAc8XmX/+Cxx+H\nz32u/V7z6KNDx3Br17bfa7o256eBOlds/vpXGDQIdtut/V6zQweYP7/9Xs+1Cy8AzhWb4cPb5srf\nfJi1z4Fn1y68Cci5YrTTTu3/mmbhjKAVK3LP64qCFwDnislf/wrf/34yry2FbqLvvz+Z13ex8wLg\nXDG5995k++bxs4FKSl4FQNJISUsk1Uq6pJHpF0t6SdILkh6TtG/GtG2Sno8eNdnLOufyZNb+p39m\nO+EEWLAA3noruQwuNjkLgKQK4EbgJKA/cKak/lmzLQCqzexw4B7gmoxpm8xsQPQYhXOuMIsXh/v0\nHnFEchl22gmOPx5mzEgug4tNPnsAg4BaM1tmZh8Qbvq+3VcQM5ttZu9Fg38j3PzdORenBx6AUaOS\nPwvn61+Hvn2TzeBiIcvRwZOkMcBIMzs/Gh4HDDazCU3MPxl4w8x+FA1vBZ4HtgI/MbOPHUGSNB4Y\nD1BZWVk1NcYbUNTV1dG1PS6XL1Ca83m2wrVFvl733svGAw9kw2GHtWo9af7s0pwN0p1v6NChz5pZ\ndYsWMrNmH8AY4LaM4XHA5Cbm/QphD6BTxrhe0c/9gOXA/s29XlVVlcVp9uzZsa4vbmnO59kKl+Z8\nsWSrrTVbtar168mS5s/NLN35gPmWY3ue/cinCWgVkNnh+D7RuO1IGg5cBowys80ZBWZV9HMZMAdI\nsAHTuSK1fn3okTMtbroJpkxJOoVrpXwKwDygn6S+kjoCY4HtzuaRdARwC2HjvyZj/G6SOkXPewLH\nAC/FFd65svHtb8NvfpN0io+MHAmPPJJ0CtdKOQuAmW0FJgAzgMXANDNbJGmSpIazen4GdAXuzjrd\n82BgvqSFwGzCMQAvAM61hBk8+mjoAiItjj0WXnwR1q1LOolrhbz6AjKz6cD0rHETM543+pdpZs8A\nrTti5Vy5e/HFcPHXAQckneQjO+0Exx0Hs2bBGWckncYVyK8Edi7tZsyAE09MOsXHjRwJDz+cdArX\nCt4bqHNp9+ijMKHRs66T9eUvw+c/n3QK1wpeAJxLu298A4YMSTrFx+22W/vek8DFzpuAnEu7U0+F\nXXZJOkXjnnrKO4crYl4AnEuzWbNg1ccuu0mPDRvgl79MOoUrkBcA59Ls61+HN95IOkXThgwJt4rc\nuDHpJK4AXgCcS6vXXw83YU+y989cunQJ9yd+4omkk7gCeAFwLq1mzAj973dI+b/p8OGhqcoVnZT/\nZTlXxmbMgBEjkk6R2/Dh8OqrSadwBfAC4Fwa1dfD44+HPYC0O/JIeOihpFO4Avh1AM6lUYcO8Mor\nxXGefdI3qHEF8z0A59KqGDb+DWbMgG99K+kUroW8ADiXRj/4ASxdmnSK/O23H9xzT+i51BUNLwDO\npc3778OvfgU9eyadJH8HHAAVFbBkSdJJXAt4AXAubZ55Bg49FLp1SzpJ/qRwNtDMmUkncS2QVwGQ\nNFLSEkm1ki5pZPrFkl6S9IKkxyTtmzHtbEmvRo+z4wzvXEmaNStdN3/Jl18PUHRyFgBJFcCNwElA\nf+BMSf2zZlsAVJvZ4cA9wDXRsj2AK4DBwCDgCklFdGTLuQQUawEYNgz69Us6hWuBfPYABgG1ZrbM\nzD4ApgKjM2cws9lm9l40+DfCjeMBTgRmmtk6M1sPzARGxhPduRK0ZQt07AhHHZV0kpbbc0+49tqk\nU7gWkOU4ai9pDDDSzM6PhscBg82s0TtUSJoMvGFmP5L0XWAnM/tRNO2/gE1mdm3WMuOB8QCVlZVV\nU6dObeXb+khdXR1du3aNbX1xS3M+z1a4NOdr02z19ey4YQNbuncvaPE0f26Q7nxDhw591syqW7JM\nrBeCSfoKUA18tiXLmdmtwK0A1dXVNiTGm1/MmTOHONcXtzTn82yFKzifWZtfWNWmn92jj8J11xXc\nOVzJ/l5TKp8moFVA74zhfaJx25E0HLgMGGVmm1uyrHMuUl0Ny5YlnaJwxxwDzz0HdXVJJ3F5yKcA\nzAP6SeorqSMwFqjJnEHSEcAthI3/moxJM4ARknaLDv6OiMY557KtWBG6gO7TJ+kkhdt551DEnnwy\n6SQuDzkLgJltBSYQNtyLgWlmtkjSJEmjotl+BnQF7pb0vKSaaNl1wFWEIjIPmBSNc85le+yxcCZN\n2rt/zmXYMD8dtEjkdQzAzKYD07PGTcx43uQ5a2Z2O3B7oQGdKxuzZoWNZ7EbPhy+9rWkU7g8FPlX\nDedKhFkoAMXQ/XMuRx4Jl17q/QIVAe8O2rk02LQpfGsu5vb/BjvsAF/6UtIpXB58D8C5NOjSBa64\nIukU8VmzxvsFKgJeAJxLg8WLYevWpFPE5+234YILvBko5bwAOJe0Dz4IXT+8+27SSeJz8MHhfRXz\nNQ1lwAuAc0mbOzd0orb77kkniY8Uzmh67LGkk7hmeAFwLmnF2vtnLt49dOp5AXAuaaVaAIYNg9mz\nob4+6SSuCV4AnEvSu+/CwoWhD51Ss88+sGhR8V/ZXML8N+NcknbaCWbMgM6dk07SNvbcM+kErhle\nAJxLUqdOpfntv8Hy5TBxYs7ZXDK8ADiXpBtvhPfeyz1fserRA37xi9J+j0XMC4BzSVm1Knw77tQp\n6SRtZ9dd4YgjCr5BjGtbXgCcS8qsWXD88VBRkXSStnXiieE4h0sdLwDOJeWRR8LGsdSNGBFuFelS\nJ68CIGmkpCWSaiVd0sj04yQ9J2lrdBP5zGnbopvEfHijGOfK3rZtobO0cigAAwdC9+5+m8gUytkd\ntKQK4EbgBGAlME9SjZm9lDHb68A5wHcbWcUmMxsQQ1bnSsfLL0OvXtC7d+55i11FBTz9dNIpXCPy\nuR/AIKDWzJYBSJoKjAY+LABmtjya5pf8OZePQw6B+fOTTtG+zEIfQS41ZDm6a42adEaa2fnR8Dhg\nsJlNaGTeO4GHzOyejHFbgeeBrcBPzOz+RpYbD4wHqKysrJo6dWrBbyhbXV0dXbt2jW19cUtzPs9W\nuDTnSyLbDnV1VP3HfzD3d79r9qB3mj83SHe+oUOHPmtm1S1ayMyafQBjgNsyhscBk5uY905gTNa4\nXtHP/YDlwP7NvV5VVZXFafbs2bGuL25pzufZCtdsvnXrzE491ay+vt3yZErss+vf3+zvf292lqL+\nvSYMmG85tufZj3wOAq8CMhsq94nG5VtgVkU/lwFzgCPyXda5kvTYY7BlS/k1h/jZQKmTTwGYB/ST\n1FdSR2AskNfZPJJ2k9Qpet4TOIaMYwfOlaUZM2DkyKRTtD+/HiB1chYAM9sKTABmAIuBaWa2SNIk\nSaMAJB0paSVwOnCLpEXR4gcD8yUtBGYTjgF4AXDly6x8zv/Pdtxx8NxzsGFD0klcJJ+zgDCz6cD0\nrHETM57PIzQNZS/3DHBYKzM6VzoWLw4HQQ86KOkk7a9LF/jRj0K/QLvumnQaR54FwDkXk/Xr4Wtf\nK7/2/wbf+lbSCVwGLwDOtadjjint7p9zMQvNQEcc4TeKSQH/DTjXXrZsgfffTzpFsiQ46yxYsCDp\nJA4vAM61n0cegdNOSzpF8k49FR56KOkUDi8AzrWfmpryPP0z2ymneAFICS8AzrWH+np48MHw7bfc\nHXMM1NbC6tVJJyl7XgCcaw9//zv07An77590kuTtuGO4DmL69NzzujblZwE51x5qamDUqKRTpMdP\nfwrduiWdoux5AXCuPYwaFfYAXLDvvkkncHgBcK59HHVU0gnSZ9q0UAgGD046SdnyYwDOtbWnnoIl\nS5JOkT6vvQa//33SKcqaFwDn2trEiV4AGtNwOmiOm1K5tuMFwLm2tH59uPXj8OFJJ0mf/v1DdxAL\nFyadpGx5AXCuLT38MAwZEnrCdNuTYMwYuPvupJOULS8AzrUlP/2zeWecAa++mnSKspVXAZA0UtIS\nSbWSLmlk+nGSnpO0NbqJfOa0syW9Gj3Ojiu4c6m3dSs88URo63aNq64OZwO5ROQ8DVRSBXAjcAKw\nEpgnqSbrzl6vA+cA381atgdwBVANGPBstOz6eOI7l2I77ABLl0LnzkknSb/6eu8eOgH5fOKDgFoz\nW2ZmHwBTgdGZM5jZcjN7AajPWvZEYKaZrYs2+jMB7w3LlQ/f+Oe2dGm4P4CfDdTu8rkQrBewImN4\nJZDvlRuNLdsreyZJ44HxAJWVlcyZMyfP1edWV1cX6/riluZ8nq1wm9asYf3AgSz82c/CLSBTJHWf\nnRmD16zh/6ZMoW6vvdKVLUvqPrtWSsWVwGZ2K3ArQHV1tQ0ZMiS2dc+ZM4c41xe3NOfzbIV76bLL\n2G3vvRkybFjSUT4mlZ/duHEcuXw5cw44IH3ZMqTys2uFfJqAVgG9M4b3icblozXLOle0Kv/yFxg7\nNukYxeOMM8LBYG8Galf5FIB5QD9JfSV1BMYCNXmufwYwQtJuknYDRkTjnCtd69bR7cUXYfTo3PO6\noKoKtmxh56VLk05SVnIWADPbCkwgbLgXA9PMbJGkSZJGAUg6UtJK4HTgFkmLomXXAVcRisg8YFI0\nzrnSdd99rKuuhl12STpJ8ZDgl79km18w167yOgZgZtOB6VnjJmY8n0do3mls2duB21uR0bni0qMH\n/xw9mj2TzlFsTj2V90voAGsx8BNvnYvbF77AO0cckXSKotR1yRJ46aXcM7pYeAFwLk5LlsDGjUmn\nKFrdFy4Mdwtz7cILgHNx+vKX4emnk05RtN4cMQIeeADefTfpKGXBC4BzcZk/H9auhREjkk5StLZ0\n7x66zp46NekoZcELgHNxueUWuOAC79Omtc47D6ZMSTpFWfC/VOfisGED3HMPnHtu0kmK34gR4TjK\n6tVJJyl5qegKwrmid//9MGwY7LVX0kmKX0UFLFrke1LtwAuAc3EYN86v/I1Thw6hWwgzLwRtyD9Z\n5+IgQbfA9PKGAAALdUlEQVRuSacoLRdeGJrVXJvxAuBca118McyalXSK0jNkCPz610mnKGleAJxr\njXfegTvugMMPTzpJ6RkzJtwsZt68pJOULC8AzrXGHXfAiSfCnt7zT+x23DHsXV1zTdJJSpYXAOcK\n9f778POfw/e/n3SS0nX++TBnDtTWJp2kJHkBcK5Qd94Jn/40DByYdJLS1bUr1NT46bVtxE8Dda5Q\nAwfCMccknaL0HX100glKVl57AJJGSloiqVbSJY1M7yTprmj6XEl9ovF9JG2S9Hz0uDne+M4laNAg\nOOywpFOUh2eegZtuSjpFyclZACRVADcCJwH9gTMl9c+a7TxgvZkdAPwCyOzPdamZDYgeF8aU27nk\nbN0Kl10GmzcnnaR87LUXTJzoXW3HLJ89gEFArZktM7MPgKlA9iWPo4HfRs/vAYZJUnwxnUuRu+6C\nJ56Ajh2TTlI+9tsv9BI6eXLSSUpKPgWgF7AiY3hlNK7ReaJ7CL8L7B5N6ytpgaTHJR3byrzOJau+\nHq6+Gv7rv8LVv679XHVVOOvqzTeTTlIy2vog8Grgk2a2VlIVcL+kQ8xsQ+ZMksYD4wEqKyuZE+N9\nQevq6mJdX9zSnM+zfdxejzzCJyQW7LhjOD2xCf7ZFSZXtv2HDaPivPN45bvfbb9QGdL82RXEzJp9\nAEcDMzKGLwUuzZpnBnB09HwH4G1AjaxrDlDd3OtVVVVZnGbPnh3r+uKW5nyeLcu6dWaVlWbz5uWc\n1T+7wuTMtn692R13tEeURqX5swPmW47tefYjnyageUA/SX0ldQTGAjVZ89QAZ0fPxwB/MTOTtEd0\nEBlJ+wH9gGWFFCrnEvfee3DllVBdnXSS8tW9O5xzTtIpSkbOJiAz2yppAuFbfgVwu5ktkjSJUHFq\ngCnA7yXVAusIRQLgOGCSpC1APXChma1rizfiXJvr1Sv0UOmSd/fd0LkznHJK0kmKWl7HAMxsOjA9\na9zEjOfvA6c3sty9wL2tzOhcsurr4ZJLwqmf3uVzOvToEW6/OXw47LRT0mmKlncF4Vwut90GTz8N\nu+ySdBLXYNgwqKqCH/wg6SRFzbuCcK45r78Ol18OM2f6nanS5pZbYMCAsBfwuc8lnaYo+V+0c03Z\nvBlOPx2+973Q6ZtLlx494A9/gPPOC/dlcC3mBcC5plx5ZTjwm9A55y4Pxx0X9s66d086SVHyJiDn\nmvKNb0CXLn7Fb9odemj4uX497LZbslmKjO8BOJdt1SrYtg0+8Qk/66dYbN4cuud+4IGkkxQVLwDO\nZVq+HD7zGb/Je7Hp1ClcG3DBBaFJyOXFC4BzDZYuhc9+NrT5n3hi0mlcS1VXw333wVlnwZNPJp2m\nKHgBcA5gyRIYMiRc7HXRRUmncYX6zGfgT3+CL34RXnop6TSp5weBndu8OZxHPmkS/Pu/J53GtdYJ\nJ8CDD8IBBySdJPV8D8CVr9BDbWg/fvpp3/iXksGDww173n473L9h69akE6WSFwBXntavhy99KbQZ\nQ7jloCs9Ejz+OIwY4TeSaYQXAFdezMKpggMGhNM8vQuB0rb77vDww+HYwKGHwnXX+b2cM3gBcOXj\niSfgqKPC7RxvvRVuuMF7kiwHFRXh+M6TT8Jf/uIH+TP4QWBX2jZtCt/6u3SBdevg4otD/z7esVv5\n+dSn4KGHwt8EwCuvwPTpMG5c2FMoQ/5f4ErPpk3hYqBzz4W99/7owqDTTgvt/r7xL2+dO3/0fP58\n2H9/+PKXYdo0WLs2uVwJyOs/QdJISUsk1Uq6pJHpnSTdFU2fK6lPxrRLo/FLJPnVNS5e9fWwcWN4\nvnEjHHss7LEHTJwY2nwXLYLRo5PN6NLpwANDb6LLlsG//Rv87nfQrx/U1YXpL7wAixeX9BlEOZuA\nonv63gicAKwE5kmqMbPMqyzOA9ab2QGSxgI/Bb4kqT/h9pCHAHsDsyQdaGbb4n4jroSYwQcfhH/E\nd94Jbbh9+oRp118P//gH/RcsCBv8JUvgq1+Fm26Crl3hhz+EQYPCc+fy0aNHOC5w0UVhY79DtFl8\n8EG44w5YvToUhk9+kv123jlcMAjw3HOwZUtoPtp11/A317lzUXUemM8xgEFArZktA5A0FRgNZBaA\n0cCV0fN7gMmSFI2famabgdeiewYPAv4aT3xXdE4+Gd56K/yjbdsW/oE++1n49a/D9P32CzdhqagI\n7fbdu4dv8NdfH6avXw+9evF2167sefLJcPDBH3XYJsHxxyfzvlxp2CFjk3jZZeFRVxe+aKxYwb/m\nzv1o+l13hYPKa9eGLyN1daHJcenSMP2ss2Du3HDmUUr3QmUNF8M0NYM0BhhpZudHw+OAwWY2IWOe\n/4vmWRkNLwUGE4rC38zsD9H4KcDDZnZP1muMB8ZHgwcBS1r/1j7UE3g7xvXFLc35PFvh0pzPsxUu\nzfkOMrMW3bc0FWcBmdmtwK1tsW5J882sui3WHYc05/NshUtzPs9WuDTnkzS/pcvkcxB4FdA7Y3if\naFyj80jaAegGrM1zWeeccwnIpwDMA/pJ6iupI+Ggbk3WPDXA2dHzMcBfLLQt1QBjo7OE+gL9gL/H\nE90551xr5GwCMrOtkiYAM4AK4HYzWyRpEjDfzGqAKcDvo4O86whFgmi+aYQDxluBixI4A6hNmpZi\nlOZ8nq1wac7n2QqX5nwtzpbzILBzzrnS5JdEOudcmfIC4JxzZaqsCoCk70gyST2TztJA0s8kvSzp\nBUl/ltQ9BZma7fojSZJ6S5ot6SVJiyR9M+lM2SRVSFog6aGks2ST1F3SPdHf3GJJRyedqYGkb0e/\n0/+T9D+SEu2qVdLtktZE1zk1jOshaaakV6Ofu6UoW4u3JWVTACT1BkYAryedJctM4FAzOxx4Bbg0\nyTAZXX+cBPQHzoy69EiLrcB3zKw/cBRwUcryAXwTWJx0iCbcADxiZp8CPk1KckrqBXwDqDazQwkn\nnIxNNhV3AiOzxl0CPGZm/YDHouEk3MnHs7V4W1I2BQD4BfB9IFVHvc3sUTNr6G3qb4RrJZL0Ydcf\nZvYB0ND1RyqY2Wozey56vpGwAeuVbKqPSNoHOBm4Leks2SR1A44jnLWHmX1gZu8km2o7OwCdo2uJ\nugD/TDKMmT1BOKsx02jgt9Hz3wKntWuoSGPZCtmWlEUBkDQaWGVmC5POksO5wMMJZ+gFrMgYXkmK\nNrCZol5njwDmNj9nu7qe8EWjPukgjegLvAXcETVR3SZp56RDAZjZKuBawh76auBdM3s02VSNqjSz\n1dHzN4DKJMM0I69tSckUAEmzorbD7Mdo4AfAxJRma5jnMkLzxh+TyllMJHUF7gW+ZWYbks4DIOkU\nYI2ZPZt0libsAAwEfm1mRwD/IrkmjO1EbemjCUVqb2BnSV9JNlXzootdU9WiAC3blqSiL6A4mNnw\nxsZLOozwR7UwdFDKPsBzkgaZ2RtJZmsg6RzgFGCYJX9hRuq775C0I2Hj/0czuy/pPBmOAUZJ+hyw\nE7CrpD+YWVo2ZCuBlWbWsMd0DykpAMBw4DUzewtA0n3AvwF/SDTVx70p6RNmtlrSJ4A1SQfK1NJt\nScnsATTFzF40sz3NrI+Z9SH8Ewxsr41/LpJGEpoMRpnZe0nnIb+uPxITdTM+BVhsZtclnSeTmV1q\nZvtEf2djCV2ipGXjT/Q3v0LSQdGoYWzfrXuSXgeOktQl+h0PIyUHqLNkdntzNvBAglm2U8i2pOQL\nQBGYDOwCzJT0vKSbkwwTHURq6PpjMTDNzBYlmSnLMcA44Pjo83o++sbt8vN14I+SXgAGAP+dcB4A\nor2Se4DngBcJ26ZEu12Q9D+Ee5ccJGmlpPOAnwAnSHqVsNfykxRla/G2xLuCcM65MuV7AM45V6a8\nADjnXJnyAuCcc2XKC4BzzpUpLwDOOVemvAA451yZ8gLgnHNl6v8DTrc6jjCUrCMAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 5000, D:[array(0.6975672841072083, dtype=float32), array(0.5, dtype=float32)], G loss:0.1309429556131363\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXm7ATdpDKoqCCFXcTwdaqIKixXqFa64Va\nrra1XPsTu9nbq9XqldauXvS22lbqRmsrWmk1tlQUG2q1iiwiCpSwaFlE2ZGwJuTz++Oc4DAkmclk\nknMm83k+HvPIzFnfs+R8zvo9MjOcc87ln1ZRB3DOORcNLwDOOZenvAA451ye8gLgnHN5yguAc87l\nKS8AzjmXp7wAuMNIMknHRZ0j2yRdJem5LE5viaQR4fP/kfRoFqf9bUkPZGt6DZjvZZLWSqqQdHoz\nzbOdpKWSjkxj2Bsk/ag5cuUDLwAxJ+kdSXvCf8iax71R56oh6RpJB5LyjUjoP1BSmaTdkv4paXTS\n+F+X9J6kDyQ9JKlduuMmTecRSfsl7Qwfb0n6gaSuNcOY2W/N7MI03tMjkr6XajgzO9HM5qQaLo35\njZC0Lmna3zezaxs77QzcBUwys0Izez25Z7hysCv8ntdLmiKpoJHznAi8aGYb0hj2V8BVko5o5Dwd\nXgByxaXhP2TNY1LUgZK8kpRvTkK/x4DXgZ7ALcCTknoDSLoIuAkYBRwNHAPckc64dfixmXUGegOf\nB84CXpbUKQvv8SBJrbM5vZg5GliSYphTzayQ4Hv7LPClRs7zOuA36QxoZnuBvwD/0ch5OrwA5LRw\n7ftlSfdK2hGuJY9K6N9XUqmkrZJWSvpSQr+CcDfDqnCNeYGkAQmTHy1phaTtku6TpAzyDQHOAG43\nsz1mNgN4E/h0OMjVwINmtsTMtgHfBa5Jc9w6mdleM5sHjCEoHp9P+LxeCp9L0t2SNoZbH29KOknS\nROAq4FvhWu4z4fDvSPpvSYuBXZJah90St0raS3o8/DwXSjo14bM4ZLdazVZGWJz+AvRN2ILqm7xL\nSdKYcJfTdklzJJ2Q0O8dSd+UtDj8HTwuqX0d30krSbdK+lf43n8tqauC3TAVQAHwhqRVaXzO/wT+\nDpxU33CSzpD0evi5/D7M972w31EEhX9u+LqtpEWSbghfF4S/8dsSJjkHuCRVPpeaF4DcNxxYBfQC\nbgf+IKlH2G86sA7oC1wBfF/S+WG/bwDjgU8CXYAvALsTpvtvwJnAKcCVwEX1ZDhd0mZJ5ZK+k7CG\nfCKw2sx2Jgz7Rti9pv8bSf36SOqZxrgpheM+D5xTS+8LgXOBIUBXgve4xcymAr8l2JooNLNLE8YZ\nT7Dg6WZmVbVMcyzwe6AH8DvgKUltUmTcBVwMvJuwBfVu4jBhMXwM+BrB1s1M4BlJbRMGuxIoAQYR\nfGfX1DHLa8LHSIIFbyFwr5ntC9fqIVjDP7a+3GGuoQSf7WG7ihKGaQv8EXiE4HN5DLgsYZCTCb7n\nKgAz2w98DpgcFrmbCIrSnQnjLANOxTWaF4Dc8FS45lfzSNzk3gjcY2aVZvY4sBy4JFybPxv473CN\neBHwAB9uOl8L3Gpmyy3whpltSZjuD81su5mtAcqA0+rI9iLBGuARBGvn44H/CvsVAjuSht8BdK6j\nf83zzmmMm653CRY8ySrDaX0UkJktS2Mf9E/NbK2Z7amj/wIze9LMKoEpQHuC3VCN9e/An83s+XDa\ndwEdgI8nZXvXzLYCz1D393UVMMXMVptZBXAzMK6Bu7UWStoWzucB4OF6hj0LaB3mqzSzPwCvJfTv\nBiQWeczsLeB7wFPAN4EJZnYgYZCdBEXbNZIXgNzwKTPrlvD4VUK/9XZoi37/Iljj7wtsTVqD/hfQ\nL3w+gGDLoS7vJTzfTbBAPky4IHnbzKrN7E1gMsHWBkAFwdZFoi58+A+f3L/m+c40xk1XP2BrLbn/\nCtwL3AdslDRVUvL8kq1Nt7+ZVfPh1ldj9SX47hKnvZYPv0tI8/tKnlb4vDXQpwF5zjCz7mZ2rJnd\nGuapL3vybzTxc9xG7UV9GsHxiJlmtiKpX2cOXzlwGfACkPv6Je2fP4pgrfddoIekzkn91ofP1wIp\nN/MzYEBNniXAMUkZTuXDg4xLOHRT/lTg/XBLJNW4KUkqBEYT7Kc+PKjZT82sCBhKsCuoZsulriZy\nUzWde/AYiqRWQH+C7wGChXLHhGE/0oDpvkuwMKyZtsJ5ra9zjDSnRfCbqALez2Ba6djA4b/RxGNN\ni4FBtWyB/Bz4E3CRpE8k9TuBQ3cdugx5Ach9RwBfkdRG0mcI/jlmmtla4B/ADyS1l3QK8EWg5sDi\nA8B3JQ0OD4ieEu57bxBJF0vqEz7/KPAd4GkAMysHFgG3hxkuI9g/PSMc/dfAFyUNldQNuJVgX3E6\n49aXqZ2kIoJdCNuoZReFpDMlDQ/30e8C9gI1a7LvE+wfb6giSZeHC7OvAfuAV8N+i4DPhgc1S4Dz\nEsZ7H+iphFNWkzxBsFtvVJj3xnDa/8gg42PA1yUNCgvk94HH6zimkQ2vAAeASeGB87HAsJqeZrYO\nWJnYTdIEoIjgWMVXgGlh1hrnERw4d43kBSA3PKNDz7P/Y0K/ucBgYDPBgbIrEvbljwcGEqz1/ZHg\njJrZYb8pBAuW54APgAcJ9is31ChgsaRdBAcn/0CwUKkxDigmWBD/MMy3CcDMngV+THCMYQ3B7ojb\n0xm3Dt+StBPYQlBcFgAfDw+0JutCcE75tnC+W4CfhP0eBIaGx1ueSudDCD1NsL9+GzABuDzcZw/w\nVeBSYDvBfviD0w3PpnkMWB3O85DdRma2nODA6M8IvudLCU4N3t+AbDUeIjjl8kXgbYLCd0MG00lL\nmPFygpWP7QTv408EBazG/QSfV81ZQfcA/2FmFWb2O2A+cHfYvz3BiQvTmipzPpHfECZ3SboGuNbM\nkjeRnYstSXOBX5rZw+HrdgRnEo1KdSA+PD10gJl9q+mTtnwt+YIW51wMSDqP4Oy0zQRbP6cAz9b0\nN7N9BMdhUjKznzVFxnyV1i4gSSWSliu4mOimeob7tIILXorD1wMVNGOwKHz8MlvBnXPxIOmopF2U\niY+jgOMJDtpuJzh+cUWazT64JpZyF5CCdj7KgQsITmubB4w3s6VJw3UG/gy0JWhLZL6kgcCfzKze\nKwWdc841v3S2AIYBK8PzvfcTXF06tpbhvgv8iOCgknPOuZhL5xhAPw69cGMdQfMDB0k6g+DAzJ8l\n/ReHGiTpdYIzTW41s8POyVbQ/spEgA4dOhQNGDAgeZCMVVdX06pVfE92inM+z5a5OOfzbJmLc77y\n8vLNZlZfY4mHM7N6HwRXdT6Q8HoCQdshNa9bETTONDB8PQcoDp+3A3qGz4sICkmX+uZXVFRk2VRW\nVpbV6WVbnPN5tszFOZ9ny1yc8wHzLcXyPPmRTilbz6FX7vXn0CsQOxO0BTNH0jsEbX+USiq2oIGp\nLWGhWUDQ9MCQBlUo55xzTSKdAjAPGBxeOdiW4OKc0pqeZrbDzHqZ2UAzG0hw5eMYCw4C9w4PIiPp\nGIILllZn/V0455xrsJTHAMysStIkYBZBs6wPmdkSSZMJNjlK6xn9XIJmXSsJLrO/zoLWCp1zzkUs\nrQvBzGwmwWX+id1uq2PYEQnPZ5BG2y3OOeeaXzwPZzvnnGtyXgCccy5PeQFwzrk85QXAOefylBcA\n55zLU14AnHMuT3kBcM65POUFwDnn8pQXAOecy1NeAJxzLk95AXDOuTzlBcA55/KUFwDnnMtTXgCc\ncy5PeQFwzrk8lVYBkFQiabmklZJuqme4T0syScUJ3W4Ox1su6aJshHbOOdd4KW8IE97S8T7gAmAd\nME9SqZktTRquM/BVYG5Ct6EEt5A8EegLzJY0xMwOZO8tOOecy0Q6WwDDgJVmttrM9gPTgbG1DPdd\n4EfA3oRuY4Hp4c3h3wZWhtNzzjkXsXQKQD9gbcLrdWG3gySdAQwwsz83dFznnHPRSOuewPWR1AqY\nAlzTiGlMBCYC9OnThzlz5jQ21kEVFRVZnV62xTmfZ8tcnPN5tszFPV+DmVm9D+BjwKyE1zcDNye8\n7gpsBt4JH3uBd4HiWoadBXysvvkVFRVZNpWVlWV1etkW53yeLXNxzufZMhfnfMB8S7E8T36kswto\nHjBY0iBJbQkO6pYmFJAdZtbLzAaa2UDgVWCMmc0PhxsnqZ2kQcBg4LVG1CvnnHNZknIXkJlVSZpE\nsPZeADxkZkskTSaoOKX1jLtE0hPAUqAKuN78DCDnnIuFtI4BmNlMYGZSt9vqGHZE0us7gTszzOec\nc66J+JXAzjmXp7wAOOdcnvIC4JxzecoLgHPO5SkvAM45l6e8ADjnXJ7yAuCcc3nKC4BzzuUpLwDO\nOZenvAA451ye8gLgnHN5yguAc87lKS8AzjmXp7wAOOdcnvIC4JxzecoLgHPO5am0CoCkEknLJa2U\ndFMt/a+T9KakRZJekjQ07D5Q0p6w+yJJv8z2G3DOOZeZlHcEk1QA3AdcAKwD5kkqNbOlCYP9zsx+\nGQ4/BpgClIT9VpnZadmN7ZxzrrHS2QIYBqw0s9Vmth+YDoxNHMDMPkh42Qmw7EV0zjnXFGRW/7Ja\n0hVAiZldG76eAAw3s0lJw10PfANoC5xvZiskDQSWAOXAB8CtZvb3WuYxEZgI0KdPn6Lp06c38m19\nqKKigsLCwqxNL9vinM+zZS7O+Txb5uKcb+TIkQvMrLhBI5lZvQ/gCuCBhNcTgHvrGf6zwLTweTug\nZ/i8CFgLdKlvfkVFRZZNZWVlWZ1etsU5n2fLXJzzebbMxTkfMN9SLM+TH+nsAloPDEh43T/sVpfp\nwKfC4rLPzLaEzxcAq4AhaVUm55xzTSqdAjAPGCxpkKS2wDigNHEASYMTXl4CrAi79w4PIiPpGGAw\nsDobwZ1zzjVOyrOAzKxK0iRgFlAAPGRmSyRNJtjkKAUmSRoNVALbgKvD0c8FJkuqBKqB68xsa1O8\nEeeccw2TsgAAmNlMYGZSt9sSnn+1jvFmADMaE9A551zT8CuBnXMuT3kBcM65POUFwDnn8pQXAOec\ny1NeAJxzLk95AXDOuTzlBcA55/KUFwDnnMtTXgCcywdr1sCWLQAUrlwJX/4ybNgQcSgXNS8AzrV0\nc+dCURG88QYAlV27QqdOMHw4vP56xOFclLwAONeSvfkmjBkDjzwC558PwL7eveGuu2DKFLjwQvjD\nH6LN6CKTVltAzrkctHIllJTA//0fXHLJ4f2vuAIGDYJPfQq6dTtYIFz+8ALgXEtUXQ1XXgm33w7j\nxtU9XFERLFwIPXo0XzYXG14AnGuJWrWC556DXr1SD9u7d/B3wwb4yEdAatpsLjb8GIBzLc3mzcEW\nQDoL/xpmMHYsPPVU0+VysZNWAZBUImm5pJWSbqql/3WS3pS0SNJLkoYm9Ls5HG+5pIuyGd45l8QM\nLr+84QtyCX7wA7jxRti7t2myudhJWQDCWzreB1wMDAXGJy7gQ78zs5PN7DTgx8CUcNyhBLeQPBEo\nAX5ec4tI51wTeP552LgxOPOnoUaNgtNOg7vvzn4uF0vpbAEMA1aa2Woz209w0/exiQOY2QcJLzsB\nFj4fC0wPbw7/NrAynJ5zLtvM4NZbYfJkaJ3h4b277oL//V9Yvz672VwspfMr6QesTXi9DhiePJCk\n64FvAG2BmvPJ+gGvJo3br5ZxJwITAfr06cOcOXPSiJWeioqKrE4v2+Kcz7NlLop8PV96iUFbtjC/\nVy+oZ96psg26+GL2/fjHvHvZZdkPmYJ/r83MzOp9AFcADyS8ngDcW8/wnwWmhc/vBT6X0O9B4Ir6\n5ldUVGTZVFZWltXpZVuc83m2zEWSb/Ros6efTjlYymzV1dnJkwH/XjMHzLcUy/PkRzpbAOuBAQmv\n+4fd6jId+EWG4zrnMvX009ChQ+OnU3Ma6L590K5d46fnYiudYwDzgMGSBklqS3BQtzRxAEmDE15e\nAqwIn5cC4yS1kzQIGAy81vjYzrlDmEHHjtk7h3/ePDjnnOxMy8VWygJgZlXAJGAWsAx4wsyWSJos\nqeZUg0mSlkhaRHAc4Opw3CXAE8BS4FngejM70ATvw7n8tWEDnHlmUASy5YwzgrOJFizI3jRd7KR1\nqoCZzQRmJnW7LeH5V+sZ907gzkwDOudS+O1v4dRTs3sFb0EBXHstTJ0K99+fvem6WPErgZ3LZWZB\nS59XX539aX/hC/DEE7BzZ/an7WLBC4BzuWzhQtizBz7xiexPu29fGDECpk/P/rRdLHhjcM7lspq1\n/1ZNtC73gx9k58wiF0teAJzLZSNHBgeAm8pHP9p003aR811AzuWyyy+HAQNSD9cYixcHB5pdi+MF\nwLlcNWNG8xygPXAguLFMNk8zdbHgBcC5XLRxI3zxi81z85bTTguKwOLFTT8v16y8ADiXi0pLgxu6\nFxY2/bykYFeT3zy+xfEC4Fwuevrp4A5ezcULQIvkBcC5XLNrF/ztb/DJTzbfPD/2saBhuC1bmm+e\nrsn5aaDO5ZpXXoFhw6B79+abZ6tWMH9+883PNQsvAM7lmtGjm+bK33SYNc+BZ9csfBeQc7moffvm\nn6dZcEbQ2rWph3U5wQuAc7nklVfgW9+KZt5S0Ez0U09FM/9GGjlt5MGHC3gBcC6XzJgRbds8fjZQ\ni5JWAZBUImm5pJWSbqql/zckLZW0WNILko5O6HdA0qLwUZo8rnMuTWbNf/pnsgsugNdfh02bosvg\nsiZlAZBUANwHXAwMBcZLGpo02OtAsZmdAjwJ/Dih3x4zOy18jME5l5lly4L79J5+enQZ2reH88+H\nWbOiy+CyJp0tgGHASjNbbWb7CW76fsgqiJmVmdnu8OWrBDd/d85l09NPw5gx0Z+Fc8MNMGhQtBlc\nVshSNPAk6QqgxMyuDV9PAIab2aQ6hr8XeM/Mvhe+rgIWAVXAD83ssCNIkiYCEwH69OlTND2LN6Co\nqKigsDkul89QnPN5tsw1Rb5+M2awc8gQPjj55EZNJ86fXVNmK99SfvD5kJ5DMppGnD+7kSNHLjCz\n4gaNZGb1PoArgAcSXk8A7q1j2M8RbAG0S+jWL/x7DPAOcGx98ysqKrJsKisry+r0si3O+Txb5uKc\nLyvZVq40W7++8dNJ0pSf24hHRhx8ZCrO3ysw31Isz5Mf6ewCWg8kNjjeP+x2CEmjgVuAMWa2L6HA\nrA//rgbmABHuwHQuR23bFrTIGRc//zk8+GDUKVwjpVMA5gGDJQ2S1BYYBxxyNo+k04H7CRb+GxO6\nd5fULnzeCzgbWJqt8M7lja9/HX71q6hTfKikBJ59NuoUrpFSFgAzqwImAbOAZcATZrZE0mRJNWf1\n/AQoBH6fdLrnCcB8SW8AZQTHALwAONcQZvDcc0ETEHFxzjnw5puwdWvUSVwjpNUWkJnNBGYmdbst\n4Xmtv0wz+wfQuCNWzuW7N98MLv467riok3yofXs491yYPRuuvDLqNHXyq37r51cCOxd3s2bBRRdF\nneJwJSXwl79EncI1grcG6lzcPfccTKr1rOtoXXUVXHZZ1ClcI3gBcC7uvvIVGDEi6hSH6969ee9J\n4LLOdwE5F3eXXgqdO0edonYvveSNw+UwLwDOxdns2bD+sMtu4uODD+CnP406hcuQ7wJyLs5uuAEe\nfRT69Ys6Se1GjAjOAtq5MzZbKX7mT/p8C8C5uFqzJrgJe5Stf6bSsWNwf+IXX4w6icuAFwDn4mrW\nrKD9/VYx/zcdPTrYVeVyTsx/Wc7lsVmz4MILo06R2ujRsGJF1ClcBrwAOBdH1dXwt78FWwBxd+aZ\n8Kc/RZ3CZcAPAjsXR61aQXl5bpxnH/UNalzGvAA4F1e5sPCvMWtW0CzEPfdEMns/8yczvgvIuTj6\n9rdh1aqoU6TvmGPgySeDlktdzvAC4Fzc7N0LP/sZ9OoVdZL0HXccFBTA8uVRJ3EN4AXAubj5xz/g\npJOga9eok6RPCs4Gev75qJO4BkirAEgqkbRc0kpJN9XS/xuSlkpaLOkFSUcn9Lta0orwcXU2wzvX\nIs2eHa+bv6Srma8HGDlt5MGHy0zKAiCpALgPuBgYCoyXNDRpsNeBYjM7BXgS+HE4bg/gdmA4MAy4\nXVIOHdlyLgK5WgBGjYLBg6NO4RognS2AYcBKM1ttZvuB6cDYxAHMrMzMdocvXyW4cTzARcDzZrbV\nzLYBzwMl2YnuXAtUWQlt28JZZ0WdpOGOOALuuivqFK4BZCmO2ku6Aigxs2vD1xOA4WZW6x0qJN0L\nvGdm35P0TaC9mX0v7PcdYI+Z3ZU0zkRgIkCfPn2Kpk+f3si39aGKigoKCwuzNr1si3M+z5a5OOdr\n0mzV1bT54AMqu3XLaPSGZCvfUp7RPACG9ByS0Xhx/l5Hjhy5wMyKGzJOVq8DkPQ5oBg4ryHjmdlU\nYCpAcXGxjcjizS/mzJlDNqeXbXHO59kyl3E+sya/sKpJP7vnnoMpUzJuHK4h2e6YdkdG8wAo+3RZ\nRuPF/XfXUOnsAloPDEh43T/sdghJo4FbgDFmtq8h4zrnQsXFsHp11Ckyd/bZsHAhVFREncSlIZ0t\ngHnAYEmDCBbe44DPJg4g6XTgfoJdRRsTes0Cvp9w4PdC4OZGp3auJVq7NmgCeuDAqJNkrlOnoIj9\n/e9w8cVZn7yf8ZNdKbcAzKwKmESwMF8GPGFmSyRNljQmHOwnQCHwe0mLJJWG424FvktQROYBk8Nu\nzrlkL7wQnEkT9+afUxk1ypuHzhFpHQMws5nAzKRutyU8r/OcNTN7CHgo04DO5Y3Zs4OFZ64bPRq+\n/OWoU7g05PiqhnMthFlQAHKh+edUzjwTbr7Z2wXKAd4aqHNxsGdPsNacy/v/a7RuDf/+71GncGnw\nLQDn4qBjR7j99qhTZM/Gjd4uUA7wAuBcHCxbBlVVUafIns2b4Utf8t1AMecFwLmo7d8fNP2wY0fU\nSbLnhBOC95XL1zTkAS8AzkVt7tygEbWePaNOkj1ScEbTCy9EncTVwwuAc1HL1dY/U2nm5qFdw/lZ\nQM5FbfZsuCPzdm1ia9Qo+OY3obq6URe3+dW/Tce3AJyL0o4d8MYbQRs6LU3//rBkSe5f2dyC+Tfj\nXJTat4dZs6BDh6iTNI0jjog6gauHFwDnotSuXctc+6/xzjtw220pB3PR8ALgXJTuuw927049XK7q\n0QPuvrtlv8cc5gXAuaisXx+sHbdrF3WSptOlC5x+esY3iHFNywuAc1GZPRvOPx8KCqJO0rQuuig4\nzuFixwuAc1F59tlg4djSXXhhcKtIFztpFQBJJZKWS1op6aZa+p8raaGkqvAm8on9DoQ3iTl4oxjn\n8t6BA0FjaflQAM44A7p1O3ibyJHTRh58JBo5bSTlW8r9vP9mlPJCMEkFwH3ABcA6YJ6kUjNbmjDY\nGuAa4Ju1TGKPmZ2WhazOtRz//Cf06wcDBqQeNtcVFMDLL0edwtUinSuBhwErzWw1gKTpwFjgYAEw\ns3fCftVNkNG5lufEE2H+/KhTNC+zoI2gBL62Hy1ZiuZaw106JWZ2bfh6AjDczCbVMuwjwJ/M7MmE\nblXAIqAK+KGZPVXLeBOBiQB9+vQpmj59esZvKFlFRQWFhYVZm162xTmfZ8tcnPNFka11RQVF//mf\nzP31rynfvqrO4XoU9GDrgaa/bfiQnkMyGi/O3+vIkSMXmFlxQ8ZpjraAjjaz9ZKOAf4q6U0zO+QX\nYGZTgakAxcXFNmLEiKzNfM6cOWRzetkW53yeLXP15tu2Da6+Gp5++rA14ubQXJ9d4tp92dVl0K0b\nI7p04Y51j9U5zvjC8TxWUXf/bCn7dFlG48X9d9dQ6RwEXg8k7qjsH3ZLi5mtD/+uBuYApzcgn3Mt\nzwsvQGVlJAv/SPnZQLGTTgGYBwyWNEhSW2AckNbZPJK6S2oXPu8FnE3CsQPn8tKsWVBSEnWK5ufX\nA8ROyl1AZlYlaRIwCygAHjKzJZImA/PNrFTSmcAfge7ApZLuMLMTgROA+8ODw60IjgF4AXD5yyw4\n///GG6NOklWpDuaOnDaSdvsO8MfXXqbjZz/O7g7eEn0cpPUtmNlMYGZSt9sSns8j2DWUPN4/gJMb\nmdG5lmPZsuC0yOOPjzpJs9vXroAHLx9Eu30HvADEhH8LzjWnbdvgy1/Ov/3/oRkX5cF1DznEC4Bz\nzenss1t288+pmDHkXxWsOKoQa5WfRTBOvC0g55pLZSXs3Rt1imhJ3PLLpQxeUxF1EodvAThXr8PO\nZW+MZ58N2v9/9tlGpmpeWf0MgFdO68lZi7ZQPrBzo6flGscLgHNJmqx5gtLSWJz+Wb6lnDumBTeh\nz8YCvaFeObUn1z2xml9/amCzz9sdyncBOdccqqvhmWfg0kujThK5twZ3pd/7e+ixfV/UUfKebwE4\n1xxeew169YJjj83K5LK9W6Y5HWjdinkndeesN7Yy87wjo46T17wAOJemRi10S0thzJgsJ8qu5iwq\nU688looOLfxOaDnAC4BzzWHMmGALoBHi0HRytorE+73aZyOOayQvAM41h7POarJJ11UYmnotvrEF\nacRrG3m/Z3uWHdslS4lcQ3kBcDkp6jNZGuSll6B37wY1/1CzcG3Me2vM2npzbG18ZNNeTlm+3QtA\nhPwsIOeaSM19bxdOvBSWLz+sexx26UTp1dN68rFFW4IG8lwkfAvA5YzEBeb4wvEph0kU1VZC4a5K\njn97J4weHcn84+ydvh2pbiWOXVPBqqP9orAoeAFweaW5T58cvngriz7ajVt/f0mTzysTkW6FSLxY\n3JsR8zZ5AYiIFwCX86JYiKVbSD7++mb+cXrP5oiUk8qG9Wb8zLVRx8hbaR0DkFQiabmklZJuqqX/\nuZIWSqoKbyKf2O9qSSvCx9XZCu5c3LU6UM0p5Tt45VQvAHUpH9SFO64/MeoYeSvlFoCkAuA+4AJg\nHTBPUmnSnb3WANcA30watwdwO1AMGLAgHHdbduI7l54othKqC1px1Y+Hs79t9Bc8pXP8JEqqNm8e\nOgLp7AIaBqwMb+qOpOnAWBLu7Wtm74T9qpPGvQh43sy2hv2fB0qAxxqd3LmYqG93UKqFfzq3Umzp\n+m7cw+Rfg0HYAAAPW0lEQVSfvcW1k4ujjpJ30ikA/YDEnXTrgOFpTr+2cfslDyRpIjARoE+fPsyZ\nMyfNyadWUVGR1ellW5zzxS1b4pprj4IejV6Treu9NWa6U2dMBeCI/R149K4NzPzO17CCeJ1tnY3P\nLqs6Gb333cL1W86Bbs2TLdPfddz+JxorFgeBzWwqMBWguLjYRowYkbVpz5kzh2xOL9vinC9u2Wou\n/IJgIf1YReM2JMs+/eHaerbXtL+z8BjWFGzid3sez+p0syEbn122dSnqSOXffs2egbc0S7bE774h\n4vY/0VjprJqsBxJv5Nk/7JaOxozrXM469qV5/HX4EVHHyBllw3oz4rVNflFYM0unAMwDBksaJKkt\nMA4oTXP6s4ALJXWX1B24MOzmXIvVuaKSI/+5gpdPb1zjb/mkfGBnWh8wevxrXdRR8krKAmBmVcAk\nggX3MuAJM1siabKkMQCSzpS0DvgMcL+kJeG4W4HvEhSRecDkmgPCzrVU5yzYxLpThrKnQyz2sOYG\niZ9ddRyVHbyV0OaU1i/UzGYCM5O63ZbwfB7B7p3axn0IeKgRGZ1rEk11hs3OTm1YUjICWNgk02+p\nXjm9FwMLe4PfL77ZxOv0BOdagL8X92bDSem3/Ok+1GvVvzh6/a6oY+QNLwDOZdGADbvpsKcq6hg5\n68il5YyfuSbqGHnDC4BzWXTL/Us5acWOqGPkrBXnnsXZCzfTabcX0ebgBcC5LBny9gd0qahi/kk9\noo6Ss/Z27cyCE7tz/tyNUUfJC14AnMuSS8s28OfzjvQ2bRpp5rlHcvGLG6KOkRe8ADiXBR33VHHe\n/E3MPOcjUUfJefNP6kHHvQfosX1f1FFaPD9R2bks+MTCzSwc2o1t3dpFHSXnVbcSn7/zTN+SagZe\nAJzLguc+3sev/M0iayUwQ4YXgibku4CcywaJXR19fSqbvjGtnPPmb4o6RovmBcC5Rvp/j63kjCXe\nwkm2LfpoN8b89d2oY7RoXgCca4ROuyop+ft7rB5QGHWUFudvxb3pu3EPx6/+IOooLZYXAOca4eKX\n3mPeSd3Z3qVt1FFanAOtW/H7i/ozzm8a32S8ADiXoTb7D3Dls2uZ/smjoo7SYv35vCM5bfl2+r6/\nO+ooLZIXAOcyVPLSe6waUMiKgZ2jjtJi7W3fmlu+ehJbu/oWVlPw0xacy9CKgZ15a3DXqGO0eEuP\n88+4qaS1BSCpRNJySSsl3VRL/3aSHg/7z5U0MOw+UNIeSYvCxy+zG9+56PzzmC687Qd/m8WJK3Yw\n9gW/m2y2pSwAkgqA+4CLgaHAeElDkwb7IrDNzI4D7gZ+lNBvlZmdFj6uy1Ju5yLT6kA1X3xyNW0q\nq6OOkje2dm3L5//4tje1nWXpbAEMA1aa2Woz2w9MB8YmDTMWmBY+fxIYJckv33Mt0vlzN3FK+Q4q\nW/tPvLlsOKIDC4Z25zLfCsiqdApAPyDxPKx1YbdahwnvIbwD6Bn2GyTpdUl/k3ROI/M6FylVG1f9\n6V/8ZszR4Os4zeqhywdx5bNr6b5jf9RRWgyZWf0DSFcAJWZ2bfh6AjDczCYlDPNWOMy68PUqYDiw\nEyg0sy2SioCngBPN7IOkeUwEJgL06dOnaPr06dl6f1RUVFBYGN/9tHHOF7ds5VvKDz7vUdCDrQea\n/+rbIWX/4ITnX+TpO/+73gIQVb505HK24dOepO3uPfz9yxMaNZ8hPYdkNF7c/icSjRw5coGZFTdk\nnHTOAloPDEh43T/sVtsw6yS1BroCWyyoLvsAzGxBWBiGAPMTRzazqcBUgOLiYhsxYkRD3kO95syZ\nQzanl21xzhe3bHdMu+Pg8/GF43ms4rFmnX/hrkqm/eY1bv76yZTvqn8lJYp86crlbKUllXxi4WZm\nNTJ/2afLMhovbv8TjZXOLqB5wGBJgyS1BcYBpUnDlAJXh8+vAP5qZiapd3gQGUnHAIOB1dmJ7lzz\nar+/mkc+NZDyQV2ijpK3dnVqw6xzjow6RouRcgvAzKokTQJmAQXAQ2a2RNJkYL6ZlQIPAr+RtBLY\nSlAkAM4FJkuqBKqB68wsntuezqWwuXs7njk/+fCXi8J5r21kX9tWvHqaN8HdGGldCGZmM4GZSd1u\nS3i+F/hMLePNAGY0MqNzkVK1MfH3q3n00qO9yeeY2FnYhhsfXs6Cod2pbFsQdZyc5U1BOJfCJS9u\n4KQVO9jd3hc0cbFwaHfKj+7Ml2a8HXWUnOYFwLl6HLFlL1+Y8Tb3/McQvzNVzEy5ZgjnztvE8De2\nRB0lZ3kBcK4ObSqr+Z/7lvD4xQNYdVQ8T/3LZzsL2/D9/zyB/3poOZ12VUYdJyd5AXCuDlc/9Q6b\nurfj8YsHpB7YRWLx8d345n+dwq5ObaKOkpP8iJZzdfjDBf3Y17bAr/iNuXf6B1tnhbsqqfBC0CC+\nBeBckl7b9tGq2tjarZ2f9ZMj2lRWM/X2BZy9cHPUUXKKFwDnEvTZtIef3vk6RUu2RR3FNUBlm1b8\nz/VDufHh5RS95ZcapcsLgHOhvhv3cM8PF/FEyQDmndwj6jiugcoHdeG2G07k1vuXcfLy7VHHyQle\nAJwDBmzYzd0/XMRvLz2ap0b71b656q0h3fjef57AHfcu4ej1u6KOE3u+g9PlvTaV1fxgymIevmwg\nz3o7MzlvwUk9uOVrJ7O+T4eoo8SebwG4/BU2hV7ZphU33HK6L/xbkGXHdqGqdSu67NzPVaX/otUB\nv3tbbbwAuLxUuKuS23++lHPmbwJgW7d2ESdyTULi1OXb+cldi/1GMrXwAuDyixlnL9zMr26bz5Zu\nbXn1FD/Y25J9UNiGm248hbcGd+WhW+fxmWfX+r2cE/gxAJc3Tlm+neseX0Xb/dVMueZ4P9MnT1S3\nEg9fPojZZx3Blx9fxdHv7oJro04VD14AXIvWdv8BZLCvXQGdKyr5/UUDmHNmb2/YLQ+t7duJb3/9\nFNruP8AlAOXlMHMmTJgAPXumGr1F8l1ArsVpu/8ARW9t5VsP/pMnv/YKxeFFXS8X9aZs+BG+8M9z\n+xPvHzB/Phx7LFx1FTzxBGzJr5ZF0yoAkkokLZe0UtJNtfRvJ+nxsP9cSQMT+t0cdl8u6aLsRXcu\nuFlLhz1VAHTYU8X/ff91nrrhZT7/x3d4u18nPn/nmbx8ht81ytViyBB49FFYvRo+/nH49a9h8GCo\nqAj6L14My5ZBVVW0OZtQyl1A4T197wMuANYB8ySVmtnShMG+CGwzs+MkjQN+BPy7pKEEt4c8EegL\nzJY0xMwOZPuNuBbEDPbvD/4Rt2+HggIYOBCAT89aS58t+zhj51RGvLucAe/t5rmzP8I9/zGEPe0L\neORTA1l2TGf2tve9my5NPXrA9dcHj6oqaB3+dp55Bh5+GDZsCArDUUdxTKdOUHNT+IULobIy2H3U\npQsUFkKHDjnVeGA6/yXDgJVmthpA0nRgLJBYAMYC/xM+fxK4V5LC7tPNbB/wdnjP4GHAK9mJ73LO\nJZfApk3BP9qBA8E/0HnnwS9+EfQ/5hhYsyZY6HfsCN26wdixcM89AHTeXcXm7m15Z+hpzCisZk3f\nTh822Cbx+tDuEb0x1yK0Tlgk3nJL8KiogOXLYe1ads2d+2H/xx+Hv/412G20c2cwXN++sGpV0P+z\nn4W5c2HKlOA3HEOy8GKYOgeQrgBKzOza8PUEYLiZTUoY5q1wmHXh61XAcIKi8KqZPRp2fxD4i5k9\nmTSPicDE8OXxwPLGv7WDegFxbiIwzvk8W+binM+zZS7O+Y43s84NGSEW28lmNhWY2hTTljTfzIqb\nYtrZEOd8ni1zcc7n2TIX53yS5jd0nHQOAq8HEm+J1D/sVuswkloDXYEtaY7rnHMuAukUgHnAYEmD\nJLUlOKhbmjRMKXB1+PwK4K8W7FsqBcaFZwkNAgYDr2UnunPOucZIuQvIzKokTQJmAQXAQ2a2RNJk\nYL6ZlQIPAr8JD/JuJSgShMM9QXDAuAq4PoIzgJpk11IWxTmfZ8tcnPN5tszFOV+Ds6U8COycc65l\n8iuBnXMuT3kBcM65PJVXBUDSjZJMUmzaBpD0E0n/lLRY0h8ldYtBpnqb/oiSpAGSyiQtlbRE0lej\nzpRMUoGk1yX9KeosySR1k/Rk+JtbJuljUWeqIenr4Xf6lqTHJLWPOM9DkjaG1znVdOsh6XlJK8K/\nkVx5WEe2Bi9L8qYASBoAXAisiTpLkueBk8zsFKAcuDnKMAlNf1wMDAXGh016xEUVcKOZDQXOAq6P\nWT6ArwLLog5Rh/8DnjWzjwKnEpOckvoBXwGKzewkghNOxkWbikeAkqRuNwEvmNlg4IXwdRQe4fBs\nDV6W5E0BAO4GvgXE6qi3mT1nZjWtTb1KcK1ElA42/WFm+4Gapj9iwcw2mNnC8PlOggVYbO7iLqk/\ncAnwQNRZkknqCpxLcNYeZrbfzLZHm+oQrYEO4bVEHYF3owxjZi8SnNWYaCwwLXw+DfhUs4YK1ZYt\nk2VJXhQASWOB9Wb2RtRZUvgC8JeIM/QD1ia8XkeMFrCJwlZnTwfm1j9ks7qHYEUjjredGgRsAh4O\nd1E9IKlT1KEAzGw9cBfBFvoGYIeZPRdtqlr1MbMN4fP3gD5RhqlHWsuSFlMAJM0O9x0mP8YC3wZu\ni2m2mmFuIdi98duocuYSSYXADOBrZvZB1HkAJP0bsNHMFkSdpQ6tgTOAX5jZ6cAuotuFcYhwX/pY\ngiLVF+gk6XPRpqpfeLFrrPYoQMOWJbFoCygbzGx0bd0lnUzwo3ojaKCU/sBCScPM7L0os9WQdA3w\nb8Aoi/7CjNg33yGpDcHC/7dm9oeo8yQ4Gxgj6ZNAe6CLpEfNLC4LsnXAOjOr2WJ6kpgUAGA08LaZ\nbQKQ9Afg48CjkaY63PuSjjSzDZKOBDZGHShRQ5clLWYLoC5m9qaZHWFmA81sIME/wRnNtfBPRVIJ\nwS6DMWa2O+o8pNf0R2TCZsYfBJaZ2ZSo8yQys5vNrH/4OxtH0CRKXBb+hL/5tZKODzuN4tBm3aO0\nBjhLUsfwOx5FTA5QJ0ls9uZq4OkIsxwik2VJiy8AOeBeoDPwvKRFkn4ZZZjwIFJN0x/LgCfMbEmU\nmZKcDUwAzg8/r0XhGrdLzw3AbyUtBk4Dvh9xHgDCrZIngYXAmwTLpkibXZD0GMG9S46XtE7SF4Ef\nAhdIWkGw1fLDGGVr8LLEm4Jwzrk85VsAzjmXp7wAOOdcnvIC4JxzecoLgHPO5SkvAM45l6e8ADjn\nXJ7yAuCcc3nq/wMKgB0yUDXLPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 10000, D:[array(0.6931429505348206, dtype=float32), array(0.5450000166893005, dtype=float32)], G loss:0.11358608305454254\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8FPX1//HXm3An3EGUSwUVVLyhiWC/VgVFjbUFba0F\nrcVWS/Unvffbr1arlWprrbU3bautt7bWaLXV1FJRLGi1ilzEC1DCRSoglqtAuEgg5/fHTHRZk+xm\nM8nMZs/z8dhHdmY+M/vOZjNn5/YZmRnOOecKT5u4AzjnnIuHFwDnnCtQXgCcc65AeQFwzrkC5QXA\nOecKlBcA55wrUF4AHACSTNIhcedoaZL+LmlSRMs6SdKSlOGVksZGsexweQsljY5qeVm+piTdI2mz\npJda8HXPlPRolm1fknREc2dqjbwAJFC44tgpqSrlcVvcuWpJOlLSdEkbJH3gQhJJvST9RdJ2Sf+R\ndEHa9AvC8dslPSqpVxTz1pHDwnZVkjZKelrSp1PbmNlZZnZfFr9zxgJpZv80s0MzLSsbku6VdEPa\n8o8ws1lRLL8RPgKcDgw0s5HpEyVdLGlv+B5vlbRA0scieN0bgZuybHsLMDWC1yw4XgCS6+NmVpzy\nmBJ3oBTVwEPAJfVMvx3YDfQDLgR+VfsNLfx5B3BROH0H8MuI5q3LMWZWDBwK3AvcJum6RvyuWZHU\nNuplJsSBwEoz295AmxfC97gHcBfwkKSeub6gpOOB7mb2YpazVABjJO2f62sWLDPzR8IewEpgbD3T\nLgaeB24DtgD/Bk5Lmd6f4B9iE7AM+ELKtCLg28ByYBswDxgUTjPgMmAp8A7BilgZch4SfIT2GdeF\nYAU+LGXc74GbwuffB/6YMu3gsH3XpsxbTz4DDkkbdx6wC+gdDs8CLk35fZ4J39cNwIPh+GfDZW0H\nqoBPA6OB1cD/AW+HOUcDq9P+jlcBi4DNwD1Ax5S/43N15QUmExTZ3eHr/TX9cwF0AH4KvBU+fgp0\nCKfVZvsGsA5YC3yugb9jnZ8ZggK/C9gb5ri+ns/jcynDXcLfozTDZ+dbYa63gEtT/1bAtcBvU9r+\nT/j3qP2sHhO+n4eltHkKmBT3/26+PXwLID+NIliJ9wGuA/6csiuknOCfvz/Byu77kk4Np30dmAh8\nFOgGfJ7gW3StjwHHA0cD5wNn5pBtGLDHzCpTxr0C1O6jPSIcBsDMlhOu9Js4b7YeA9oCH9idAXwP\neBLoCQwEfhG+zsnh9GMs2Bp7MBzeH+hF8C15cj2vdyHB+3hwmPOaTAHN7E7gfuDm8PU+Xkezq4ET\ngBEEK8SRacveH+gODCBYkd/ewLfyOj8zZnYXwZeCF8IcDW45hVtBlxIUi6UNtCsj+CyOJSh4o9Oa\nHAW8dyzFzP5FsOV3n6ROwB+A75jZv1PmWUzwPrhG8AKQXI9Keifl8YWUaeuAn5pZdbgyWgKcLWkQ\ncCLwf2a2y8wWAL8FPhvOdylwjZktscArZrYxZbk3mdk7ZvYmMJNg5dJYxcDWtHFbCL7h107fUs/0\npsybFTOrJvg2Wdexg2qClXn/8P17LsPiaoDrzOxdM9tZT5vbzGyVmW0i2K89MdusGVwITDWzdWa2\nHrieYNdYrepwerWZTSNYKX/g+EQWn5lsnCDpHYItoYnAuWaW/ndKdT5wj5ktNLMdwHfTpvcg2EJN\n9V2CgvYSsIZgCzXVtnA+1wheAJLrHDPrkfL4Tcq0NWaWevD1PwTf3voDm8xsW9q0AeHzQQRbDvV5\nO+X5DoIVbmNVEWxdpOrG+//QDU1vyrxZkdQO6EuwuyPdtwABL4Vn3Hw+w+LWm9muDG1WpTyv/TtF\noX+4vPqWvdHM9qQM1/f3zPSZycaL4We0j5mdYGYzssie+r6sSpu+mbSiHhbue4EjgR+nff4J27/T\niMwOLwD5aoAkpQx/iPf3BfeS1DVt2prw+SqCXRHNqRJoK2loyrhjgIXh84WkbKpLOohgf3ZlE+fN\n1nhgD8E3yX2Y2dtm9gUz6w98EfhlhjN/sulKd1DK89q/EwTHEzrXTqjjAGamZb9FsLVS17IbI9Nn\npjmsJdjFVmtQ2vRXSdutJ2kAwe7Oe4AfS+qQNs/hpOwedNnxApCf9gO+LKmdpE8RfPinmdkq4F/A\nDyR1lHQ0wf7fP4Tz/Rb4nqSh4fndR0vq3dgXD+ftCLQPhzvW/kNacLbIn4GpkrpIOpFgpfv7cPb7\ngY+H58x3ITh9789mtq0p82aRuZekCwl2HfwwbddXbZtPSapdMW0mWAnXhMP/BQ7K/l16zxWSBobH\naK4Gao8fvAIcIWlE+F5+N22+TK/3AHCNpL6S+hAcOP1DA+3rlMVnpjk8BHxO0uGSOgPfSZs+DTil\ndiD8snMvwRlGlxAUkO+lTO8IlBAcCHaNEfdRaH988EFwtsdOgl0etY+/hNMuZt+zgCqBM1LmHQg8\nTrCLYzlwWcq0IoIDhW8Q7DaZQ3B+N6SdMUPwD3dDPfkGh+1THytTpvcCHiX4lvsmcEHa/BeE47cT\nHJTtFcW8deRMPXNnE8FxjfTlzeL9s4BuJvjmWxW+d5NT2l1GsOJ5h2Af9mhSzvgJ2+wzjn3PAnoH\nuA/onDL9aoLjEauAz7DvmTBDgQXhfI+mLK/2LKCOwM/DTGvD5x3rypE+bx3vU0OfmYtJO1spbd4G\npzcw31UEuxzfAi4Pf/dBKdPnAKPC518hKJjtw+H+wHrgpHD4UwRfBGL/3823h8I30OUJSRcTrLA+\nEncW56Ig6XDgdYLTWPeE484A/p+ZnZPF/LOBS8zs9eZN2vq01otXnHMJJulcgl09nYEfElzr8N5B\nazN7kuCU3IzMbFSzhCwAWR0DkFQmaYmkZZKubKDdJ8NL5kvD4cEKujRYED5+HVVw51xySfq29u3K\npPbx97DJFwlOZ15OcKHZ5bGFLWAZdwFJKiLYz3w6wcUic4CJZrYorV1X4G8EBwanmNlcSYOBx83s\nyOijO+eca4pstgBGAsvMbIWZ7Sa4anB8He2+R7Apl+m8aOeccwmQzTGAAex7ocZqgq4I3iPpOIIj\n+H+T9L9p8w+R9DLBFZ7XmNk/019A0mTCS+k7depUMmhQ+mnBuaupqaFNm+Se7ZrkfJ4td0nO59ly\nl+R8lZWVG8ysb6NmyuJ0rfPYt2Omiwgub68dbkNwKt3gcHgWYUdQBBfp1Ha6VUJQSLo19HolJSUW\npZkzZ0a6vKglOZ9ny12S83m23CU5HzDXGnkaaDalbA37Xqk3kH2vEuxKcHn2LEkrCTqoqpBUakEf\nKRvDQjOP4IBPYzrucs4510yyKQBzgKGShkhqD0wg6DoWADPbYkEfIIPNbDDwIjDOgoPAfcODyLWX\n7Q8FVkT+WzjnnGu0jMcAzGyPpCnAdIIrSe82s4WSphJsclQ0MPvJBJf1VxNcUn+ZBb0iOueci1lW\nF4JZ0J3stLRx19bTdnTK80eAR5qQzznnXDNJ5uFs55xzzc4LgHPOFSgvAM45V6C8ADjnXIHyAuCc\ncwXKC4BzzhUoLwDOOVegvAA451yB8gLgnHMFyguAc84VKC8AzjlXoLwAOOdcgfIC4JxzBcoLgHPO\nFSgvAM45V6CyKgCSyiQtkbRM0pUNtPukJJNUmjLuqnC+JZLOjCK0c865pst4Q5jwlo63A6cDq4E5\nkirMbFFau67AV4DZKeOGE9xC8gigPzBD0jAz2xvdr+Cccy4X2WwBjASWmdkKM9sNlAPj62j3PeCH\nwK6UceOB8vDm8G8Ay8LlOeeci1k2BWAAsCpleHU47j2SjgMGmdnfGjuvc865eGR1T+CGSGoD3Apc\n3IRlTAYmA/Tr149Zs2Y1NdZ7qqqqIl1e1JKcz7PlLsn5PFvukp6v0cyswQfwYWB6yvBVwFUpw92B\nDcDK8LELeAsoraPtdODDDb1eSUmJRWnmzJmRLi9qSc7n2XKX5HyeLXdJzgfMtQzr8/RHNruA5gBD\nJQ2R1J7goG5FSgHZYmZ9zGywmQ0GXgTGmdncsN0ESR0kDQGGAi81oV4555yLSMZdQGa2R9IUgm/v\nRcDdZrZQ0lSCilPRwLwLJT0ELAL2AFeYnwHknHOJkNUxADObBkxLG3dtPW1Hpw3fCNyYYz7nnHPN\nxK8Eds65AuUFwDnnCpQXAOecK1BeAJxzrkB5AXDOuQLlBcA55wqUFwDnnCtQXgCcc65AeQFwzrkC\n5QXAOecKlBcA55wrUF4AnHOuQHkBcM65AuUFwDnnCpQXAOecK1BeAJxzrkBlVQAklUlaImmZpCvr\nmH6ZpNckLZD0nKTh4fjBknaG4xdI+nXUv4BzzrncZLwjmKQi4HbgdGA1MEdShZktSmn2RzP7ddh+\nHHArUBZOW25mI6KN7Zxzrqmy2QIYCSwzsxVmthsoB8anNjCzrSmDXQCLLqJzzrnmILOG19WSzgPK\nzOzScPgiYJSZTUlrdwXwdaA9cKqZLZU0GFgIVAJbgWvM7J91vMZkYDJAv379SsrLy5v4a72vqqqK\n4uLiyJYXtSTn82y5S3I+z5a7JOcbM2bMPDMrbdRMZtbgAzgP+G3K8EXAbQ20vwC4L3zeAegdPi8B\nVgHdGnq9kpISi9LMmTMjXV7UkpzPs+Uuyfk8W+6SnA+YaxnW5+mPbHYBrQEGpQwPDMfVpxw4Jywu\n75rZxvD5PGA5MCyryuScc65ZZVMA5gBDJQ2R1B6YAFSkNpA0NGXwbGBpOL5veBAZSQcBQ4EVUQR3\nzjnXNBnPAjKzPZKmANOBIuBuM1soaSrBJkcFMEXSWKAa2AxMCmc/GZgqqRqoAS4zs03N8Ys455xr\nnIwFAMDMpgHT0sZdm/L8K/XM9wjwSFMCOuecax5+JbBzzhUoLwDOOVegvAA451yB8gLgnHMFyguA\nc84VKC8AzjlXoLwAOOdcgfIC4JxzBcoLgHOF4M03YeNGAIqXLYPLL4e1a2MO5eLmBcC51m72bCgp\ngVdeAaC6e3fo0gVGjYKXX445nIuTFwDnWrPXXoNx4+Dee+HUUwF4t29fuOUWuPVWOOMM+POf483o\nYpNVX0DOuTy0bBmUlcHPfgZnn/3B6eedB0OGwDnnQI8e7xUIVzi8ADjXGtXUwPnnw3XXwYQJ9bcr\nKYH586FXr5bL5hLDC4BzrVGbNvDkk9CnT+a2ffsGP9euhf33B6l5s7nE8GMAzrU2GzYEWwDZrPxr\nmcH48fDoo82XyyVOVgVAUpmkJZKWSbqyjumXSXpN0gJJz0kanjLtqnC+JZLOjDK8cy6NGXziE41f\nkUvwgx/AN74Bu3Y1TzaXOBkLQHhLx9uBs4DhwMTUFXzoj2Z2lJmNAG4Gbg3nHU5wC8kjgDLgl7W3\niHTONYOnnoJ164IzfxrrtNNgxAj4yU+iz+USKZstgJHAMjNbYWa7CW76Pj61gZltTRnsAlj4fDxQ\nHt4c/g1gWbg851zUzOCaa2DqVGib4+G9W26BH/8Y1qyJNptLpGw+JQOAVSnDq4FR6Y0kXQF8HWgP\n1J5PNgB4MW3eAXXMOxmYDNCvXz9mzZqVRazsVFVVRbq8qCU5n2fLXRz5ej/3HEM2bmRunz7QwGtn\nyjbkrLN49+abeevcc6MPmYH/XVuYmTX4AM4DfpsyfBFwWwPtLwDuC5/fBnwmZdpdwHkNvV5JSYlF\naebMmZEuL2pJzufZchdLvrFjzR57LGOzjNlqaqLJkwP/u+YOmGsZ1ufpj2y2ANYAg1KGB4bj6lMO\n/CrHeZ1zuXrsMejUqenLqT0N9N13oUOHpi/PJVY2xwDmAEMlDZHUnuCgbkVqA0lDUwbPBpaGzyuA\nCZI6SBoCDAVeanps59w+zKBz5+jO4Z8zB046KZplucTKWADMbA8wBZgOLAYeMrOFkqZKqj3VYIqk\nhZIWEBwHmBTOuxB4CFgEPAFcYWZ7m+H3cK5wrV0Lxx8fFIGoHHdccDbRvHnRLdMlTlanCpjZNGBa\n2rhrU55/pYF5bwRuzDWgcy6D+++HY46J9greoiK49FK48064447olusSxa8Edi6fmQU9fU6aFP2y\nP/95eOgh2LYt+mW7RPAC4Fw+mz8fdu6Ej3wk+mX37w+jR0N5efTLdongncE5l89qv/23aabvcj/4\nQTRnFrlE8gLgXD4bMyY4ANxcDjus+ZbtYue7gJzLZ5/4BAwalLldU7z6anCg2bU6XgCcy1ePPNIy\nB2j37g1uLBPlaaYuEbwAOJeP1q2DSy5pmZu3jBgRFIFXX23+13ItyguAc/mooiK4oXtxcfO/lhTs\navKbx7c6XgCcy0ePPRbcwauleAFolbwAOJdvtm+HZ56Bj3605V7zwx8OOobbuLHlXtM1Oz8N1Ll8\n88ILMHIk9OzZcq/Zpg3Mndtyr+dahBcA5/LN2LHNc+VvNsxa5sCzaxG+C8i5fNSxY8u/pllwRtCq\nVZnburzgBcC5fPLCC/Ctb8Xz2lLQTfSjj8bz+i5yXgCcyyePPBJv3zx+NlCrklUBkFQmaYmkZZKu\nrGP61yUtkvSqpKclHZgyba+kBeGjIn1e51yWzFr+9M90p58OL78M69fHl8FFJmMBkFQE3A6cBQwH\nJkoantbsZaDUzI4GHgZuTpm208xGhI9xOOdys3hxcJ/eY4+NL0PHjnDqqTB9enwZXGSy2QIYCSwz\nsxVmtpvgpu/7fAUxs5lmtiMcfJHg5u/OuSg99hiMGxf/WThf+hIMGRJvBhcJWYYOniSdB5SZ2aXh\n8EXAKDObUk/724C3zeyGcHgPsADYA9xkZh84giRpMjAZoF+/fiXlEd6AoqqqiuKWuFw+R0nO59ly\n1xz5BjzyCNuGDWPrUUc1aTlJfu+SnA2SnW/MmDHzzKy0UTOZWYMP4DzgtynDFwG31dP2MwRbAB1S\nxg0Ifx4ErAQObuj1SkpKLEozZ86MdHlRS3I+z5a7JOeLJNuyZWZr1jR9OWmS/L6ZJTsfMNcyrM/T\nH9nsAloDpHY4PjActw9JY4GrgXFm9m5KgVkT/lwBzAJi3IHpXJ7avDnokTMpfvlLuOuuuFO4Jsqm\nAMwBhkoaIqk9MAHY52weSccCdxCs/NeljO8pqUP4vA9wIrAoqvDOFYyvfQ1+85u4U7yvrAyeeCLu\nFK6JMhYAM9sDTAGmA4uBh8xsoaSpkmrP6vkRUAz8Ke10z8OBuZJeAWYSHAPwAuBcY5jBk08GXUAk\nxUknwWuvwaZNcSdxTZBVX0BmNg2Yljbu2pTndX4yzexfQNOOWDlX6F57Lbj465BD4k7yvo4d4eST\nYcYMOP/8uNO4HPmVwM4l3fTpcOaZcaf4oLIy+Pvf407hmsB7A3Uu6Z58EqbUedZ1vC68EM49N+4U\nrgm8ADiXdF/+MoweHXeKD+rZs2XvSeAi57uAnEu6j38cunaNO0XdnnvOO4fLY14AnEuyGTNgzQcu\nu0mOrVvh5z+PO4XLkRcA55LsS1+Ct9+OO0X9Ro8ObhW5bVvcSVwOvAA4l1RvvhnchD3O3j8z6dw5\nuD/xs8/GncTlwAuAc0k1fXrQ/36bhP+bjh0b7KpyeSfhnyznCtj06XDGGXGnyGzsWFi6NO4ULgde\nAJxLopoaeOaZYAsg6Y4/Hh5/PO4ULgd+HYBzSdSmDVRW5sd59nHfoMblzLcAnEuqfFj515o+Hb76\n1bhTuEbyAuBcEn3727B8edwpsnfQQfDww0HPpS5veAFwLml27YJf/AL69Ik7SfYOOQSKimDJkriT\nuEbwAuBc0vzrX3DkkdC9e9xJsicFZwM99VTcSVwjZFUAJJVJWiJpmaQr65j+dUmLJL0q6WlJB6ZM\nmyRpafiYFGV451qlGTOSdfOXbOXh9QBj7hvz3qMQZSwAkoqA24GzgOHAREnD05q9DJSa2dHAw8DN\n4by9gOuAUcBI4DpJeXRky7kY5GsBOO00GDo07hSuEbLZAhgJLDOzFWa2GygHxqc2MLOZZrYjHHyR\n4MbxAGcCT5nZJjPbDDwFlEUT3blWqLoa2reHE06IO0nj7bcf3HJL3ClcI8gyHLWXdB5QZmaXhsMX\nAaPMrM47VEi6DXjbzG6Q9E2go5ndEE77DrDTzG5Jm2cyMBmgX79+JeXl5U38td5XVVVFcXFxZMuL\nWpLzebbcJTlfs2arqaHd1q1U9+iR0+wt/b5Vbqx87/mw3sMytk/y33XMmDHzzKy0MfNEeiGYpM8A\npcApjZnPzO4E7gQoLS210RHe/GLWrFlEubyoJTmfZ8tdzvnMmv3CqmZ97558Em69NefO4Vri71rf\n/v6Zn5yZcd6kf+4aK5sCsAYYlDI8MBy3D0ljgauBU8zs3ZR5R6fNOyuXoM4VhNJS+NOfgvPq89GJ\nJ8L8+VBVBQn6plyoB3kzyeYYwBxgqKQhktoDE4CK1AaSjgXuAMaZ2bqUSdOBMyT1DA/+nhGOc86l\nW7Uq6AJ68OC4k+SuS5egiP3zn3EncVnIWADMbA8whWDFvRh4yMwWSpoqaVzY7EdAMfAnSQskVYTz\nbgK+R1BE5gBTw3HOuXRPPx2cSZP07p8zOe20vDsdtFBldQzAzKYB09LGXZvyvN5z1szsbuDuXAM6\nVzBmzAhWnvlu7Fi4/PK4U7gs5PlXDedaCbOgAORD98+ZHH88XHWV9wuUB7w7aOeSYOfO4FtzPu//\nr9W2LXz603GncFnwLQDnkqBzZ7juurhTRGfdOu8XKA/4FoBzSbB4cdCNQttW8i+5YQN84Qvwxhux\n3TDGT/3MzLcAnIvb7t1B1w9btsSdJDqHHx78XitWxJ3ENcALgHNxmz07+Pbfu3fcSaIjBWc0Pf10\n3ElcA7wAOBe3fO39M5M87B660LSSHY7O5bEZM+D66+NOEb3TToNvfhNqapr14rbUff0zJ2Xuz8e9\nz7cAnIvTli3wyitBHzqtzcCBsHBh/l/Z3Ir5X8a5OHXsCNOnQ6dOcSdpHvvtF3cC1wAvAM7FqUOH\n1vntv9bKlXDttRmbuXh4AXAuTrffDjt2ZG6Xr3r1gp/8pHX/jnnMDwI7F5c1a4Jvx5ddFneS5tOt\nGxx7bHCDmLLo7gZb30VefvFX4/gWgHNxmTEDTj0VioriTtK8zjwzOM7hEscLgHNxeeKJYOXY2p1x\nRnCrSJc4WRUASWWSlkhaJunKOqafLGm+pD3hTeRTp+0NbxLz3o1inCt4e/cGnaUVQgE47jjo0SO4\nTaRLlIzHACQVAbcDpwOrgTmSKsxsUUqzN4GLgW/WsYidZjYigqzOtR7//jcMGACDBmVum++KiuD5\n5+NO4eqQzUHgkcAyM1sBIKkcGA+8VwDMbGU4raYZMjrX+hxxBMydG3eKlmUWW8+grm6yDHftCXfp\nlJnZpeHwRcAoM5tSR9t7gcfN7OGUcXuABcAe4CYze7SO+SYDkwH69etXUl5envMvlK6qqori4uLI\nlhe1JOfzbLlLcr44srWtqqLki19k9u9+1+BB72yzVW6sjDIeAMN6D8vYJsl/1zFjxswzs9LGzNMS\np4EeaGZrJB0E/EPSa2a2PLWBmd0J3AlQWlpqo0ePjuzFZ82aRZTLi1qS83m23DWYb/NmmDQJHnss\nlm/Esb13PXowulu34JaR9cg22/X3Rd930sxPZu5HKOmfu8bKpgCsAVJ3VA4Mx2XFzNaEP1dImgUc\nCyxvcCbnWrOnn4bq6sLbHVJ7NlADBaA+fn5/88jmLKA5wFBJQyS1ByYAWZ3NI6mnpA7h8z7AiaQc\nO3CuIE2fHulFUXnDrwdInIwFwMz2AFOA6cBi4CEzWyhpqqRxAJKOl7Qa+BRwh6SF4eyHA3MlvQLM\nJDgG4AXAFS6zwjn/P93JJ8P8+bB1a9xJXCirYwBmNg2Yljbu2pTncwh2DaXP9y/gqCZmdK71WLw4\nOAh66KFxJ2l5nTvDDTcE/QJ161Znk8qNle/t3/e+/Zuf9wXkXEvavBkuv7zw9v8T7sfvCUx/bJ+V\ne+r+/YnFE2NIVri8ADiXotnvLnXiia27++dMzBj2n6pmv0uYy47/BZxrKdXVsGtX3CniJXH1rxfB\nyy/HncThBcC5lvPEE3DOOXGnaHZj7hvz3qMuL4zoDY8/3sKpXF18F5AreC12jnlFRas9/bMx7+EL\nx/Tm048/DtddF9kyXW68ALi811z77SNdbk0N/PWvcOUHOtMtOK8P7Q53vApr18IBB8Qdp6B5AXB5\nI3WFfN2BDX97TJyXXoI+feDgg+NOklFzHwjf27YN/xjWjnlXj2HaKV4A4uQFwLmWUFEB48bFnSIx\n7jz/YKo6tfI7oeUBLwDOtYRx44ItgFakKfvo/9unY4RJXK68ALhEazUHAk84IZLFNPR+1Le7ptmv\nbcjR6JfW8d/eHVl8cN1XBbvm5wXAtWpxrvxqX/vIynf4xWfLc+7+odUUwTT7r9/F0Uve8QIQI78O\nwLlm9rm/rIQlS+KOEYuGrgl4cURvPrxgY9BBnouFbwE4F6HaFV1tnzbF26s59I1tMHZsg+0hvi2U\nOF4bYGX/ztS0EQe/WcXyA7u2+Os7LwAuT6X2GhmnTLtnRr26iQWH9eDEzp0jXW4cIs8k8WxpX0bP\nWe8FICZeAJzLQq7flv/n5Q3869jeJKX7tzH3jWFi8cQPFM+4Cs7MkX2ZOG1VLK/tsjwGIKlM0hJJ\nyyR94FJGSSdLmi9pT3gT+dRpkyQtDR+TogruXNK12VvD0ZVbeOGY3i3yepn64EmiyiHduP6KI+KO\nUbAybgFIKgJuB04HVgNzJFWk3dnrTeBi4Jtp8/YCrgNKAQPmhfNujia+c8lVU9SGC28exe72RS2+\nvz2qItBSxUQ1hrUpvHskxC2bXUAjgWVmtgJAUjkwnpR7+5rZynBaTdq8ZwJPmdmmcPpTQBnwQJOT\nO5cHdrf/4NWu9a1U8+mbe5T6r9vJ1F+8zqVTS+OOUnBkGU7BCnfplJnZpeHwRcAoM5tSR9t7gcfN\n7OFw+JtARzO7IRz+DrDTzG5Jm28yMBmgX79+JeXl5U39vd5TVVVFcXFxZMuLWpLzJSFb5cbKOsf3\nKurFpr2bGrWsYb2HNeo1mmK/3Z04/vs3Mu07X8WKknW2dS7vXbMyY8IVV/Pkty6Hg4+JLVt9n49U\nSfifqM8h/gJ+AAAPA0lEQVSYMWPmmVmjqmgiDgKb2Z3AnQClpaU2evToyJY9a9Ysolxe1JKcLwnZ\n6jvTZ2LxRB6oauSGZFUEgbL0nfkH8WbRev6488GWe9Es5fTeNbNuJZ2pfuZ37Bx8dWzZZn4y8665\nJPxPRCmbryZrgEEpwwPDcdloyrzO5a2Dn5vDP0btF3eMvDFzZF9Gv7TeLwprYdkUgDnAUElDJLUH\nJgAVWS5/OnCGpJ6SegJnhOOca7W6VlVzwL+X8vyxravzt+ZUObgrbfcavf6zOu4oBSVjATCzPcAU\nghX3YuAhM1soaaqkcQCSjpe0GvgUcIekheG8m4DvERSROcDU2gPCzrVWJ81bz+qjh7OzUyL2sOYH\niV9ceAjVnbyX0JaU1SfUzKYB09LGXZvyfA7B7p265r0buLsJGZ3LK9u6tGNh2WhgftxR8soLx/Zh\ncHHfFj1WU+iSdXqCc63AP0v7svbI3Hr+LHR9lv+HA9dsjztGwfAC4FyEBq3dQaede+KOkbcOWFTJ\nxGlvxh2jYHgBcC5CV9+xiCOXbok7Rt5aevIJnDh/A112eBFtCV4AnIvIsDe20q1qD3OP7BV3lLy1\nq3tX5h3Rk1Nnr4s7SkHwAuBcRD4+cy1/O+UA79OmiaadfABnPbs27hgFwQuAcxHovHMPp8xdz7ST\n9o87St6be2QvOu/aS6933o07SqvnJyo7F4GPzN/A/OE92NyjQ9xR8l5NG/G5G4/3LakW4AXAuQg8\n+T/9/MrfCFkbgRkyvBA0I98F5FwUJLZ39u9TUfr6fZWcMnd93DFaNS8AzjXR/3tgGcct9B5Oorbg\nsB6M+8dbccdo1bwAONcEXbZXU/bPt1kxKJl9xOezZ0r70n/dTg5dsTXuKK2WFwDnmuCs595mzpE9\neadb+7ijtDp727bhT2cOZILfNL7ZeAFwLkftdu/l/CdWUf7RD8UdpdX62ykHMGLJO/T/7464o7RK\nXgCcy1HZc2+zfFAxSwd3jTtKq7WrY1uu/sqRbOruW1jNwU9bcC5HSwd35fWh3eOO0eotOsTf4+aS\n1RaApDJJSyQtk3RlHdM7SHownD5b0uBw/GBJOyUtCB+/jja+c/H590HdeMMP/raII5ZuYfzTfjfZ\nqGUsAJKKgNuBs4DhwERJw9OaXQJsNrNDgJ8AP0yZttzMRoSPyyLK7Vxs2uyt4ZKHV9CuuibuKAVj\nU/f2fO4vb3hX2xHLZgtgJLDMzFaY2W6gHBif1mY8cF/4/GHgNEl++Z5rlU6dvZ6jK7dQ3dY/4i1l\n7X6dmDe8J+f6VkCksikAA4DU87BWh+PqbBPeQ3gL0DucNkTSy5KekXRSE/M6FyvVGBc+/h9+P+5A\n8O84LeruTwzh/CdW0XPL7rijtBoys4YbSOcBZWZ2aTh8ETDKzKaktHk9bLM6HF4OjAK2AcVmtlFS\nCfAocISZbU17jcnAZIB+/fqVlJeXR/X7UVVVRXFxcvfTJjlfErJVbqysc3yvol5s2tvyV98Om/kv\nDn/qWR678f8aLABx5ctGPmcbdd/DtN+xk39eflHkrz2s97CMbZLwP1GfMWPGzDOz0sbMk81ZQGuA\nQSnDA8NxdbVZLakt0B3YaEF1eRfAzOaFhWEYMDd1ZjO7E7gToLS01EaPHt2Y36FBs2bNIsrlRS3J\n+ZKQ7fr7rq9z/MTiiTxQ9UCLZineXs19v3+Jq752FJXbG/6SEke+bOVztoqyaj4yfwPTmyH/zE/O\nzNgmCf8TUcpmF9AcYKikIZLaAxOAirQ2FcCk8Pl5wD/MzCT1DQ8iI+kgYCiwIprozrWsjrtruPec\nwVQO6RZ3lIK1vUs7pp90QNwxWo2MWwBmtkfSFGA6UATcbWYLJU0F5ppZBXAX8HtJy4BNBEUC4GRg\nqqRqoAa4zMySue3pXAYbenbgr6emH/5ycTjlpXW8274NL47wLribIqsLwcxsGjAtbdy1Kc93AZ+q\nY75HgEeamNG5WKnGmPynFfzh4wd6l88Jsa24Hd+4Zwnzhvekun1R3HHylncF4VwGZz+7liOXbmFH\nR1/RJMX84T2pPLArX3jkjbij5DUvAM41YL+Nu/j8I2/w088O8ztTJcytFw/j5DnrGfXKxrij5C0v\nAM7Vo111Dd+9fSEPnjWI5R9K5ql/hWxbcTu+/8XD+d+7l9Ble3XccfKSFwDn6jHp0ZWs79mBB88a\nlLmxi8Wrh/bgm/97NNu7tIs7Sl7yI1rO1ePPpw/g3fZFfsVvwq0cGGydFW+vpsoLQaP4FoBzafps\nfpc2NcamHh38rJ880a66hjuvm8eJ8zfEHSWveAFwLkW/9Tv5+Y0vU7Jwc9xRXCNUt2vDd68Yzjfu\nWULJ636pUba8ADgX6r9uJz+9aQEPlQ1izlG94o7jGqlySDeu/dIRXHPHYo5a8k7ccfKCFwDngEFr\nd/CTmxZw/8cP5NGxfrVvvnp9WA9u+OLhXH/bQg5csz3uOInnOzhdwWtXXcMPbn2Ve84dzBPez0ze\nm3dkL67+6lGs6dcp7iiJ51sArnCFXaFXt2vDl64+1lf+rcjig7uxp20bum3bzYUV/6HNXr97W128\nALiCVLy9mut+uYiT5q4HYHOPDjEncs1C4pgl7/CjW171G8nUwQuAKyxmnDh/A7+5di4be7TnxaP9\nYG9rtrW4HVd+42heH9qdu6+Zw6eeWOX3ck7hxwBcwTh6yTtc9uBy2u+u4daLD/UzfQpETRtxzyeG\nMOOE/bj8weUc+NZ2bvn8YXHHSgQvAK5Va797LzJ4t0MRXauq+dOZg5h1fF/v2K0ArerfhW9/7Wja\n794LwMC3dzDqlY08deL+bC0uzCuIvQC4Vqf97r0cVbmF02av4yPzNvDDSw/j+eP68HxJ37ijuQTY\nnXL/gENXbuPiR1fy4jG9odNDcNpp0Lt3jOlaVlbHACSVSVoiaZmkK+uY3kHSg+H02ZIGp0y7Khy/\nRNKZ0UV3LrhZS6edewDotHMPP/v+yzz6pef53F9W8saALnzuxuN5/ji/a5T7oNX7d+b7XxzOBT86\ngYWHdIff/Q6GDoWqqqDBq6/C4sWwZ0+8QZtRxi2A8J6+twOnA6uBOZIqzGxRSrNLgM1mdoikCcAP\ngU9LGk5we8gjgP7ADEnDzGxv1L+Ia0XMYPduqKqi/7qd7BX8t29wTvcnp6+i38Z3OW7bnYx+awmD\n3t7Bkyfuz08/O4ydHYu495zBLD6oK7s6+saty8624nY8OnYAX5n0eLCybxt+dv76V7jnHli7NigM\nH/oQB3XpArU3hZ8/H6qrgy2Gbt2guBg6dcqrzgOz+S8ZCSwzsxUAksqB8UBqARgPfDd8/jBwmySF\n48vN7F3gjfCewSOBF6KJ7/LO2WfD+vXBP9revcE/0CmnwK9+FUw/6CB4800oKoLOnbml7S6eP7Y3\nt184FICuO/awoWd7Vg4fwSPFNbzZv8v7HbZJvDy8Z0y/mGsV2qasEq++OnhUVcGSJbBqFdtnz35/\n+oMPwj/+ARs3wrZtQbv+/WH58mD6BRfA7Nlw660wfnzL/h5ZkoUXw9TbQDoPKDOzS8Phi4BRZjYl\npc3rYZvV4fByYBRBUXjRzP4Qjr8L+LuZPZz2GpOByeHgocCSpv9q7+kDJLmLwCTn82y5S3I+z5a7\nJOc71My6NmaGRGwnm9mdwJ3NsWxJc82stDmWHYUk5/NsuUtyPs+WuyTnkzS3sfNkcxB4DZB6S6SB\n4bg620hqC3QHNmY5r3POuRhkUwDmAEMlDZHUnuCgbkVamwpgUvj8POAfFuxbqgAmhGcJDQGGAi9F\nE90551xTZNwFZGZ7JE0BpgNFwN1mtlDSVGCumVUAdwG/Dw/ybiIoEoTtHiI4YLwHuCKGM4CaZddS\nhJKcz7PlLsn5PFvukpyv0dkyHgR2zjnXOnlncM45V6C8ADjnXIEqqAIg6RuSTFJi+gaQ9CNJ/5b0\nqqS/SOqRgEwNdv0RJ0mDJM2UtEjSQklfiTtTOklFkl6W9HjcWdJJ6iHp4fAzt1jSh+POVEvS18K/\n6euSHpDUMeY8d0taF17nVDuul6SnJC0Nf8Zy5WE92Rq9LimYAiBpEHAG8GbcWdI8BRxpZkcDlcBV\ncYZJ6frjLGA4MDHs0iMp9gDfMLPhwAnAFQnLB/AVYHHcIerxM+AJMzsMOIaE5JQ0APgyUGpmRxKc\ncDIh3lTcC5SljbsSeNrMhgJPh8NxuJcPZmv0uqRgCgDwE+BbQKKOepvZk2ZW29vUiwTXSsTpva4/\nzGw3UNv1RyKY2Vozmx8+30awAkvMXdwlDQTOBn4bd5Z0kroDJxOctYeZ7Tazd+JNtY+2QKfwWqLO\nwFtxhjGzZwnOakw1HrgvfH4fcE6LhgrVlS2XdUlBFABJ44E1ZvZK3Fky+Dzw95gzDABWpQyvJkEr\n2FRhr7PHArMbbtmifkrwRSOJt50aAqwH7gl3Uf1WUpe4QwGY2RrgFoIt9LXAFjN7Mt5UdepnZmvD\n528D/eIM04Cs1iWtpgBImhHuO0x/jAe+DVyb0Gy1ba4m2L1xf1w584mkYuAR4KtmtjXuPACSPgas\nM7N5cWepR1vgOOBXZnYssJ34dmHsI9yXPp6gSPUHukj6TLypGhZe7JqoPQrQuHVJIvoCioKZja1r\nvKSjCD5UrwQdlDIQmC9ppJm9HWe2WpIuBj4GnGbxX5iR+O47JLUjWPnfb2Z/jjtPihOBcZI+CnQE\nukn6g5klZUW2GlhtZrVbTA+TkAIAjAXeMLP1AJL+DPwP8IdYU33QfyUdYGZrJR0ArIs7UKrGrkta\nzRZAfczsNTPbz8wGm9lggn+C41pq5Z+JpDKCXQbjzGxH3HnIruuP2ITdjN8FLDazW+POk8rMrjKz\ngeHnbAJBlyhJWfkTfuZXSTo0HHUa+3brHqc3gRMkdQ7/xqeRkAPUaVK7vZkEPBZjln3ksi5p9QUg\nD9wGdAWekrRA0q/jDBMeRKrt+mMx8JCZLYwzU5oTgYuAU8P3a0H4jdtl50vA/ZJeBUYA3485DwDh\nVsnDwHzgNYJ1U6zdLkh6gODeJYdKWi3pEuAm4HRJSwm2Wm5KULZGr0u8KwjnnCtQvgXgnHMFyguA\nc84VKC8AzjlXoLwAOOdcgfIC4JxzBcoLgHPOFSgvAM45V6D+P6921KLxI27vAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 15000, D:[array(0.6891288757324219, dtype=float32), array(0.4350000023841858, dtype=float32)], G loss:0.13778629899024963\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8HXW9//HXu/uSlq4UukgLtEgpa0qLF4EWCgS5tqiI\nFOQWBSv8qCv3ekEQtKKiIqKCSmWry6UgVYhaKYspCkLpQimU2pXShWL3JV3T5vP7YyZleprknCST\nzJycz/PxOI+cmfnOnPdJTuZzZvuOzAznnHOFp0XSAZxzziXDC4BzzhUoLwDOOVegvAA451yB8gLg\nnHMFyguAc84VKC8ADgBJJunYpHM0NUl/lTQupmWdJWlRZHiFpFFxLDtc3gJJI+JaXo6vKUkPS9os\n6dUmfN0LJT2ZY9tXJZ3Q2JmaIy8AKRSuOHZJKo887k06VxVJQyRNl7RB0iEXkkiaIWl3JPuijOlX\nSHpH0g5JT0rqFpnWTdIfw2nvSLoi13mryWFhu3JJGyU9L+lT0TZmdpGZTc7hPWctkGb2DzM7Ltuy\nciHpEUl3ZCz/BDObEcfy6+DDwPlAXzMbljlR0tWS9oe/422S5kn6zxhe9zvAnTm2vQuYGMNrFhwv\nAOn1UTMrijwmJB0oogJ4HLimljYTItkPrBTDb2r3A1cBvYCdwM8j890H7A2nXQn8ourbXQ7zVudk\nMysCjgMeAe6VdHuO7zNnklrFvcyUOApYYWY7amnzcvg77gI8CDwuqWt9X1DS6cBhZvZKjrOUAiMl\nHVHf1yxYZuaPlD2AFcCoGqZdDbwE3AtsBf4FnBeZ3pvgH2ITsBT4XGRaS+DrwDJgOzAH6BdOM+A6\nYAmwhWBFrCw5jw0+QoeMnwFcW8M83wX+LzJ8DMEKvxPQMXw+KDL9N8Cd2eat4bUMODZj3KXAbqB7\nZtbw/bwQ/l43AI+F4/8eLmsHUA58ChgBrAb+F3gvzDkCWJ3xd7wZeAvYDDwMtIv8HV+sLi8wnqDI\n7g1f70+ZnwugLXAP8G74uAdoG06rynYjsA5YC3ymlr9jtZ8ZggK/G9gf5vhWDZ/HFyPDHcP3MTTL\nZ+drYa53gWujfyvgNuCBSNv/CP8eVZ/Vk8Pf5wcjbZ4FxiX9v5tvD98CyE/DCVbiPYDbgT9EdoVM\nIfjn702wsvuupHPDaV8FxgIfAToDnyX4Fl3lP4HTgZOAy4ALG5Dxe+Euopcy9lufALxeNWBmywhX\n+uFjn5ktjrR/PZwn27y5egpoBRyyOwP4NvAM0BXoC/wsfJ2zw+knW7BF81g4fATQjeBb8vgaXu9K\ngt/jMWHOW7MFNLNJwO+AH4Sv99Fqmt0CnAGcQrBCHJax7COAw4A+BCvy+2r5Vl7tZ8bMHiT4UvBy\nmKPWLadwK+hagmKxpJZ2JQSfxVEEBW9ERpMTgQO7Dc3snwRbfpMltQd+C3zDzP4VmWchwe/B1YEX\ngPR6UtKWyONzkWnrgHvMrCJcGS0CLpbUDzgT+F8z221m84AHgP8K57sWuNXMFlngdTPbGFnunWa2\nxcxWAmUEK5f6+F/gaIKVzyTgT5KOCacVEXzDjtpKsAVQBGyrYVq2eXNiZhUE3yarO3ZQQbAy7x3+\n/l7MsrhK4HYz22Nmu2poc6+ZrTKzTQT7tcfmmjWLK4GJZrbOzNYD3yLYNValIpxeYWbTCFbKhxyf\nyOEzk4szJG0h2BIaC3zMzDL/TlGXAQ+b2QIz2wl8M2N6F4It1KhvEhS0V4E1BFuoUdvD+VwdeAFI\nr0vMrEvk8avItDUWbveG3iH49tYb2GRm2zOm9Qmf9yPYcqjJe5HnOwlWuHVmZjPNbHu4YpxMsMvq\nI+HkcoKtj6jOBP/AtU3LNm9OJLUGehLs7sj0NUDAq+EZN5/Nsrj1ZrY7S5tVkedVf6c49A6XV9Oy\nN5rZvshwTX/PbJ+ZXLwSfkZ7mNkZZvZcDtmjv5dVGdM3k1HUw8L9CDAE+FHG55+w/ZY6ZHZ4AchX\nfSQpMvwB3t8X3E1Sp4xpa8Lnqwh2RTQ1I1ixAiwgsqku6WiC/dmLw0crSQMj854czpNt3lyNAfYR\nfJM8OKTZe2b2OTPrDXwe+HmWM39y6Uq3X+R51d8JguMJHaomVHMAM9uy3yXYWqlu2XWR7TPTGNYS\n7GKr0i9j+nwydutJ6kOwu/Nh4EeS2mbMczyR3YMuN14A8tPhwBcltZb0SYIP/zQzWwX8k2D/eztJ\nJxHs//1tON8DwLclDQzP7z5JUve6vng4bzugTTjcruofUlKX8BzudpJaSboSOBt4Opz9d8BHFZwz\n35Hg9L0/hFsMO4A/ABMldZR0JsEK+zfZ5s0hc7cwy33A9zN2fVW1+aSkqhXTZoKVcGU4/G+C3Vp1\ndYOkvuExmluAquMHrwMnSDol/F1+M2O+bK/3KHCrpJ6SehAcOP1tLe2rlcNnpjE8DnxG0vGSOgDf\nyJg+DTinaiD8svMIwRlG1xAUkG9HprcDigkOBLu6SPootD8OfRCc7bGLYJdH1eOP4bSrOfgsoMXA\nBZF5+wJ/JtjFsQy4LjKtJcGBwrcJdpvMIji/GzLOmCH4h7ujhnz9w/bRx4pwWs9wudsJNslfAc7P\nmP8KYCXBt+CngG6Rad2AJ8NpK4Ercp23mpzRM3c2ERzXyFzeDN4/C+gHBN98y8Pf3fhIu+sIVjxb\nCPZhjyByxk/Y5qBxHHwW0BZgMtAhMv0WguMRq4BPc/CZMAOBeeF8T0aWV3UWUDvgp2GmteHzdtXl\nyJy3mt9TbZ+Zq8k4Wylj3lqn1zLfzQS7HN8Frg/fe7/I9FnA8PD5lwgKZptwuDewHjgrHP4kwReB\nxP938+2h8Bfo8oSkqwlWWB9OOotzcZB0PPAmwWms+8JxFwD/z8wuyWH+mcA1ZvZm4yZtfprrxSvO\nuRST9DGCXT0dgO8TXOtw4KC1mT1DcEpuVmY2vFFCFoCcjgFIKpG0SNJSSTfV0u4T4SXzQ8Ph/gq6\nNJgXPn4ZV3DnXHpJ+roO7sqk6vHXsMnnCU5nXkZwodn1iYUtYFl3AUlqSbCf+XyCi0VmAWPN7K2M\ndp2AvxAcGJxgZrMl9Qf+bGZD4o/unHOuIXLZAhgGLDWz5Wa2l+CqwTHVtPs2waZctvOinXPOpUAu\nxwD6cPCFGqsJuiI4QNJpBEfw/yLpfzLmHyDpNYIrPG81s39kvoCk8YSX0rdv3764X7/M04Lrr7Ky\nkhYt0nu2a5rzebb6S3M+z1Z/ac63ePHiDWbWs04z5XC61qUc3DHTVQSXt1cNtyA4la5/ODyDsCMo\ngot0qjrdKiYoJJ1re73i4mKLU1lZWazLi1ua83m2+ktzPs9Wf2nOB8y2Op4GmkspW8PBV+r15eCr\nBDsRXJ49Q9IKgg6qSiUNtaArgI1hoZlDcMCnLh13OeecayS5FIBZwEBJAyS1AS4n6DoWADPbakEf\nIP3NrD/BhT+jLTgI3DM8iFx12f5AYHns78I551ydZT0GYGb7JE0AphNcSfqQmS2QNJFgk6O0ltnP\nJrisv4LgkvrrLOgV0TnnXMJyuhDMgu5kp2WMu62GtiMiz6cCUxuQzznnXCNJ5+Fs55xzjc4LgHPO\nFSgvAM45V6C8ADjnXIHyAuCccwXKC4BzzhUoLwDOOVegvAA451yB8gLgnHMFyguAc84VKC8AzjlX\noLwAOOdcgfIC4JxzBcoLgHPOFSgvAM45V6ByKgCSSiQtkrRU0k21tPuEJJM0NDLu5nC+RZIujCO0\nc865hst6Q5jwlo73AecDq4FZkkrN7K2Mdp2ALwEzI+MGE9xC8gSgN/CcpEFmtj++t+Ccc64+ctkC\nGAYsNbPlZrYXmAKMqabdt4HvA7sj48YAU8Kbw78NLA2X55xzLmG5FIA+wKrI8Opw3AGSTgP6mdlf\n6jqvc865ZOR0T+DaSGoB3A1c3YBljAfGA/Tq1YsZM2Y0NNYB5eXlsS4vbmnO59nqL835PFv9pT1f\nnZlZrQ/gQ8D0yPDNwM2R4cOADcCK8LEbeBcYWk3b6cCHanu94uJii1NZWVmsy4tbmvN5tvpLcz7P\nVn9pzgfMtizr88xHLruAZgEDJQ2Q1IbgoG5ppIBsNbMeZtbfzPoDrwCjzWx22O5ySW0lDQAGAq82\noF4555yLSdZdQGa2T9IEgm/vLYGHzGyBpIkEFae0lnkXSHoceAvYB9xgfgaQc86lQk7HAMxsGjAt\nY9xtNbQdkTH8HeA79cznnHOukfiVwM45V6C8ADjnXIHyAuCccwXKC4BzzhUoLwDOOVegvAA451yB\n8gLgnHMFyguAc84VKC8AzjlXoLwAOOdcgfIC4JxzBcoLgHPOFSgvAM45V6C8ADjnXIHyAuCccwXK\nC4BzzhWonAqApBJJiyQtlXRTNdOvk/SGpHmSXpQ0OBzfX9KucPw8Sb+M+w0455yrn6x3BJPUErgP\nOB9YDcySVGpmb0Wa/Z+Z/TJsPxq4GygJpy0zs1Pije2cc66hctkCGAYsNbPlZrYXmAKMiTYws22R\nwY6AxRfROedcY5BZ7etqSZcCJWZ2bTh8FTDczCZktLsB+CrQBjjXzJZI6g8sABYD24Bbzewf1bzG\neGA8QK9evYqnTJnSwLf1vvLycoqKimJbXtzSnM+z1V+a83m2+ktzvpEjR84xs6F1msnMan0AlwIP\nRIavAu6tpf0VwOTweVuge/i8GFgFdK7t9YqLiy1OZWVlsS4vbmnO59nqL835PFv9pTkfMNuyrM8z\nH7nsAloD9IsM9w3H1WQKcElYXPaY2cbw+RxgGTAop8rknHOuUeVSAGYBAyUNkNQGuBwojTaQNDAy\neDGwJBzfMzyIjKSjgYHA8jiCO+eca5isZwGZ2T5JE4DpQEvgITNbIGkiwSZHKTBB0iigAtgMjAtn\nPxuYKKkCqASuM7NNjfFGnHPO1U3WAgBgZtOAaRnjbos8/1IN800FpjYkoHPOucbhVwI751yB8gLg\nnHMFyguAc84VKC8AzjlXoLwAOOdcgfIC4JxzBcoLgHPOFSgvAM45V6C8ADhXCFauhI0bAShauhSu\nvx7Wrk04lEuaFwDnmruZM6G4GF5/HYCKww6Djh1h+HB47bWEw7kkeQFwrjl74w0YPRoeeQTOPReA\nPT17wl13wd13wwUXwB/+kGxGl5ic+gJyzuWhpUuhpAR+8hO4+OJDp196KQwYAJdcAl26HCgQrnB4\nAXCuOaqshMsug9tvh8svr7ldcTHMnQvdujVdNpcaXgCca45atIBnnoEePbK37dkz+Ll2LRxxBEiN\nm82lhh8DcK652bAh2ALIZeVfxQzGjIEnn2y8XC51cioAkkokLZK0VNJN1Uy/TtIbkuZJelHS4Mi0\nm8P5Fkm6MM7wzrkMZvDxj9d9RS7B974HN94Iu3c3TjaXOlkLQHhLx/uAi4DBwNjoCj70f2Z2opmd\nAvwAuDucdzDBLSRPAEqAn1fdItI51wiefRbWrQvO/Kmr886DU06BH/84/lwulXLZAhgGLDWz5Wa2\nl+Cm72OiDcxsW2SwI2Dh8zHAlPDm8G8DS8PlOefiZga33goTJ0Kreh7eu+su+NGPYM2aeLO5VMrl\nU9IHWBUZXg0Mz2wk6Qbgq0AboOp8sj7AKxnz9qlm3vHAeIBevXoxY8aMHGLlpry8PNblxS3N+Txb\n/SWRr/uLLzJg40Zm9+gBtbx2tmwDLrqIPT/4Ae9+7GPxh8zC/65NzMxqfQCXAg9Ehq8C7q2l/RXA\n5PD5vcCnI9MeBC6t7fWKi4stTmVlZbEuL25pzufZ6i+RfKNGmT31VNZmWbNVVsaTpx7871p/wGzL\nsj7PfOSyBbAG6BcZ7huOq8kU4Bf1nNc5V19PPQXt2zd8OVWnge7ZA23bNnx5LrVyOQYwCxgoaYCk\nNgQHdUujDSQNjAxeDCwJn5cCl0tqK2kAMBB4teGxnXMHMYMOHeI7h3/WLDjrrHiW5VIrawEws33A\nBGA6sBB43MwWSJooqepUgwmSFkiaR3AcYFw47wLgceAt4GngBjPb3wjvw7nCtXYtnH56UATictpp\nwdlEc+bEt0yXOjmdKmBm04BpGeNuizz/Ui3zfgf4Tn0DOuey+N3v4OST472Ct2VLuPZamDQJ7r8/\nvuW6VPErgZ3LZ2ZBT5/jxsW/7M9+Fh5/HLZvj3/ZLhW8ADiXz+bOhV274MMfjn/ZvXvDiBEwZUr8\ny3ap4J3BOZfPqr79t2ik73Lf+148Zxa5VPIC4Fw+GzkyOADcWD74wcZbtkuc7wJyLp99/OPQr1/2\ndg0xf35woNk1O14AnMtXU6c2zQHa/fuDG8vEeZqpSwUvAM7lo3Xr4JprmubmLaecEhSB+fMb/7Vc\nk/IC4Fw+Ki0NbuheVNT4ryUFu5r85vHNjhcA5/LRU08Fd/BqKl4AmiUvAM7lmx074IUX4CMfabrX\n/NCHgo7hNm5sutd0jc5PA3Uu37z8MgwbBl27Nt1rtmgBs2c33eu5JuEFwLl8M2pU41z5mwuzpjnw\n7JqE7wJyLh+1a9f0r2kWnBG0alX2ti4veAFwLp+8/DJ87WvJvLYUdBP95JPJvL6LnRcA5/LJ1KnJ\n9s3jZwM1KzkVAEklkhZJWirppmqmf1XSW5LmS3pe0lGRafslzQsfpZnzOudyZNb0p39mOv98eO01\nWL8+uQwuNlkLgKSWwH3ARcBgYKykwRnNXgOGmtlJwBPADyLTdpnZKeFjNM65+lm4MLhP76mnJpeh\nXTs491yYPj25DC42uWwBDAOWmtlyM9tLcNP3g76CmFmZme0MB18huPm7cy5OTz0Fo0cnfxbOF74A\nAwYkm8HFQpalgydJlwIlZnZtOHwVMNzMJtTQ/l7gPTO7IxzeB8wD9gF3mtkhR5AkjQfGA/Tq1at4\nSow3oCgvL6eoKS6Xr6c05/Ns9dcY+fpMncr2QYPYduKJDVpOmn93ac4G6c43cuTIOWY2tE4zmVmt\nD+BS4IHI8FXAvTW0/TTBFkDbyLg+4c+jgRXAMbW9XnFxscWprKws1uXFLc35PFv9pTlfLNmWLjVb\ns6bhy8mQ5t+bWbrzAbMty/o885HLLqA1QLTD8b7huINIGgXcAow2sz2RArMm/LkcmAEkuAPTuTy1\neXPQI2da/Pzn8OCDSadwDZRLAZgFDJQ0QFIb4HLgoLN5JJ0K3E+w8l8XGd9VUtvweQ/gTOCtuMI7\nVzC+8hX41a+STvG+khJ4+umkU7gGyloAzGwfMAGYDiwEHjezBZImSqo6q+eHQBHw+4zTPY8HZkt6\nHSgjOAbgBcC5ujCDZ54JuoBIi7POgjfegE2bkk7iGiCnvoDMbBowLWPcbZHn1X4yzeyfQMOOWDlX\n6N54I7j469hjk07yvnbt4Oyz4bnn4LLLkk7j6smvBHYu7aZPhwsvTDrFoUpK4K9/TTqFawDvDdS5\ntHvmGZhQ7VnXybrySvjYx5JO4RrAC4BzaffFL8KIEUmnOFTXrk17TwIXO98F5FzaffSj0KlT0imq\n9+KL3jlcHvMC4FyaPfccrDnkspv02LYNfvrTpFO4evIC4FyafeEL8N57Saeo2YgRwa0it29POomr\nBy8AzqXVypXBTdiT7P0zmw4dgvsT//3vSSdx9eAFwLm0mj496H+/Rcr/TUeNCnZVubyT8k+WcwVs\n+nS44IKkU2Q3ahQsWZJ0ClcPXgCcS6PKSnjhhWALIO1OPx3+/OekU7h68OsAnEujFi1g8eL8OM8+\n6RvUuHrzLQDn0iofVv5Vpk+HL3856RSujrwAOJdGX/86LFuWdIrcHX00PPFE0HOpyxteAJxLm927\n4Wc/gx49kk6Su2OPhZYtYdGipJO4OvAC4Fza/POfMGQIHHZY0klyJwVnAz37bNJJXB3kVAAklUha\nJGmppJuqmf5VSW9Jmi/peUlHRaaNk7QkfIyLM7xzzdJzz6Xr5i+58usB8k7WAiCpJXAfcBEwGBgr\naXBGs9eAoWZ2EvAE8INw3m7A7cBwYBhwu6Q8OrLlXALytQCcdx4MHJh0ClcHuWwBDAOWmtlyM9sL\nTAHGRBuYWZmZ7QwHXyG4cTzAhcCzZrbJzDYDzwIl8UR3rhmqqIA2beCMM5JOUneHHw533ZV0ClcH\nsixH7SVdCpSY2bXh8FXAcDOr9g4Vku4F3jOzOyT9N9DOzO4Ip30D2GVmd2XMMx4YD9CrV6/iKVOm\nNPBtva+8vJyioqLYlhe3NOfzbPWX5nyNmq2yktbbtlHRpUu9Zk/q97Z44+IDzwd1H1RjuzT/XUeO\nHDnHzIbWZZ5YLwST9GlgKHBOXeYzs0nAJIChQ4faiBhvfjFjxgziXF7c0pzPs9VfvfOZNfqFVY36\nu3vmGbj77np3DpfU3/Vbk7914HnZJ8pqbJf2z11d5bILaA3QLzLcNxx3EEmjgFuA0Wa2py7zOudC\nQ4fC8uVJp6i/M8+EuXOhvDzpJC4HuRSAWcBASQMktQEuB0qjDSSdCtxPsPJfF5k0HbhAUtfw4O8F\n4TjnXKZVq4IuoPv3TzpJ/XXsGBSxf/wj6SQuB1kLgJntAyYQrLgXAo+b2QJJEyWNDpv9ECgCfi9p\nnqTScN5NwLcJisgsYGI4zjmX6fnngzNp0t79czbnneeng+aJnI4BmNk0YFrGuNsiz2s8Z83MHgIe\nqm9A5wrGc88FK898N2oUXH990imqNXLyyAPPy8bVvK+/UHhvoM6lgVlQAO64I+kkDXf66XDzzU1y\nQLshosWgUHkBcC4Ndu0KvjXn8/7/Kq1awac+lXQKl4M839noXDPRoQPcfnvSKeKzbp33C5QHvAA4\nlwYLF8K+fUmniM+GDfC5z3n30CnnBcC5pO3dG3T9sHVr0knic/zxwfvK52saCoAXAOeSNnNm0Ila\n9+5JJ4mPFJzR9PzzSSdxtfCDwM4lLV97/8xm1Cj4y19g/Pgmebmazurx0z1r5lsAziWtuRaA886D\nsjKorEw6iauBbwE4l6StW+H114M+dJqbvn1hwYLEr2z28/1r5lsAziWpXTuYPh3at086SeM4/PCk\nE7haeAFwLklt2zbPb/9VVqyA227L2swlwwuAc0m67z7YuTN7u3zVrRv8+MfN+z3mMS8AziVlzZrg\n23HbtkknaTydO8Opp9b7BjGucXkBcC4pzz0H554LLVsmnaRxXXhhcJzDpY4XAOeS8vTTwcqxubvg\nguBWkS51cioAkkokLZK0VNJN1Uw/W9JcSfvCm8hHp+0PbxJz4EYxzhW8/fuDztIKoQCcdhp06eK3\niUyhrNcBSGoJ3AecD6wGZkkqNbO3Is1WAlcD/13NInaZ2SkxZHWu+fjXv6BPH+jXL3vbfNeyJbz0\nUmyL85u6xCeXC8GGAUvNbDmApCnAGOBAATCzFeE0v+TPuVyccALMnp10iqaV8hvEFCJZlu5aw106\nJWZ2bTh8FTDczCZU0/YR4M9m9kRk3D5gHrAPuNPMnqxmvvHAeIBevXoVT5kypd5vKFN5eTlFRUWx\nLS9uac7n2eovzfmSyNaqvJziz3+emb/+da0HvXPJtnjj4rjjHWRQ90E1Tkvz33XkyJFzzGxoXeZp\niq4gjjKzNZKOBv4m6Q0zWxZtYGaTgEkAQ4cOtREjRsT24jNmzCDO5cUtzfk8W/3Vmm/zZhg3Dp56\nKpFvxIn97rp0YUTnzsEtI2uQS7ZvTf5WzMEOVvaJmncrpf1zV1e5HAReA0R3VPYNx+XEzNaEP5cD\nM4BT65DPuebn+eehoqLwdof42UCpk0sBmAUMlDRAUhvgciCns3kkdZXUNnzeAziTyLED5/LFyMkj\nDzwabPp0KClp+HLyjV8PkDpZC4CZ7QMmANOBhcDjZrZA0kRJowEknS5pNfBJ4H5JC8LZjwdmS3od\nKCM4BuAFwBUus8I5/z/T2WfD3LmwbVtOzWMtuq5aOR0DMLNpwLSMcbdFns8i2DWUOd8/gRMbmNG5\nRDTKimfhwuAg6HHHxb/stOvQAe64I+gXqHPnpNM4/H4AzjWtzZvh+usLb/9/lS9/OekELsILgGsW\n8ubioDPPbN7dP2djBnPncu78G7EWhxbB24+6PYFQhcsLgHNNpaIi6AKiXbukk8Qu5/vxSnDFFQy8\nohOL+3dqgmSuNl4AXN7KZR99qrYMnn466P//6aeTzZGQqr/FdUfv5Ix5e70ApIAXAFeQEikMpaWN\ncvpnqopcDl4+uTvXPb6cX1/SP+koBc8LgHNNobIS/vQnuOmQznRTqTGLypsDD6PPv3fRbcseNnXJ\n7WY4fipo4/AC4Jqdhqws4tqttHjj4gNdFpSNK4NXX4UePeCYY+qdrbnY36oFs4Z05YzXNzHtnCOT\njlPQvAA41xRKS2H06KRTNLmaCuqky46hvP2hncJFC6drfF4AnGsKo0cHWwANENeWTRpOtfx3j+Z3\nJlQ+8gLgXCM7sPJdBETui5LLvvXG2Pd9yO6pOojz2MCIV9fx7+7tWHiMXxWcFC8AzjWyIYu3sLVT\nG1Yd2SGn9oVywPOI9bs5adEWLwAJ8gLgXCP7zB9XMPWCvrUWgHxc6Tc08yundOd7d8/np5/2O4Ul\nxQuAcw2QbZdI0Y4Kjnt7O3MGd23KWEDdV9BNXYRW9O5AZQtxzMpylh3lF4UlwQuAKxhJfMsePn8T\n8z7YhT1ta74NYpzSvtI/iMTfh/ZkxKz1XgAS4gXAuZhEV6Zji8YC8B+vbeCfp3ZPKlLqlQ3rydhp\nq5KOUbByuSMYkkokLZK0VNIhlzJKOlvSXEn7wpvIR6eNk7QkfIyLK7hzaddifyUnLd7Kyyd7AajJ\n4gGd+dYNJyQdo2Bl3QKQ1BK4DzgfWA3MklSacWevlcDVwH9nzNsNuB0YChgwJ5x3czzxnUuvypYt\nuPIHw9nbpvrdP/ly4LcpcqrSqu0e2jWuXLYAhgFLzWy5me0FpgBjog3MbIWZzQcqM+a9EHjWzDaF\nK/1ngQK8GaorVDWt/N37eq/bxa9unx3cK8A1qVyOAfQBojvpVgPDc1x+dfP2yWwkaTwwHqBXr17M\nmDEjx8VnV15eHuvy4pbmfGnPVrWfvaEmTZ104Hlcyzx8b3t+e9dapn3jy1jLnPa0NpluLbvF9j5j\n0dHouedYZXcnAAAPCklEQVQWbth4FnRJPlttn/k0/0/URyoOApvZJGASwNChQ23EiBGxLXvGjBnE\nuby4pTlf2rM9uvHRpGPU6Btzj2Zly/X8367Hko5yiLFFY3m0PF2/u87FHah44dfs6n9L4tnKPlHz\nFc5p/p+oj1y+mqwB+kWG+4bjctGQeZ3LW8e8OIu/DT886Rh5o2xYT0a8ut53AzWxXArALGCgpAGS\n2gCXA6U5Ln86cIGkrpK6AheE45xrtjqVV3Dkv5bw0qkN6/ytkCzu34lW+41u76xOOkpByVoAzGwf\nMIFgxb0QeNzMFkiaKGk0gKTTJa0GPgncL2lBOO8m4NsERWQWMDEc51yzddac9aw+aTC72qdiD2t+\nkPjZlcdS0d57CW1KOX1CzWwaMC1j3G2R57MIdu9UN+9DwEMNyOhcXtnesTULSkYAc5OOkldePrUH\n/Yt6QnnSSQpHuk5PcK4Z+MfQnqwdclzSMfJSj2XvcNSaHUnHKBheAJyLUb+1O2m/a1/SMfLWkW8t\nZuy0lUnHKBheAJyL0S33v8WQJVuTjpG3lpx9BmfO3UDHnV5Em4IXAOdiMujtbXQu38fsId2SjpK3\ndh/WiTkndOXcmeuSjlIQvAA4F5OPlq3lL+cc6X3aNNC0s4/kor+vTTpGQfAC4FwMOuzaxzmz1zPt\nrCOSjpL3Zg/pRofd++m2ZU/SUZo9P1HZuRh8eO4G5g7uwuYubZOOkvcqW4jPfOd035JqAl4AnIvB\nM//Ry6/8jZG1EJghwwtBI/JdQM7FQWJHB/8+FaevTl7MObPXJx2jWfMC4FwD/b9Hl3LaAu/hJG7z\nPtiF0X97N+kYzZoXAOcaoOOOCkr+8R7L+xUlHaXZeWFoT3qv28Vxy7clHaXZ8gLgXANc9OJ7zBrS\nlS2d2yQdpdnZ36oFv7+wL5f7TeMbjRcA5+qp9d79XPb0KqZ85ANJR2m2/nLOkZyyaAu9/70z6SjN\nkhcA5+qp5MX3WNaviCX9OyUdpdna3a4Vt3xpCJsO8y2sxuCnLThXT0v6d+LNgYclHaPZe+tY/x03\nlpy2ACSVSFokaamkm6qZ3lbSY+H0mZL6h+P7S9olaV74+GW88Z1Lzr+O7szbfvC3SZywZCtjnve7\nycYtawGQ1BK4D7gIGAyMlTQ4o9k1wGYzOxb4MfD9yLRlZnZK+LguptzOJabF/kqueWI5rSsqk45S\nMDYd1obP/PFt72o7ZrlsAQwDlprZcjPbC0wBxmS0GQNMDp8/AZwnyS/fc83SuTPXc9LirVS08o94\nU1l7eHvmDO7Kx3wrIFa5FIA+QPQ8rNXhuGrbhPcQ3gp0D6cNkPSapBckndXAvM4lSpXGlX9+h9+M\nPgr8O06TeujjA7js6VV03bo36SjNhsys9gbSpUCJmV0bDl8FDDezCZE2b4ZtVofDy4DhwHagyMw2\nSioGngROMLNtGa8xHhgP0KtXr+IpU6bE9f4oLy+nqCi9+2nTnC/t2d7d0/RXiQ4q+yfHP/t3nvrO\n/9ZaALq17Mam/em8Ojifsw2f/ARtdu7iH9df1WgZBnUfVOO0NP9PjBw5co6ZDa3LPLmcBbQG6BcZ\n7huOq67NakmtgMOAjRZUlz0AZjYnLAyDgNnRmc1sEjAJYOjQoTZixIi6vIdazZgxgziXF7c050t7\ntkc3Ptqkr1m0o4LJv3mVm79yIot31P4lZWzRWB4tb9p8ucrnbKUlFXx47gamN2L+sk+U1Tgtzf8T\n9ZHLLqBZwEBJAyS1AS4HSjPalALjwueXAn8zM5PUMzyIjKSjgYHA8niiO9e02u2t5JFL+rN4QOek\noxSsHR1bM/2sI5OO0Wxk3QIws32SJgDTgZbAQ2a2QNJEYLaZlQIPAr+RtBTYRFAkAM4GJkqqACqB\n68wsnduezmWxoWtb/nRu5uEvl4RzXl3HnjYteOUU74K7IXK6EMzMpgHTMsbdFnm+G/hkNfNNBaY2\nMKNziVKlMf73y/ntR4/yLp9TYntRa258eBFzBnelok3LpOPkLe8KwrksLv77WoYs2crOdr6iSYu5\ng7uy+KhOfG7q20lHyWteAJyrxeEbd/PZqW9zz38N8jtTpczdVw/i7FnrGf76xqSj5C0vAM7VoHVF\nJd+8bwGPXdSPZR9I56l/hWx7UWu++/nj+Z+HFtFxR0XScfKSFwDnajDuyRWs79qWxy7ql72xS8T8\n47rw3/9zEjs6tk46Sl7yI1rO1eAP5/dhT5uWfsVvyq3oG2ydFe2ooNwLQZ34FoBzGXps3kOLSmNT\nl7Z+1k+eaF1RyaTb53Dm3A1JR8krXgCci+i1fhc//c5rFC/YnHQUVwcVrVvwzRsGc+PDiyh+0y81\nypUXAOdCvdft4p475/F4ST9mndgt6TiujhYP6MxtXziBW+9fyImLtiQdJy94AXAO6Ld2Jz++cx6/\n++hRPDnKr/bNV28O6sIdnz+eb927gKPW7Eg6Tur5Dk5X8FpXVPK9u+fz8Mf687T3M5P35gzpxi1f\nPpE1vdonHSX1fAvAFa6wK/SK1i34wi2n+sq/GVl4TGf2tWpB5+17ubL0HVrs97u3VccLgCtIRTsq\nuP3nb3HW7PUAbO7SNuFErlFInLxoCz+8a77fSKYaXgBcYTHjzLkb+NVts9nYpQ2vnOQHe5uzbUWt\nuenGk3hz4GE8dOssPvn0Kr+Xc4QfA3AF46RFW7jusWW02VvJ3Vcf52f6FIjKFuLhjw/guTMO5/rH\nlnHUuzu467MfTDpWKngBcM1am737kcGeti3pVF7B7y/sx4zTe3rHbgVoVe+OfP0rJ9Fm734A+r63\nk+Gvb+TZM49gW1FhXkHsBcA1O2327ufExVs5b+Y6PjxnA9+/9oO8dFoPXirumXQ0lwJ7I/cPOG7F\ndq5+cgWvnNydl07rwdzBXRNM1vRyKgCSSoCfENwR7AEzuzNjelvg10AxsBH4lJmtCKfdDFwD7Ae+\naGbTY0vvCp4qjXZ79rOrfSva79rHnT9+g4HvbGd53yJeOL0nD358ABu7+gFed6jVR3Tgu58fTKfy\nCs57ZR0XvPQeX5m8GMaVQ1ERzJ8PrVvDwIHQqnl+V876rsJ7+t4HnA+sBmZJKjWztyLNrgE2m9mx\nki4Hvg98StJggttDngD0Bp6TNMjM9sf9RlwzYgZ790J5OWzZAi1bQv/+wbR77oF33mHwa69x/4o5\n9HtvJ8+ceQT3/NcgdrVrySOX9Gfh0Z3Y3a55/sO6+G0vas2To/rw5Kg+tNhfyfNFYdfff/oTPPww\nrF0bFIEPfICjO3aEqpvCz50LFRXQvTt07hwUjfbt86rzwFz+S4YBS81sOYCkKcAYIFoAxgDfDJ8/\nAdwrSeH4KWa2B3g7vGfwMODleOK7vHPxxbB+PezbB/v3B/9A55wDv/hFMP3oo2HlymCl36EDdOkC\nY8YEK36AzZuhTx82FBVx71nbWNm74/sdtkm8VmCb8C5elS0jJ0beckvwKC+HRYtg1Sp2zJz5/vTH\nHoO//Q02boTt24N2vXvDsmXB9CuugJkz4e67g89wCsnCi2FqbCBdCpSY2bXh8FXAcDObEGnzZthm\ndTi8DBhOUBReMbPfhuMfBP5qZk9kvMZ4YHw4eBywqOFv7YAeQJq7CExzPs9Wf2nO59nqL835jjOz\nTnWZIRXbyWY2CZjUGMuWNNvMhjbGsuOQ5nyerf7SnM+z1V+a80maXdd5crkQbA0QvSVS33BctW0k\ntQIOIzgYnMu8zjnnEpBLAZgFDJQ0QFIbgoO6pRltSoFx4fNLgb9ZsG+pFLhcUltJA4CBwKvxRHfO\nOdcQWXcBmdk+SROA6QSngT5kZgskTQRmm1kp8CDwm/Ag7yaCIkHY7nGCA8b7gBsSOAOoUXYtxSjN\n+Txb/aU5n2ervzTnq3O2rAeBnXPONU/eGZxzzhUoLwDOOVegCqoASLpRkknqkXSWKpJ+KOlfkuZL\n+qOkLinIVCJpkaSlkm5KOk+UpH6SyiS9JWmBpC8lnSmTpJaSXpP056SzZJLURdIT4WduoaQPJZ2p\niqSvhH/TNyU9KqldwnkekrQuvM6palw3Sc9KWhL+TOTKwxqy1XldUjAFQFI/4AJgZdJZMjwLDDGz\nk4DFwM1Jhol0/XERMBgYG3bpkRb7gBvNbDBwBnBDyvIBfAlYmHSIGvwEeNrMPgicTEpySuoDfBEY\namZDCE44uTzZVDwClGSMuwl43swGAs+Hw0l4hEOz1XldUjAFAPgx8DUgVUe9zewZM9sXDr5CcK1E\nkg50/WFme4Gqrj9SwczWmtnc8Pl2ghVYau7iLqkvcDHwQNJZMkk6DDib4Kw9zGyvmW1JNtVBWgHt\nw2uJOgDvJhnGzP5OcFZj1Bhgcvh8MnBJk4YKVZetPuuSgigAksYAa8zs9aSzZPFZ4K8JZ+gDrIoM\nryZFK9goSf2BU4GZtbdsUvcQfNFI422nBgDrgYfDXVQPSOqYdCgAM1sD3EWwhb4W2GpmzySbqlq9\nzGxt+Pw9oFeSYWqR07qk2RQASc+F+w4zH2OArwO3pTRbVZtbCHZv/C6pnPlEUhEwFfiymW1LOg+A\npP8E1pnZnKSz1KAVcBrwCzM7FdhBcrswDhLuSx9DUKR6Ax0lfTrZVLULL3ZN1R4FqNu6JBV9AcXB\nzEZVN17SiQQfqteDDkrpC8yVNMzM3ksyWxVJVwP/CZxnyV+YkfruOyS1Jlj5/87M/pB0nogzgdGS\nPgK0AzpL+q2ZpWVFthpYbWZVW0xPkJICAIwC3jaz9QCS/gD8B/DbRFMd6t+SjjSztZKOBNYlHSiq\nruuSZrMFUBMze8PMDjez/mbWn+Cf4LSmWvlnE95s52vAaDPbmXQecuv6IzFhN+MPAgvN7O6k80SZ\n2c1m1jf8nF1O0CVKWlb+hJ/5VZKOC0edx8HduidpJXCGpA7h3/g8UnKAOkO025txwFMJZjlIfdYl\nzb4A5IF7gU7As5LmSfplkmHCg0hVXX8sBB43swVJZspwJnAVcG74+5oXfuN2ufkC8DtJ84FTgO8m\nnAeAcKvkCWAu8AbBuinRbhckPUpw75LjJK2WdA1wJ3C+pCUEWy131raMJs5W53WJdwXhnHMFyrcA\nnHOuQHkBcM65AuUFwDnnCpQXAOecK1BeAJxzrkB5AXDOuQLlBcA55wrU/wdeOede9upvBQAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 20000, D:[array(0.6423803567886353, dtype=float32), array(0.5899999737739563, dtype=float32)], G loss:0.16593211889266968\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucVXW9//HXm0Gug8AAolwKVFARFZkRNNMGRcXsiKUV\naKalcewn3axT3tLE7OKpTp2jmeaN0kRSUzKKrAbLvA0gXgYCBlIBUbkMynAf5vP7Y63BzXZm9p6Z\nNbPW3vvzfDz2Y/a67vee2bM+e631Xd8lM8M551zh6RR3AOecc/HwAuCccwXKC4BzzhUoLwDOOVeg\nvAA451yB8gLgnHMFyguAA0CSSTo07hwdTdIfJV0U0bpOkrQsZfhVSROjWHe4vipJ5VGtL8vXlKR7\nJNVIer4DX/cMSY9mOe/zko5s70z5yAtAAoUbju2SalMet8Sdq4GkiyQtlPSupDWSbpbUOWV6iaTf\nSdoq6TVJ56ctf344fqukRyWVRLFsIzktnK9W0kZJf5X06dR5zOxMM5uZxXvOWCDN7B9mdlimdWVD\n0r2Svpu2/iPNbH4U62+BDwOnAUPMbFz6REkXS9oT/o7flbRY0scieN2bgB9kOe+PgBkRvGbB8QKQ\nXP9hZsUpj+lxB0rRA/gq0B8YD5wKfCNl+q3ALmAgcAFwW8M3tPDn7cCF4fRtwM8jWrYxx5hZMXAY\ncC9wi6TrW/Omm5NaAPPMB4FXzWxrM/M8E/6O+wB3AbMl9W3tC0o6DuhtZs9mucgcYIKkA1v7mgXL\nzPyRsAfwKjCxiWkXA/8EbgHeAf4FnJoyfRDBP8QmoBr4Qsq0IuBqYCWwBVgIDA2nGXAZsALYTLAh\nVpZ5rwB+Hz7vSbABH5ky/dfAD8Ln3wN+kzLtkHD+Xm1ZtolcBhyaNu48YAfQLxyeD1waPj8UeDL8\nvW4AHgzH/z1c11agFvg0UA6sAb4FvBnmLAfWpP0drwKWADXAPUC3lL/jU43lBaYBu8P3Vpvyu937\nuQC6Aj8F3ggfPwW6htMasn0deBtYB3yumb9fo58Z4JLwd7UnzHFDE5/Hp1KGe4bvoyzDZ+abYa43\ngEtT/1bAdcCdKfN+KPx7NHxWjwl/n4enzPMEcFHc/7u59vA9gNw0nmAj3h+4Hngk5VDILIJ//kEE\nG7vvSTolnHYFMBX4KLA/8HmCb9ENPgYcBxwNfAo4I8s8JwNV4fORQJ2ZLU+Z/iLQcIz2yHAYADNb\nSbjRb+Oy2XoM6Ay873AGcCPwZ6AvMAT4v/B1Tg6nH2PB3tiD4fCBQAnBt+RpTbzeBQS/x0PCnNdm\nCmhmdwD3AzeHr/cfjcx2DXA8MIZggzgubd0HAr2BwQQb8lub+Vbe6GfGzO4i+FLwTJij2T2ncC/o\nUoJisaKZ+SYRfBYnEhS88rRZjgL2nksxs6cJ9vxmSuoO3Ad828z+lbLMUoLfg2sBLwDJ9aikzSmP\nL6RMexv4qZntDjdGy4CzJA0FTgS+ZWY7zGwxcCfw2XC5S4FrzWyZBV40s40p6/2BmW02s9eBCoKN\nS7MkfR4oIzgOC1AMvJs22zsE3/Abpr/TxPS2LJsVM9tN8G2ysXMHuwk25oPC399TGVZXD1xvZjvN\nbHsT89xiZqvNbBPBce2p2WbN4AJghpm9bWbrgRsIDo012B1O321mcwk2yu87P5HFZyYbx0vaTLAn\nNBX4uJml/51SfQq4x8yqzGwb8J206X0I9lBTfYegoD0PrCXYQ021JVzOtYAXgOQ6x8z6pDx+mTJt\nrZml9uL3GsG3t0HAJjPbkjZtcPh8KMGeQ1PeTHm+jWCD2yRJ5wDfB840sw3h6FqCvYtU+/PeP3Rz\n09uybFYk7QcMIDjcke6bgIDnwxY3n8+wuvVmtiPDPKtTnjf8naIwKFxfU+veaGZ1KcNN/T0zfWay\n8Wz4Ge1vZseb2V+yyJ76e1mdNr2GtKIeFu57gdHAj9M+/4Tzb25BZocXgFw1WJJShj/Ae8eCSyT1\nSpu2Nny+muBQRJuFu/G/JDhZ/XLKpOVAZ0kjUsYdw3uHiKpI2VWXdDDB8ezlbVw2W5OBOoJvkvsw\nszfN7AtmNgj4T+DnGVr+ZNOV7tCU5w1/JwjOJ/RomNDICcxM636DYG+lsXW3RKbPTHtYR3CIrcHQ\ntOkvkXZYT9JggsOd9wA/ltQ1bZkjSDk86LLjBSA3HQB8WdJ+kj5J8OGfa2argaeB70vqJuloguO/\n94XL3QncKGlE2L77aEn9Wvri4TmF+4FzzWyfDakFrUUeAWZI6inpRIKN7q/DWe4H/iNsM9+ToPne\nI2a2pS3LZpG5RNIFBIcOfph26Kthnk9Katgw1RBshOvD4beAg7P49aS7XNKQ8BzNNUDD+YMXgSMl\njZHUjfcfBsn0eg8A10oaIKk/wYnT+5qZv1FZfGbaw2zgc5KOkNQD+Hba9LnARxoGwi879xK0MLqE\noIDcmDK9G1BKcCLYtUTcZ6H98f4HQWuP7QSHPBoevwunXcy+rYCWA6enLDsEeJzgEMdK4LKUaUUE\nJwr/TXDYpJKgfTektZgh+If7bhP5Kgi+Rafm+2PK9BLgUYJvua8D56ctf344fivBSdmSKJZtJGdq\ny51NYe709c3nvVZANxN8860Nf3fTUua7jGDDs5ngGHY5KS1+wnn2Gce+rYA2AzOBHinTryE4H7Ea\n+Az7toQZASwOl3s0ZX0NrYC6Af8bZloXPu/WWI70ZRv5PTX3mbmYtNZKacs2O72Z5a4iOOT4BvDF\n8L0PTZleCYwPn3+FoGB2CYcHAeuBk8LhTxJ8EYj9fzfXHgp/gS5HSLqYYIP14bizOBcFSUcArxA0\nY60Lx50O/D8zOyeL5Z8DLjGzV9o3af7J14tXnHMJJunjBId6egA/JLjWYe9JazP7M0GT3IzMbHy7\nhCwAWZ0DkDRJ0jJJ1ZKubGa+c8NL5svC4WEKujRYHD5+EVVw51xySbpa+3Zl0vD4YzjLfxI0Z15J\ncKHZF2MLW8AyHgKSVERwnPk0gotFKoGpZrYkbb5ewB+ALsB0M1sgaRjwuJmNjj66c865tshmD2Ac\nUG1mq8xsF8FVg5Mbme9Ggl25TO2inXPOJUA25wAGs++FGmsIuiLYS9JYgjP4f5D0X2nLD5f0AsEV\nntea2T/SX0DSNMJL6bt37146dGh6s+DWq6+vp1On5LZ2TXI+z9Z6Sc7n2VovyfmWL1++wcwGtGih\nLJprnce+HTNdSHB5e8NwJ4KmdMPC4fmEHUERXKTT0OlWKUEh2b+51ystLbUoVVRURLq+qCU5n2dr\nvSTn82ytl+R8wAJrYTPQbErZWva9Um8I+14l2Ivg8uz5kl4l6KBqjqQyC/pI2RgWmoUEJ3xa0nGX\nc865dpJNAagERkgaLqkLMIWg61gAzOwdC/oAGWZmw4BngbMtOAk8IDyJ3HDZ/ghgVeTvwjnnXItl\nPAdgZnWSpgPzCK4kvdvMqiTNINjlmNPM4icTXNa/m+CS+sss6BXROedczLK6EMyC7mTnpo27rol5\ny1OePww83IZ8zjnn2kkyT2c755xrd14AnHOuQHkBcM65AuUFwDnnCpQXAOecK1BeAJxzrkB5AXDO\nuQLlBcA55wqUFwDnnCtQXgCcc65AeQFwzrkC5QXAOecKlBcA55wrUF4AnHOuQHkBcM65ApVVAZA0\nSdIySdWSrmxmvnMlmaSylHFXhcstk3RGFKGdc861XcYbwoS3dLwVOA1YA1RKmmNmS9Lm6wV8BXgu\nZdwogltIHgkMAv4iaaSZ7YnuLTjnnGuNbPYAxgHVZrbKzHYBs4DJjcx3I/BDYEfKuMnArPDm8P8G\nqsP1Oeeci1k2BWAwsDpleE04bi9JY4GhZvaHli7rnHMuHlndE7g5kjoBPwEubsM6pgHTAAYOHMj8\n+fPbGmuv2traSNcXtSTn82ytl+R8nq31kp6vxcys2QdwAjAvZfgq4KqU4d7ABuDV8LEDeAMoa2Te\necAJzb1eaWmpRamioiLS9UUtyfk8W+slOZ9na70k5wMWWIbtefojm0NAlcAIScMldSE4qTsnpYC8\nY2b9zWyYmQ0DngXONrMF4XxTJHWVNBwYATzfhnrlnHMuIhkPAZlZnaTpBN/ei4C7zaxK0gyCijOn\nmWWrJM0GlgB1wOXmLYCccy4RsjoHYGZzgblp465rYt7ytOGbgJtamc8551w78SuBnXOuQHkBcM65\nAuUFwDnnCpQXAOecK1BeAJxzrkB5AXDOuQLlBcA55wqUFwDnnCtQXgCcc65AeQFwzrkC5QXAOecK\nlBcA55wrUF4AnHOuQHkBcM65AuUFwDnnCpQXAOecK1BZFQBJkyQtk1Qt6cpGpl8m6WVJiyU9JWlU\nOH6YpO3h+MWSfhH1G3DOOdc6Ge8IJqkIuBU4DVgDVEqaY2ZLUmb7jZn9Ipz/bOAnwKRw2kozGxNt\nbOecc22VzR7AOKDazFaZ2S5gFjA5dQYzezdlsCdg0UV0zjnXHmTW/LZa0nnAJDO7NBy+EBhvZtPT\n5rscuALoApxiZiskDQOqgOXAu8C1ZvaPRl5jGjANYODAgaWzZs1q49t6T21tLcXFxZGtL2pJzufZ\nWi/J+Txb6yU534QJExaaWVmLFjKzZh/AecCdKcMXArc0M//5wMzweVegX/i8FFgN7N/c65WWllqU\nKioqIl1f1JKcz7O1XpLzebbWS3I+YIFl2J6nP7I5BLQWGJoyPCQc15RZwDlhcdlpZhvD5wuBlcDI\nrCqTc865dpVNAagERkgaLqkLMAWYkzqDpBEpg2cBK8LxA8KTyEg6GBgBrIoiuHPOubbJ2ArIzOok\nTQfmAUXA3WZWJWkGwS7HHGC6pInAbqAGuChc/GRghqTdQD1wmZltao834pxzrmUyFgAAM5sLzE0b\nd13K8680sdzDwMNtCeicc659+JXAzjlXoLwAOOdcgfIC4JxzBcoLgHPOFSgvAM45V6C8ADjnXIHy\nAuCccwXKC4BzzhUoLwDOFYLXX4eNGwEorq6GL34R1q2LOZSLmxcA5/Ldc89BaSm8+CIAu3v3hp49\nYfx4eOGFmMO5OHkBcC6fvfwynH023HsvnHIKADsHDIAf/Qh+8hM4/XR45JF4M7rYZNUXkHMuB1VX\nw6RJ8LOfwVlnvX/6eefB8OFwzjnQp8/eAuEKhxcA5/JRfT186lNw/fUwZUrT85WWwqJFUFLScdlc\nYngBcC4fdeoEf/4z9O+fed4BA4Kf69bBgQeC1L7ZXGL4OQDn8s2GDcEeQDYb/wZmMHkyPPpo++Vy\niZNVAZA0SdIySdWSrmxk+mWSXpa0WNJTkkalTLsqXG6ZpDOiDO+cS2MGn/hEyzfkEnz/+/D1r8OO\nHe2TzSVOxgIQ3tLxVuBMYBQwNXUDH/qNmR1lZmOAm4GfhMuOIriF5JHAJODnDbeIdM61gyeegLff\nDlr+tNSpp8KYMfA//xN9LpdI2ewBjAOqzWyVme0iuOn75NQZzOzdlMGegIXPJwOzwpvD/xuoDtfn\nnIuaGVx7LcyYAZ1beXrvRz+CH/8Y1q6NNptLpGw+JYOB1SnDa4Dx6TNJuhy4AugCNLQnGww8m7bs\n4EaWnQZMAxg4cCDz58/PIlZ2amtrI11f1JKcz7O1Xhz5+j31FMM3bmRB//7QzGtnyjb8zDPZefPN\nvPHxj0cfMgP/u3YwM2v2AZwH3JkyfCFwSzPznw/MDJ/fAnwmZdpdwHnNvV5paalFqaKiItL1RS3J\n+Txb68WSb+JEs8ceyzhbxmz19dHkaQX/u7YesMAybM/TH9nsAawFhqYMDwnHNWUWcFsrl3XOtdZj\nj0H37m1fT0Mz0J07oWvXtq/PJVY25wAqgRGShkvqQnBSd07qDJJGpAyeBawIn88BpkjqKmk4MAJ4\nvu2xnXP7MIMePaJrw19ZCSedFM26XGJlLABmVgdMB+YBS4HZZlYlaYakhqYG0yVVSVpMcB7gonDZ\nKmA2sAT4E3C5me1ph/fhXM6aMHMCE2ZOaP0K1q2D444LikBUxo4NWhMtXBjdOl3iZNVUwMzmAnPT\nxl2X8vwrzSx7E3BTawM65zK4/3445phor+AtKoJLL4U77oDbb49uvS5R/Epg53KZWdDT50UXRb/u\nz38eZs+GLVuiX7dLBC8AzuWyRYtg+3b48IejX/egQVBeDrNmRb9ulwjeGZxzuazh23+ndvou9/3v\nR9OyyCWSFwDnctmECcEJ4PZy+OHtt24XOz8E5Fwu+8QnYOjQzPO1xUsvBSeaXd7xAuBcrnr44Y45\nQbtnT3BjmSibmbpE8ALgXC56+2245JKOuXnLmDFBEXjppfZ/LdehvAA4l4vmzAlu6F5c3P6vJQWH\nmvzm8XnHC4Bzueixx4I7eHUULwB5yQuAc7lm61Z48kn46Ec77jVPOCHoGG7jxo57TdfuvBmoc7nm\nmWdg3Djo27fjXrNTJ1iwoF1W3dAPUsVFFe2yftc03wNwLiGy7hBu4kR4/PH2DdOUVrYEakmHd23q\nGM+1iBcA53JRt24d/5pmQYug1aszz+tyghcA53LJM8/AN78Zz2tLQTfRjz4az+u7yHkBcC6XPPxw\ns33ztPvhE28NlFeyKgCSJklaJqla0pWNTL9C0hJJL0n6q6QPpkzbI2lx+JiTvqxzLktmHd/8M91p\np8ELL8D69fFlcJHJWAAkFQG3AmcCo4CpkkalzfYCUGZmRwMPATenTNtuZmPCx9k451pn6dLgPr3H\nHhtfhm7d4JRTYN68+DK4yGSzBzAOqDazVWa2i+Cm7/t8BTGzCjPbFg4+S3Dzd+dclB57DM4+u2O6\nf2jOl74Ew4fHm8FFQpahWZek84BJZnZpOHwhMN7Mpjcx/y3Am2b23XC4DlgM1AE/MLP3nUGSNA2Y\nBjBw4MDSWRHegKK2tpbijrhcvpWSnM+ztV5L8i3fuHzv85H9RjY53+CHH2bLyJG8e9RRza6ruXW0\nNFtL1ptpeWj8/aVOq62t5Y2db7TptdpTkj93EyZMWGhmZS1ayMyafQDnAXemDF8I3NLEvJ8h2APo\nmjJucPjzYOBV4JDmXq+0tNSiVFFREen6opbkfJ6t9VqSr/ze8r2PtspmHa353b1vvdXVZmvXtmj5\nprKlTquoqIj09xG1JH/ugAWWYXue/sjmENBaILXD8SHhuH1ImghcA5xtZjtTCsza8OcqYD4Q4wFM\n59rfhJkT9vlWH4mamqBHzgSYMHMCsy8vh7vuyjhfU62SWnJhmGs/2RSASmCEpOGSugBTgH1a80g6\nFridYOP/dsr4vpK6hs/7AycCS6IK71zB+NrX4Je/jDvFXs8fVQJ/+lPcMVwbZSwAZlYHTAfmAUuB\n2WZWJWmGpIZWPf8NFAO/TWvueQSwQNKLQAXBOQAvAM61wIR7y9nw2ANBFxDtsf5WfBt/aWRvePll\n2LQp0hyR7zm5ZmXVGZyZzQXmpo27LuV5o59MM3saaPqMlXMFpjUdnx28Zis79+sEhx7abq/RUru7\nFMHJJ3PDt09i/rgDvCO3HOVXAjuXYBNmTuC4lzex4KiS931Tb8m39tYec292uUmTGPdS2/YA/DxA\nvLwAONfO2rqRK6uqoXJ0SURpInTBBdx9bubrAdKLlm/0k8PvB+Bcwj0ycTCLD+/T7DyxbFT79mVD\n364d/7ouMr4H4FzCPXNsf7Z3b/l3tca+bUd9onX08s2ctMD7BcpVXgCci1Bbv4mnb7THVm2if83O\nZpaIV8/te/jEE2vijuFayQuAczHJ5nj4l++rpuSdXR2UqOUWH96Hw17dwkd/cZIf289Bfg7AuXbS\n5g3i66+zf+1uVnwgmX3PAOzsWsTSg/fnmGXv8OyYfnHHcS3kewDOJdW8eSw8si/WqeN7/2xJa51F\no/oydknN3uVc7vA9AOeSat48FmRo/pnNBre9N8oLj+zLZx97tV1fw7UP3wNwLonq6+HJJ1lwZN+4\nk2T0r+G9uPprR8cdw7WCFwDnkqhTJ1i+nI250M4+7hvUuFbzAuBcUvVtv2//URwWSl3HcS9v4vL7\nV7R5na5j+TkA5zpAize4V18Nl1zSPmFCUZ4beGNANz6yYD23np9dh3UuGbwAOJcw++3aA//3f/Ct\nbzU6vT1P6rZ23WsHdmdPJzF03bbMM7vE8ENAziXM6Op3YfRo6N077ijZk1g0qi9lVTVxJ3EtkFUB\nkDRJ0jJJ1ZKubGT6FZKWSHpJ0l8lfTBl2kWSVoSPi6IM71w+Kl1S0243f2lPC4/sG2R3OSPjISBJ\nRcCtwGnAGqBS0py0O3u9AJSZ2TZJXwRuBj4tqQS4HigDDFgYLuufEueaMLaqhq+OfpwXZz7Voa/b\n1kNLi0b1ZeSrW/xisBySzR7AOKDazFaZ2S5gFjA5dQYzqzCzhoN/zxLcOB7gDOAJM9sUbvSfACZF\nE925/FNUV09dZ7HkkP3jjtJim/fvwi+m+EngXCIza34G6TxgkpldGg5fCIw3s+lNzH8L8KaZfVfS\nN4BuZvbdcNq3ge1m9qO0ZaYB0wAGDhxYOmvWrDa+rffU1tZSXJzcvlSSnM+ztVxDV8slRSVs2tP0\n3bJG9hsZ2/1vM2Vrysh+IwGaz11fT7ctW9nRu1ck2RpeMymS+rkDmDBhwkIzK2vJMpG2ApL0GYLD\nPR9pyXJmdgdwB0BZWZmVl5dHlmn+/PlEub6oJTmfZ2u5G2beAMDU4qk8UPtAk/NVnFuxd959mLX7\nhVWZsjWl4tzgvr+N5g6VvbKJz8x5ja9efWwk2RpeMymS+rlrrWwOAa0FhqYMDwnH7UPSROAa4Gwz\n29mSZZ1zgdu/s5CD3t4ed4xGZdNB3CsjejPytS1021HXQalcW2RTACqBEZKGS+oCTAHmpM4g6Vjg\ndoKN/9spk+YBp0vqK6kvcHo4zjmXZsDGHRywaSdv9u8Wd5RW29G1iGXDenH08nfijuKykLEAmFkd\nMJ1gw70UmG1mVZJmSDo7nO2/gWLgt5IWS5oTLrsJuJGgiFQCM8Jxzrk0Y5fUsOiIPrF0/xylRaP6\nUurXA+SErM4BmNlcYG7auOtSnjfZaNnM7gbubm1A5wpF6ZIaFo1Kfu+fmSw8si9fmxnPCW7XMn4l\nsHMxeN+xdDNKq2pyovvnTP41vBe/+dgHgxPaLtG8LyDnEqDrrnoeO2Uwbw3oHneUNqsv6kTF+APi\njuGy4HsAziXAzq5F/OqcYXHHiEyfd3dR+oqf7ks6LwDOJcAH3thKpz31cceITO8tu/nGPcv8MFDC\neQFwLmad6+q59cZFFG/fE3eUyLw2qAed9xiD1u+IO4prhhcA52J2xMp3WTuwO+8W7xd3lOhILDqi\nL2O9d9BE8wLgXMxKl9SwMA+af6ZbdKRfD5B0XgCci1lpVQ0L86D5Z7qFo/ow5l+bUb2fB0gqLwDO\nxajntjoOWV3LKyNy6O5fWdpQ0o3P3XRczl/ZnM+8ADgXo137deKb3ziGXV2K4o7SLjbv3yXuCK4Z\nXgCci9Hu/Trl5bf/BgPXb+dzj/w77hiuCV4AnIvROX9ZS9ed+dP8M92W4v04789r8vo95jIvAM7F\npH/NTi7+3b/ZvV/+/htu696ZFR8o5uhlm+OO4hqRv5885xKutKqGF47oS32enyStHF3Cca94c9Ak\n8gLgXEyOe3kTlUflX/PPdAtG9+U47xcokbIqAJImSVomqVrSlY1MP1nSIkl14U3kU6ftCW8Ss/dG\nMc4Vuk71RlnVJipHl8Qdpd2tGNaL2h6d/TaRCZSxO2hJRcCtwGnAGqBS0hwzW5Iy2+vAxcA3GlnF\ndjMbE0FW5/LGB9ZtY0Pfrqzvl7u3f8xWfSfxpWvHxh3DNSKb+wGMA6rNbBWApFnAZGBvATCzV8Np\n+dOdoXPt6NXBPfnP60vjjtGxzED5fb4j18gydNcaHtKZZGaXhsMXAuPNbHoj894LPG5mD6WMqwMW\nA3XAD8zs0UaWmwZMAxg4cGDprFmzWv2G0tXW1lJcXBzZ+qKW5HyereWWbwxuhVhSVMKmPck87h1H\nti5bt/Hxb32P2T+bgRU1feQ5PdvIfiM7Il7Wkvq5A5gwYcJCMytryTIdcUewD5rZWkkHA3+T9LKZ\nrUydwczuAO4AKCsrs/Ly8shefP78+US5vqglOZ9na7kbZt4AwNTiqTxQ+0Cj8xRv3c2Vv/wX135l\ndCzfiJvL1p7KO21lYdUvWXbw/k3Ok56t4tyKjoiWtaR+7lorm5PAa4GhKcNDwnFZMbO14c9VwHzg\n2Bbkcy7vjF1SQ+c9hXc4pHJ0CWXeHDRRsikAlcAIScMldQGmAFm15pHUV1LX8Hl/4ERSzh04V4iO\ne7mGyqPyv/VPukpvDpo4GQuAmdUB04F5wFJgtplVSZoh6WwAScdJWgN8ErhdUlW4+BHAAkkvAhUE\n5wC8ALjCZca4Vzbx/Oj8b/+f7qXD+jDytS302O7NQZMiq3MAZjYXmJs27rqU55UEh4bSl3saOKqN\nGZ3LGx98Yxv1gtUH9Yg7Sofb2bWIuz4xnK4797Cte0ecfnSZ+F/BuQ7Ua1sdj50yuOCO/zd4+Iyh\nmWdyHcYLgHMd6JURvfO6++eMzBj5Wi0rPlDsN4pJAO8LyLkOUlRXz367CrxbZIlrfrGEEa/Xxp3E\n4QXAuQ4z7uVNfPd/X4k7RuyeGdOP4xdvjDuGwwuAcx3mQy9s5PkCbP6Z7plj+nHCi14AksALgHMd\nQPXGhxZv4Jlj+8cdJXavjOjN4Le2U7J5Z9xRCp4XAOc6wOGr3uWdXvvxxgHd444Suz2dO1E5ui/H\nv+gXhcXNWwE51wFOXLyRp/3b/153fOoQarsXxR2j4HkBcK4D/HNMP97ptV/cMRLjrf75fx+EXOAF\nwLkOsPTQAm7734Ty59/mrX7dWHpI072Duvbl5wCca2ejl29m6LptccdInAPX7+C0p9+MO0ZB8wLg\nXDv73O9eZeibXgDSPTumHycs3hjcKczFwguAc+2oeOtuDvv3FhaOKrzePzN5dVAP6juJQ/yq4Nh4\nAXCuHY1/aROLD+/Dzq7e4uV9JP5eNoDyyvVxJylYXgCca0cfemEDTx/bL+4YiVUxbgBD3toed4yC\nlVUBkDR61+6RAAAPHklEQVRJ0jJJ1ZKubGT6yZIWSaoLbyKfOu0iSSvCx0VRBXcu6Trtqefo5e/w\nzDFeAJqyfPj+3HD5kXHHKFgZm4FKKgJuBU4D1gCVkuak3dnrdeBi4Btpy5YA1wNlgAELw2X9xqAu\n79UXdeKCm8ezq4sf/slE9ebdQ8cgmz2AcUC1ma0ys13ALGBy6gxm9qqZvQTUpy17BvCEmW0KN/pP\nAJMiyO1cTvCNf2aD3t7OL69f4K2BYpDNhWCDgdUpw2uA8Vmuv7FlB6fPJGkaMA1g4MCBzJ8/P8vV\nZ1ZbWxvp+qKW5HyereWmFk8F4IBd3bnvR+uY++2vYkXJOtVWUlSyN2ci9DQG7LyGyzeeBH32zZa0\nv3FSP3etlYgrgc3sDuAOgLKyMisvL49s3fPnzyfK9UUtyfk8W8vdMPMGAL696GBeL1rPb7Y/GHOi\n95taPJUHah+IO8Y+9i/twe4nf8X2Ydfsk63i3IoYU71fUj93rZXNV5O1QOqNPIeE47LRlmWdy1mH\nPFXJ38YfEHeMnFExbgDlz6/3w0AdLJsCUAmMkDRcUhdgCjAny/XPA06X1FdSX+D0cJxzeatX7W4O\n+tcK/um9f2Zt+bBedN5jlLy2Ju4oBSVjATCzOmA6wYZ7KTDbzKokzZB0NoCk4yStAT4J3C6pKlx2\nE3AjQRGpBGaE45zLWyctXM+ao0exvXsijrDmBon/u+BQdnf3XkI7UlafUDObC8xNG3ddyvNKgsM7\njS17N3B3GzI6l1O29NyPqknlwKK4o+SUZ47tz7DiAeA9Q3SYZDVPcC4P/KNsAOtGHxZ3jJzUf+Vr\nfHDt1rhjFAwvAM5FaOi6bXTfXhd3jJx10JLlTJ37etwxCoYXAOcidM3tSxi94p24Y+SsFScfz4mL\nNtBzmxfRjuAFwLmoLFjA/rV1LBhdEneSnLWjdy8WHtmXU557O+4oBcELgHNRuf12/vCRg7xPmzaa\ne/JBnPn3dXHHKAheAJyLwrvvwkMPMfekA+NOkvMWjC6hx449lGzeGXeUvOcNlZ2LwqOPwqmnUtNn\nY9xJcl59J/G5m47zPakO4HsAzkXhwgvhrrviTpE3rJOCbiHq0zsYdlHyAuBcFCTo3TvuFHnlipnL\n4aGH4o6R17wAONdWV1wBf/lL3CnyzuLD+8Btt8UdI695AXCuLTZvhnvugaOPjjtJ3nmybACsXAmV\nlXFHyVteAJxri3vugTPOgAO86+eo7encKdi7uvnmuKPkLS8AzrXWjh3w4x/DN78Zd5L8demlMH8+\nVFfHnSQveQFwrrXuvReOOQbGjo07Sf4qLoY5c+BAv76iPfh1AM611tixcOKJcafIfyecEHeCvJXV\nHoCkSZKWSaqWdGUj07tKejCc/pykYeH4YZK2S1ocPn4RbXznYjRuHBx1VNwpCsPTT8PPfx53iryT\nsQBIKgJuBc4ERgFTJY1Km+0SoMbMDgX+B/hhyrSVZjYmfFwWUW7n4lNXB9dcAzu9q4IOc+CBcN11\nsGVL3EnySjZ7AOOAajNbZWa7gFnA5LR5JgMzw+cPAadK8uu4XX568EH4+9+hS5e4kxSOgw+GiRPh\nllviTpJXsikAg4HVKcNrwnGNzhPeQ/gdoF84bbikFyQ9KemkNuZ1Ll719XDTTfDtbwdX/7qOc+ON\nQaurt96KO0nekJk1P4N0HjDJzC4Nhy8ExpvZ9JR5XgnnWRMOrwTGA1uAYjPbKKkUeBQ40szeTXuN\nacA0gIEDB5bOmjUrqvdHbW0txcXFka0vaknO59ne78A//YmDfv97XrjllkYLwPKNywEoKSph055N\nHR0vK7mUbWS/kftMP+S22yjaupXl3/hGR0cDkv0/MWHChIVmVtaSZbJpBbQWGJoyPCQc19g8ayR1\nBnoDGy2oLjsBzGxhWBhGAgtSFzazO4A7AMrKyqy8vLwl76FZ8+fPJ8r1RS3J+TxbmpoamDIFHn+c\n8rLG/89umHkDAFOLp/JA7QMdmS5ruZSt4tyKfWcYMwYefZRBMX0uk/w/0RrZHAKqBEZIGi6pCzAF\nmJM2zxzgovD5ecDfzMwkDQhPIiPpYGAEsCqa6M51sG3b4DvfgSY2/q4D9OkDF18cd4q8kXEPwMzq\nJE0H5gFFwN1mViVpBrDAzOYAdwG/llQNbCIoEgAnAzMk7QbqgcvMLJn7ns5lMngwXOYN2RLht7+F\n7t3hYx+LO0lOy+pCMDObC8xNG3ddyvMdwCcbWe5h4OE2ZnQuXvX1cOWVQdNP7/I5GUpK4AtfCFoG\ndesWd5qc5V1BOJfJnXfCP/8JvXrFncQ1OPVUKC2Fq6+OO0lO864gnGvO66/DtdfCE09AJ/++lCi3\n3x6cFJ44ET760bjT5CT/RDvXlJ074ZOfhP/6r6DTN5csJSVw331wySXBfRlci3kBcK4p3/lOcOI3\npjbnLgsnnxzsnfXpE3eSnOSHgJxrype/DD16+BW/STd6dPCzpgb69o03S47xPQDn0q1dC3v2wEEH\neaufXLFzZ9A992OPxZ0kp3gBcC7Vq6/Chz/sN3nPNV27BtcGfOELwSEhlxUvAM41WLkSPvKR4Jj/\nGWfEnca1VFkZPPIInH8+/OMfcafJCV4AnANYtgzKy4OLvS6/PO40rrU+/GH4zW/g3HNhyZK40ySe\nnwR2bufOoB35jBnwuc/Fnca11Wmnwe9/D4ceGneSxPM9AFe4GrpC79o1uNLXN/75Y/z44IY9GzYE\n92+oq4s7USJ5AXCFqaYGPv3p4JgxBLccdPlHgiefhNNP9xvJNMILgCssZkFTwTFjgmae3oVAfuvX\nD/74x+DcwOjR8JOf+L2cU3gBcIXj73+H448Pbud4xx3ws595T5KFoKgoOL/zj3/A3/7mJ/lT+Elg\nl9+2bw++9ffoAZs2wRVXBP37eMduhefww+Hxx4PPBMDy5TB3Llx4YbCnUID8v8Dln+3bg4uBPv95\nGDTovQuDzjknOO7vG//C1r37e88XLIBDDoELLoDZs2HjxvhyxSCr/wRJkyQtk1Qt6cpGpneV9GA4\n/TlJw1KmXRWOXybJr65x0aqvhy1bgudbtsBJJ8GAAXDddcEx36oqmDw53owumUaODHoTXbUKPvQh\n+NWvYMQIqK0Npr/0EixdmtctiDIeAgrv6XsrcBqwBqiUNMfMUq+yuASoMbNDJU0Bfgh8WtIogttD\nHgkMAv4iaaSZ7Yn6jbg8Yga7dgX/iJs3B8dwhw0Lpv30p/Daa4x64YVgg79sGXz2s/Dzn0NxMdxw\nA4wbFzx3LhslJcF5gcsvDzb2ncPN4u9/D/fcA+vWBYXhAx/g4J49gwsGARYtgt27g8NH++8ffOa6\nd8+pzgOzOQcwDqg2s1UAkmYBk4HUAjAZ+E74/CHgFkkKx88ys53Av8N7Bo8Dnokmvss5Z50F69cH\n/2h79gT/QB/5CNx2WzD94IODm7AUFQXH7fv0Cb7B//SnwfSaGhg8mA3FxRxw1llwxBHvddgmwSmn\nxPO+XH7onLJJvOaa4FFbG3zRWL2arc899970Bx8MTipv3Bh8GamtDQ45rlwZTD//fHjuuaDlUUL3\nQmUNF8M0NYN0HjDJzC4Nhy8ExpvZ9JR5XgnnWRMOrwTGExSFZ83svnD8XcAfzeyhtNeYBkwLBw8D\nlrX9re3VH9gQ4fqiluR8nq31kpzPs7VekvMdZmYtum9pIloBmdkdwB3tsW5JC8ysrD3WHYUk5/Ns\nrZfkfJ6t9ZKcT9KCli6TzUngtcDQlOEh4bhG55HUGegNbMxyWeecczHIpgBUAiMkDZfUheCk7py0\neeYAF4XPzwP+ZsGxpTnAlLCV0HBgBPB8NNGdc861RcZDQGZWJ2k6MA8oAu42sypJM4AFZjYHuAv4\ndXiSdxNBkSCcbzbBCeM64PIYWgC1y6GlCCU5n2drvSTn82ytl+R8Lc6W8SSwc865/OSXRDrnXIHy\nAuCccwWqoAqApK9LMkn9487SQNJ/S/qXpJck/U5SnwRkarbrjzhJGiqpQtISSVWSvhJ3pnSSiiS9\nIOnxuLOkk9RH0kPhZ26ppBPiztRA0tfCv+krkh6QFGtXrZLulvR2eJ1Tw7gSSU9IWhH+7JugbC3e\nlhRMAZA0FDgdeD3uLGmeAEab2dHAcuCqOMOkdP1xJjAKmBp26ZEUdcDXzWwUcDxwecLyAXwFWBp3\niCb8DPiTmR0OHENCckoaDHwZKDOz0QQNTqbEm4p7gUlp464E/mpmI4C/hsNxuJf3Z2vxtqRgCgDw\nP8A3gUSd9TazP5tZQ29TzxJcKxGnvV1/mNkuoKHrj0Qws3Vmtih8voVgAzY43lTvkTQEOAu4M+4s\n6ST1Bk4maLWHme0ys83xptpHZ6B7eC1RD+CNOMOY2d8JWjWmmgzMDJ/PBM7p0FChxrK1ZltSEAVA\n0mRgrZm9GHeWDD4P/DHmDIOB1SnDa0jQBjZV2OvsscBzzc/ZoX5K8EWjPu4gjRgOrAfuCQ9R3Smp\nZ9yhAMxsLfAjgj30dcA7ZvbneFM1aqCZrQufvwkMjDNMM7LaluRNAZD0l/DYYfpjMnA1cF1CszXM\ncw3B4Y3748qZSyQVAw8DXzWzd+POAyDpY8DbZrYw7ixN6AyMBW4zs2OBrcR3CGMf4bH0yQRFahDQ\nU9Jn4k3VvPBi10QdUYCWbUsS0RdQFMxsYmPjJR1F8KF6MeiglCHAIknjzOzNOLM1kHQx8DHgVIv/\nwozEd98haT+Cjf/9ZvZI3HlSnAicLemjQDdgf0n3mVlSNmRrgDVm1rDH9BAJKQDARODfZrYeQNIj\nwIeA+2JN9X5vSTrIzNZJOgh4O+5AqVq6LcmbPYCmmNnLZnaAmQ0zs2EE/wRjO2rjn4mkSQSHDM42\ns21x5yG7rj9iE3Yzfhew1Mx+EneeVGZ2lZkNCT9nUwi6REnKxp/wM79a0mHhqFPZt1v3OL0OHC+p\nR/g3PpWEnKBOk9rtzUXAYzFm2UdrtiV5XwBywC1AL+AJSYsl/SLOMOFJpIauP5YCs82sKs5MaU4E\nLgROCX9fi8Nv3C47XwLul/QSMAb4Xsx5AAj3Sh4CFgEvE2ybYu12QdIDBPcuOUzSGkmXAD8ATpO0\ngmCv5QcJytbibYl3BeGccwXK9wCcc65AeQFwzrkC5QXAOecKlBcA55wrUF4AnHOuQHkBcM65AuUF\nwDnnCtT/B6GEzjiiuPw+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 25000, D:[array(0.6673904657363892, dtype=float32), array(0.5249999761581421, dtype=float32)], G loss:0.12458962202072144\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9//HXm7ATBAI0yqKgggqoaCLYugVFpbVXbLUt\naL24lWt/0vZe29tisai0dq/dtK240quCVK3SFktdEpe6sYgiWNYqq7IEhLBDPr8/zgkOQ5KZJJOc\nM5nP8/GYR+ac7/ec+UwyOZ853+/3fI/MDOecc7mnRdQBOOeci4YnAOecy1GeAJxzLkd5AnDOuRzl\nCcA553KUJwDnnMtRngAcAJJM0rFRx9HUJD0taUyG9nWWpMUJy+9JGp6JfYf7WyipJFP7S/M1JekB\nSZslvdGEr3uhpCfTrPuGpIGNHVNz5AkghsIDx05JFQmPO6OOq4qkMZLmStoqabWkn0pqmVBeJmlX\nQuyLk7a/XNL7krZLelJSQUJZgaQ/h2XvS7o83W2ridPCehWSNkl6TtKXEuuY2afNbEoa7zllgjSz\nl8zsuFT7SoekByX9IGn/A82sLBP7r4MzgfOBXmY2JLlQ0lWS9oe/462S5kv6bAZe93bgx2nW/Tkw\nKQOvmXM8AcTXf5hZfsJjXNQBJWgP/DfQDRgKnAd8K6nOuITYDxwUw29qdwNXAoXADuB3CdvdBewJ\ny64Afl/17S6NbatzspnlA8cBDwJ3Srqlrm84lcQE2MwcBbxnZttrqfNq+DvuDNwHTJfUpb4vKOk0\noJOZvZbmJjOAYZIOr+9r5iwz80fMHsB7wPAayq4C/gncCXwE/As4L6G8B8E/RDmwDPhKQlke8F1g\nObANmAv0DssMuB5YCmwhOBArzXhvBP6SsFwGXFdD3R8CjyQsH0NwwO8IdAif908o/z/gx6m2reG1\nDDg2ad1lwC6ga3KswLHAC+HvdSPwaLj+xXBf24EK4EtACbAa+A7wQRhnCbA66e94E7AI2Aw8ALRN\n+Du+XF28wFhgb/jeKqp+t4mfC6AN8Ctgbfj4FdAmLKuK7ZvAemAdcHUtf79qPzPAteHvan8Yx201\nfB5fTljuEL6P4hSfmW+Hca0Frkv8WwETgXsT6n4q/HtUfVZPDn+fxyfUeQYYE/X/brY9/AwgOw0l\nOIh3A24BnkhoCplG8M/fg+Bg90NJ54ZlNwKjgc8AhwHXEHyLrvJZ4DTgJOCLwIVpxnM2sDBp3Y8k\nbZT0z6R264HAW1ULZrac8KAfPvaZ2ZKE+m+F26TaNl1PAS2BQ5ozgO8D/wC6AL2A34avc3ZYfrIF\nZzSPhsuHAwUE35LH1vB6VxD8Ho8J47w5VYBmNhl4GPhp+Hr/UU21CcDpwGCCA+KQpH0fDnQCehIc\nyO+q5Vt5tZ8ZM7uP4EvBq2EctZ45hWdB1xEki6W11BtB8FkcTpDwSpKqnAgcaDY0s1cIzvymSGoH\nPAR8z8z+lbDNuwS/B1cHngDi60lJWxIeX0koWw/8ysz2hgejxcBFknoDZwDfMbNdZjYfuBf4z3C7\n64CbzWyxBd4ys00J+/2xmW0xs5VAKcHBpVaSrgGKCdphq3wHOJrg4DMZ+IukY8KyfIJv2Ik+IjgD\nyAe21lCWatu0mNlegm+T1fUd7CU4mPcIf38vp9hdJXCLme02s5011LnTzFaZWTlBu/bodGNN4Qpg\nkpmtN7MNwG0ETWNV9oble81sJsFB+ZD+iTQ+M+k4XdIWgjOh0cDnzCz575Toi8ADZrbQzHYAtyaV\ndyY4Q010K0FCewNYQ3CGmmhbuJ2rA08A8XWJmXVOeNyTULbGwvPe0PsE3956AOVmti2prGf4vDfB\nmUNNPkh4voPggFsjSZcAPwI+bWYbq9ab2etmti08ME4haLL6TFhcQXD2kegwgn/g2spSbZsWSa2A\n7gTNHcm+DQh4Ixxxc02K3W0ws10p6qxKeF71d8qEHuH+atr3JjPbl7Bc098z1WcmHa+Fn9FuZna6\nmT2bRuyJv5dVSeWbSUrqYeJ+EBgE/CLp809Yf0sdYnZ4AshWPSUpYflIPm4LLpDUMalsTfh8FUFT\nRIOFp/H3EHRWL0hR3QgOrBA0FR04VZd0NEF79pLw0VJSv4RtT+bj5qXatk3XSGAfwTfJg4M0+8DM\nvmJmPYD/An6XYuRPOlPp9k54XvV3gqA/oX1VQTUdmKn2vZbgbKW6fddFqs9MY1hH0MRWpXdS+dsk\nNetJ6knQ3PkA8AtJbZK2OYGE5kGXHk8A2ekTwNcltZL0BYIP/0wzWwW8QtD+3lbSSQTtvw+F290L\nfF9Sv3B890mSutb1xcM+hYeBS83sjaSyzuEY7raSWkq6gqCP4O9hlYeB/1AwZr4DwfC9J8Izhu3A\nE8AkSR0knUFwwP6/VNumEXNBGMtdwE+Smr6q6nxBUtWBaTPBQbgyXP6QoFmrrm6Q1Cvso5kAVPUf\nvAUMlDRYUlsObQZJ9XpTgZsldZfUjaDj9KFa6lcrjc9MY5gOXC3pBEntge8llc8EzqlaCL/sPEgw\nwuhaggTy/YTytkARQUewq4uoe6H9ceiDYLTHToImj6rHn8Oyqzh4FNAS4IKEbXsBfyVo4lgOXJ9Q\nlkfQUfhvgmaT2QTjuyFpxAzBP9wPaoivlOBbdGJ8T4dl3cP9biM4JX8NOD9p+8uBlQTfgp8CChLK\nCoAnw7KVwOXpbltNnIkjd8rDuJP3V8bHo4B+SvDNtyL83Y1NqHc9wYFnC0EbdgkJI37COget4+BR\nQFuAKUD7hPIJBP0Rq4Avc/BImH7A/HC7JxP2VzUKqC3wmzCmdeHzttXFkbxtNb+n2j4zV5E0Wilp\n21rLa9nuJoImx7XAV8P33juhfDYwNHz+DYKE2Tpc7gFsAM4Kl79A8EUg8v/dbHso/AW6LCHpKoID\n1plRx+JcJkg6AXiHYBjrvnDdBcD/M7NL0tj+deBaM3uncSNtfprrxSvOuRiT9DmCpp72wE8IrnU4\n0GltZv8gGJKbkpkNbZQgc0BafQCSRkhaLGmZpPG11Ls0vGS+OFzuo2BKg/nh4w+ZCtw5F1+SvquD\npzKpejwdVvkvguHMywkuNPtqZMHmsJRNQJLyCNqZzye4WGQ2MNrMFiXV6wj8DWhNMA3AHEl9gL+a\n2aDMh+6cc64h0jkDGAIsM7MVZraH4KrBkdXU+z7BqVyqcdHOOediIJ0+gJ4cfKHGaoKpCA6QdCpB\nD/7fJP1v0vZ9Jb1JcIXnzWb2UvILSBpLeCl9u3btinr3Th4WXH+VlZW0aBHf0a5xjs9jq784x+ex\n1V+c41uyZMlGM+tep43SGK51GQdPzHQlweXtVcstCIbS9QmXywgngiK4SKdq0q0igkRyWG2vV1RU\nZJlUWlqa0f1lWpzj89jqL87xeWz1F+f4gDlWx2Gg6aSyNRx8pV4vDr5KsCPB5dllkt4jmKBqhqRi\nC6YC2BQmmrkEHT51mbjLOedcI0knAcwG+knqK6k1MIpg6lgAzOwjC+YA6WNmfQgu/LnYgk7g7mEn\nctVl+/2AFRl/F8455+osZR+Ame2TNA6YRXAl6f1mtlDSJIJTjhm1bH42wWX9ewkuqb/eglkRnXPO\nRSytC8EsmE52ZtK6iTXULUl4/jjweAPic84510ji2Z3tnHOu0XkCcM65HOUJwDnncpQnAOecy1Ge\nAJxzLkd5AnDOuRzlCcA553KUJwDnnMtRngCccy5HeQJwzrkc5QnAOedylCcA55zLUZ4AnHMuR3kC\ncM65HOUJwDnnclRaCUDSCEmLJS2TNL6WepdKMknFCetuCrdbLOnCTATtnHOu4VLeECa8peNdwPnA\namC2pBlmtiipXkfgG8DrCesGENxCciDQA3hWUn8z25+5t+Ccc64+0jkDGAIsM7MVZrYHmAaMrKbe\n94GfALsS1o0EpoU3h/83sCzcn3POuYilkwB6AqsSlleH6w6QdCrQ28z+VtdtnXPORSOtewLXRlIL\n4A7gqgbsYywwFqCwsJCysrKGhnVARUVFRveXaXGOz2OrvzjH57HVX9zjqzMzq/UBfBKYlbB8E3BT\nwnInYCPwXvjYBawFiqupOwv4ZG2vV1RUZJlUWlqa0f1lWpzj89jqL87xeWz1F+f4gDmW4nie/Ein\nCWg20E9SX0mtCTp1ZyQkkI/MrJuZ9TGzPsBrwMVmNiesN0pSG0l9gX7AGw3IV8455zIkZROQme2T\nNI7g23secL+ZLZQ0iSDjzKhl24WSpgOLgH3ADeYjgJxzLhbS6gMws5nAzKR1E2uoW5K0fDtwez3j\nc84510j8SmDnnMtRngCccy5HeQJwzrkc5QnAOedylCcA55zLUZ4AnHMuR3kCcM65HOUJwDnncpQn\nAOecy1GeAJxzLkd5AnDOuRzlCcA553KUJwDnnMtRngCccy5HeQJwzrkc5QnAOedyVFoJQNIISYsl\nLZM0vpry6yUtkDRf0suSBoTr+0jaGa6fL+kPmX4Dzjnn6iflHcEk5QF3AecDq4HZkmaY2aKEao+Y\n2R/C+hcDdwAjwrLlZjY4s2E755xrqHTOAIYAy8xshZntAaYBIxMrmNnWhMUOgGUuROecc41BZrUf\nqyVdBowws+vC5SuBoWY2LqneDcCNQGvgXDNbKqkPsBBYAmwFbjazl6p5jbHAWIDCwsKiadOmNfBt\nfayiooL8/PyM7S/T4hyfx1Z/cY7PY6u/OMc3bNiwuWZWXKeNzKzWB3AZcG/C8pXAnbXUvxyYEj5v\nA3QNnxcBq4DDanu9oqIiy6TS0tKM7i/T4hyfx1Z/cY7PY6u/OMcHzLEUx/PkRzpNQGuA3gnLvcJ1\nNZkGXBIml91mtil8PhdYDvRPKzM555xrVOkkgNlAP0l9JbUGRgEzEitI6peweBGwNFzfPexERtLR\nQD9gRSYCd8451zApRwGZ2T5J44BZQB5wv5ktlDSJ4JRjBjBO0nBgL7AZGBNufjYwSdJeoBK43szK\nG+ONOOecq5uUCQDAzGYCM5PWTUx4/o0atnsceLwhATrnnGscfiWwc87lKE8AzjmXozwBOOdcjvIE\n4JxzOcoTgHPO5ShPAM45l6M8ATjnXI7yBOCccznKE4BzuWDlSti0CYD8Zcvgq1+FdesiDspFzROA\nc83d669DURG89RYAezt1gg4dYOhQePPNiINzUfIE4FxztmABXHwxPPggnHsuALu7d4ef/xzuuAMu\nuACeeCLaGF1k0poLyDmXhZYtgxEj4Ne/hosuOrT8ssugb1+45BLo3PlAgnC5wxOAc81RZSV88Ytw\nyy0walTN9YqKYN48KChouthcbHgCcK45atEC/vEP6NYtdd3u3YOf69bB4YeD1LixudjwPgDnmpuN\nG4MzgKSD/7Apwxg2ZVj125jByJHw5JNNEKCLi7QSgKQRkhZLWiZpfDXl10taIGm+pJclDUgouync\nbrGkCzMZvHMuiRl8/vN1P5BL8KMfwTe/Cbt2NU5sLnZSJoDwlo53AZ8GBgCjEw/woUfM7EQzGwz8\nFLgj3HYAwS0kBwIjgN9V3SLSOdcInnkG1q8PRv7U1XnnweDB8MtfZj4uF0vpnAEMAZaZ2Qoz20Nw\n0/eRiRXMbGvCYgfAwucjgWnhzeH/DSwL9+ecyzQzuPlmmDQJWh7cvVdj00+yn/8cfvELWLOmEQJ0\ncSMzq72CdBkwwsyuC5evBIaa2bikejcANwKtgXPNbKmkO4HXzOyhsM59wNNm9ljStmOBsQCFhYVF\n06ZNy8ibA6ioqCA/Pz9j+8u0OMfnsdVfFPF1ffll+j7wAHPuuSfoBE6wZNOSA897tOlRa2x977uP\n3QUFrP3c5xot1pr437X+hg0bNtfMiuu0kZnV+gAuA+5NWL4SuLOW+pcDU8LndwJfTii7D7isttcr\nKiqyTCotLc3o/jItzvF5bPUXSXzDh5s99VS1RSUPlhx4pIytsjLzsaXJ/671B8yxFMfz5Ec6w0DX\nAL0TlnuF62oyDfh9Pbd1ztXXU09Bu3YHraqt6aeqrHRM6cEFVcNAd++GNm0yGqKLl3T6AGYD/ST1\nldSaoFN3RmIFSf0SFi8ClobPZwCjJLWR1BfoB7zR8LCdcwcxg/btMzeGf/ZsOOuszOzLxVbKBGBm\n+4BxwCzgXWC6mS2UNElS1VCDcZIWSppP0A8wJtx2ITAdWAT8HbjBzPY3wvtwLnetWwennRYkgUw5\n9dRgNNHcuZnbp4udtK4ENrOZwMykdRMTnn+jlm1vB26vb4DOuRQefhhOPjmzV/Dm5cF118HkyXD3\n3Znbr4sVvxLYuWxmFsz0OWZM2pss2bQkvWGh11wD06fDtm31j8/FmicA57LZvHmwcyeceWbm992j\nB5SUQAaHZbt48cngnMtmVd/+W2Tmu9whI4N+9KNDRha55sMTgHPZbNiwoAO4sRx/fOPt20XOm4Cc\ny2af/zz07p26XkO8/XbQ0eyaHT8DcC5bPf54cEvHjh0PKUp77p906u7fD7fcwrC994B06IVjLmv5\nGYBzMVbjHP7r18O11zbNzVsGD4b9+zlm1fbGfy3XpDwBOJeNZswIvv3n59d+o5cMGPbHc5l+3D7O\nmruh0V7DRcMTgHPZ6Kmngjt4NZGXirtz1tyNTfZ6rml4AnAu22zfDi+8AJ/5TJO95MJjDmNvS3FY\nxd4me03X+LwT2Lls8+qrMGQIdOnSZC9pLcT1t9ZtqnkXf54AnMs2w4c3zpW/1TikbyGTE865yHkC\ncC4btW1b7erG7AzGjHsnzoHzVjX+tQeuSXgfgHPZ5NVX4dvfBmoZItpYJJYc1RGefLLpXtM1Kk8A\nzmWBAwf7xx+PdG6el4q6wRNPRPb6LrPSSgCSRkhaLGmZpPHVlN8oaZGktyU9J+mohLL9kuaHjxnJ\n2zrn0mTW5MM/k80Z2AXefBM2+DUBzUHKBCApD7gL+DQwABgtaUBStTeBYjM7CXgM+GlC2U4zGxw+\nLsY5Vy9Hrd0R3Kf3lFMii2Fv6zw491yYNSuyGFzmpHMGMARYZmYrzGwPwU3fD/oKYmalZrYjXHyN\n4ObvzrkMOuPNjXDxxTVO/9Bk/QFf+xpf+9cdTdv/4BqFLMWwLkmXASPM7Lpw+UpgqJmNq6H+ncAH\nZvaDcHkfMB/YB/zYzA7pQZI0FhgLUFhYWDQtgzegqKioID8/P2P7y7Q4x+ex1V+m4luyacmB5wP/\n9jztTjmDrSeeeEhZXRTkFVC+v7zeMfXv2v/Aa/fv2r/e+6lOrvxdG8OwYcPmmlmdLtbI6DBQSV8G\nioFzElYfZWZrJB0NPC9pgZktT9zOzCYDkwGKi4utpKQkYzGVlZWRyf1lWpzj89jqL1Px3Tblto8X\nzoHSMV+rvqwORuePZmrF1HrHVHppKff8bDy7W7Vg7KWv1Hs/1cmVv2tcpNMEtAZIHPTbK1x3EEnD\ngQnAxWa2u2q9ma0Jf64AyoDoGjCdy1L52/fSojI+F2GNfG4Nn3lxXdRhuAZKJwHMBvpJ6iupNTAK\nOGg0j6RTgLsJDv7rE9Z3kdQmfN4NOANYlKngncsVNzyyjIvK1kYdxgFvnFjAkAX1b0Zy8ZAyAZjZ\nPmAcMAt4F5huZgslTZJUNarnZ0A+8Kek4Z4nAHMkvQWUEvQBeAJwri7MKF64mbkDm27un1Te7t+J\nvqu3Q7kngWyWVh+Amc0EZiatm5jwfHgN270CnNiQAJ3LdUev3s7uVi1YW9g+6lAO2Ns6j7eP68Qn\nn30WvvjFqMNx9eRXAjsXc6ctKGfOiQVRh3FA1fDPN04sgKefjjga1xCeAJyLueKFm5k9KD4JoMqz\nnyyEH/wg6jBcA/hsoM7F3BPDezL/+M5Rh3GIig6toGfPqMNwDeBnAM7F3KundGNnu5h+V3v5ZZ8c\nLot5AnAuxk5dWE63zbtTV4zK1q3wm99EHYWrJ08AzsXY1x9aRsFHe6IOo2YlJTBnDmzbVmOVJr9v\ngUubJwDn4mrlSg6r2MvSIz+eeyZ2B9L27WHIEG6aeEZasXkyiBdPAM7F1axZzB3YBWtR/eyfsTF8\nOKcu2hx1FK4eYtqz5Jxj1izmVDP8M3bfoIcPp9f0X0QdhasHTwDOxVFlJbzwAnMm9Is6kloNmzIs\nuFPZ/5x0YLl0TGnEUbl0eROQc3HUogUsWcKmLm2ijiS1Gm5Q4+LPE4BzcdUlPpO/pXLagnJueHhp\n1GG4OvIE4Fwcffe7sHx56noxsbZ7W86ZsyFoDnJZwxOAc3Gzaxf89rfQrVvUkaRtTWE79rcQvdft\nSF3ZxYYnAOfi5pVXYNAg6NQp6kjSJzFvQBeKF/pw0GySVgKQNELSYknLJI2vpvxGSYskvS3pOUlH\nJZSNkbQ0fIzJZPDONUvPPssfu6+L33DPFOYO7EKRXw+QVVImAEl5wF3Ap4EBwGhJA5KqvQkUm9lJ\nwGPAT8NtC4BbgKHAEOAWSdnTs+VcFJ59lnkxuvtXuuYN6MLqwnZRh+HqIJ0zgCHAMjNbYWZ7gGnA\nyMQKZlZqZlWNf68R3Dge4ELgGTMrN7PNwDPAiMyE7lwztHcvtG7NomMOizqSOttyWGv+MOrYA8u1\nTftQ3zKXWbIUvfaSLgNGmNl14fKVwFAzG1dD/TuBD8zsB5K+BbQ1sx+EZd8DdprZz5O2GQuMBSgs\nLCyaNm1aA9/WxyoqKsjPz09dMSJxjs9jq7+Gxrdk05IMRnOwgrwCyvc30r18KysZ2Opw9nbufMh7\n6N+1f7XrElVUVLB299pqy+Igzp+7YcOGzTWz4rpsk9ErgSV9GSgGzqnLdmY2GZgMUFxcbCUlJRmL\nqaysjEzuL9PiHJ/HVn/1js8MJG6bclvGY6oyOn80UyumNsq+i98pZ+zrneDFFw99DxWH1i+99OCr\nhsvKypi6aWq1ZXEQ989dXaXTBLQG6J2w3CtcdxBJw4EJwMVmtrsu2zrnQsXFsGJF1FHU2zv9OsG8\neVBRzdHexU46CWA20E9SX0mtgVHAjMQKkk4B7iY4+K9PKJoFXCCpS9j5e0G4zjmXbNUqWLkS+vSJ\nOpJ629Umj/m9WvKdWz6VVn1v749WygRgZvuAcQQH7neB6Wa2UNIkSReH1X4G5AN/kjRf0oxw23Lg\n+wRJZDYwKVznXE6r9sD33HNw3nnBPEBZbN6ALhT59QBZIa0+ADObCcxMWjcx4fnwWra9H7i/vgE6\nlzOefTZIAFlu7sAu/M+UunVip5pFtCpZ+kyjmZXdXzWcay7MggRw/vlRR9Jg/+rbkUc+e1TG5gXy\nJqLG4/cDcC4Odu6Er341q9v/q1TmtaB06CeiDsOlwROAcxE78A23DzClrFk0c3TeuodjVlYwt5o7\nmrn48CYg52LgyLXbabG/MuowMqbTtr1864HFPj10zHkCcC5iLfdVctf355G/c3/UoWTM+z3a03K/\n0WPDrqhDcbXwBOBcxE5YvpU1he3Ymt8q6lAyR2LeCV041WcHjTVPAM5FrGjRZuYOyL7ZP1OZN7Bu\n1wMMmzLsoLmC/CKxxucJwLmIFS3czNwsnP45lbkDOjP4X1tQpfcDxJUnAOei9NFHHLOqIphDp5nZ\nWNCWq28/DWuhqENxNfAE4FwTqLE5o21bvv2tk9nTOu+gus3FlsNaZ3R/3iyUWZ4AnGtktR6w2rRp\nlt/+qxRu2MnVT/w76jBcDfxCMOea0CHJ4K67aNNqP7vb5FW/QZbblt+Ky/6xmkcuOrLZvsds5mcA\nzkWk2+bdMHEie1s133/DHe1asvTIfE5avCXqUFw1mu8nz7mYK1q4Gc49l8pm3kk6e1ABp73j1wPE\nkTcBOddIUnVWnragnJ8NeBvo0TQBRWTOoC6Mv/dfUYfhqpHWGYCkEZIWS1omaXw15WdLmidpX3gT\n+cSy/eFNYg7cKMa5XNei0iheWM7sHJgsbWmfjlS0b0nbXfuiDsUlSXkGICkPuAs4H1gNzJY0w8wW\nJVRbCVwFfKuaXew0s8EZiNW5ZuPIdTvY2KUNG7q2jTqURlfZQnzt5lOjDsNVI50moCHAMjNbASBp\nGjASOJAAzOy9sKz5TGfoXCN6r2cH/uuWoqjDaFpmoObd35FtZCmmaw2bdEaY2XXh8pXAUDMbV03d\nB4G/mtljCev2AfOBfcCPzezJarYbC4wFKCwsLJo2bVq931CyiooK8vPzM7a/TItzfB5b/VVUVLB2\n99qow6hWQV4B5fub9tbcrbfv4HPf+SHTfz0Jy6u55Tnd2Pp37Z/J8NIW58/dsGHD5ppZcV22aYpO\n4KPMbI2ko4HnJS0ws+WJFcxsMjAZoLi42EpKSjL24mVlZWRyf5kW5/g8tvorKytj6qap1Zblb9/L\n+Hv+xc3fGBTJN+LR+aOZWlF9bI2ppMV25i68h8VHH1ZjnXRjK700mpvmxP1zV1fpdAKvAXonLPcK\n16XFzNaEP1cAZcApdYjPuWbn1EWbabk/95pDZg8qoNiHg8ZKOglgNtBPUl9JrYFRQFqjeSR1kdQm\nfN4NOIOEvgPnctFpCzYz+8TmP/on2exBXTjtnaZtenK1S5kAzGwfMA6YBbwLTDezhZImSboYQNJp\nklYDXwDulrQw3PwEYI6kt4BSgj4ATwAud5kx5J1y3hjU/KZ/TuXt4zrT//1ttN/pw0HjIq0+ADOb\nCcxMWjcx4flsgqah5O1eAU5sYIzONRtHrd1BpWDVEe2jDqXJ7W6Tx32f70ub3fvZ0c6vQY0D/ys4\n14Q67tjHU+f2zLn2/yqPX9g7dSXXZDwBONeE3unXqVlP/5ySGf3fr2Dpkfl+o5gY8MngnGsiefsq\nabVnf9RhREtiwh8W0W9lRdSRODwBONdkhiwo5we/eSfqMCL36uCunD5/U9RhODwBONdkPvXmJt7I\nweGfyV49uSuffMsTQBx4AnCuCajS+NT8jbx6SreoQ4ncO/060fPDnRRs2R11KDnPE4BzTeD4FVv5\nqGMr1n6iXdShRG5/yxbMHtSF09/yi8Ki5qOAnGsCZ8zfxCv+7f+AyV88hop2fo/gqHkCcK4J/HNw\nVz7q2CrqMGLjw27N/z4I2cATgHNN4N1jc3jsfw1K3ljPh13b8u4xNc8O6hqX9wE418gGLdlC73U7\nog4jdg4gLQLPAAAPf0lEQVTfsIvzX/kg6jBymicA5xrZ1X9+j94feAJI9trgrnxy/qbgTmEuEp4A\nnGtE+dv3cty/tzF3QO7N/pnKez3aU9lCHONXBUfGE4BzjWjo2+XMP74zu9v4iJdDSLxY3J2S2Rui\njiRneQJwrhF96s2NvHJK16jDiK3SId3p9eHOqMPIWWklAEkjJC2WtEzS+GrKz5Y0T9K+8CbyiWVj\nJC0NH2MyFbhzcddifyUnLfmIV0/2BFCTJX0P47YbBkYdRs5KOQxUUh5wF3A+sBqYLWlG0p29VgJX\nAd9K2rYAuAUoBgyYG27rNwZ1zV5lXguu+OlQ9rT25p9UVGk+PXQE0jkDGAIsM7MVZrYHmAaMTKxg\nZu+Z2dtAZdK2FwLPmFl5eNB/BhiRgbidywp+8E+tx/qd3HPLHB8NFIF0LgTrCaxKWF4NDE1z/9Vt\n2zO5kqSxwFiAwsJCysrK0tx9ahUVFRndX6bFOT6Prf52rl/PQz9fx8zv/TeWF6+utoK8Akbnj446\njI91MLrvnsANm86CzunFFtXfPu6fu7qKxZXAZjYZmAxQXFxsJSUlGdt3WVkZmdxfpsU5Po+t/hZN\nmMDKvA08svPRqEM5xOj80UytmBp1GAc5rKg9e1/4Izv7TEgrttJLS5sgqkPF/XNXV+l8NVkDJN7I\ns1e4Lh0N2da5rFX4/PM8P/QTUYeRNUqHdKfkjQ3eDNTE0kkAs4F+kvpKag2MAmakuf9ZwAWSukjq\nAlwQrnOu+Sovp9OCBfzTZ/9M25I+HWm53yh4f3XUoeSUlAnAzPYB4wgO3O8C081soaRJki4GkHSa\npNXAF4C7JS0Mty0Hvk+QRGYDk8J1zjVfTzxBeXExO9vFooU1O0j89opj2dvOZwltSml9Qs1sJjAz\nad3EhOezCZp3qtv2fuD+BsToXHYpKGDtyJGkf6LsAF49pRt98ruDzwzRZOI1PMG55uDzn2fLKadE\nHUVW6rb8fY5asz3qMHKGJwDnMmnxYti2LeoostYRi5YweubKqMPIGZ4AnMukK66Af/4z6iiy1tKz\nT+eMeRvpsGNf1KHkBE8AzmXKnDmwaRNccEHUkWStXZ06MndgF859fX3UoeQETwDOZcrdd8NXvgIt\n/N+qIWaefQSffnFd1GHkBP+kOpcJW7fCY4/BNddEHUnWmzOogPa79lOwZXfUoTR7PlDZuUx48kk4\n7zw4/PCoI8l6lS3E1bef5rODNgFPAM5lwpVXwsiRqeu5tFgLgRkyPBE0Im8Cci4TJOjUKeoompUb\npyzhnDl+u8jG5AnAuYa68UZ49tmoo2h25h/fmYufXxt1GM2aJwDnGmLLFnjgATjppKgjaXZeKO5O\nj/U7OW7F1qhDabY8ATjXEA88ABdeCJ/wqZ8zbX/LFvzpwl6MmrkqdWVXL54AnKuvXbvgF7+Ab387\n6kiarb+dcwSDF2+hx4c7og6lWfIE4Fx9PfggnHwynHpq1JE0W7vatmTCNwZR3ql11KE0Sz4M1Ln6\nOvVUOOOMqKNo9hYd66OrGktaZwCSRkhaLGmZpPHVlLeR9GhY/rqkPuH6PpJ2SpofPv6Q2fCdi9CQ\nIXDiiVFHkRMGLv2Ikc/53WQzLWUCkJQH3AV8GhgAjJY0IKnatcBmMzsW+CXwk4Sy5WY2OHxcn6G4\nnYvOvn0wYQLs9qkKmkp5p9Zc/ed/026nzxKaSemcAQwBlpnZCjPbA0wDki95HAlMCZ8/BpwnyS/f\nc83To4/Ciy9Ca2+XbirrPtGOuQO68Dk/C8iodBJATyBxHNbqcF21dcJ7CH8EdA3L+kp6U9ILks5q\nYLzORauyEm6/Hb73veDqX9dk7v98X77491V0+WhP1KE0G43dCbwOONLMNkkqAp6UNNDMDrqyQ9JY\nYCxAYWEhZWVlGQugoqIio/vLtDjH57Ed6vC//50jJN5s1Qpqef2KigpG549uusDqoCCvIDtjOxbe\nG9aJ22fspOyksiaNq0qc/yfqI50EsAbonbDcK1xXXZ3VkloCnYBNZmbAbgAzmytpOdAfmJO4sZlN\nBiYDFBcXW0lJSd3fSQ3KysrI5P4yLc7xeWxJNm+GUaPgr3+lpLi41qplZWVM3TS1iQKrm9H5o5la\nkZ2xzRixlzPnbWR8RJ/LOP9P1Ec6TUCzgX6S+kpqDYwCZiTVmQGMCZ9fBjxvZiape9iJjKSjgX7A\nisyE7lwT27EDbr0VUhz8XePZ3qEVs846Iuowmo2UZwBmtk/SOGAWkAfcb2YLJU0C5pjZDOA+4P8k\nLQPKCZIEwNnAJEl7gUrgejMrb4w34lyj69kTrveBbLHwpz9Bu3bw2c9GHUlWS6sPwMxmAjOT1k1M\neL4L+EI12z0OPN7AGJ2LVmUljB8fDP30KZ/joaAguP3m8OHQtm3U0WQtnwrCuVTuvRf++U/o2DHq\nSFyV886DoiL47nejjiSr+VQQztVm5Uq4+WZ45hm/2Xvc3H03DB4cnAV85jNRR5OV/BPtXE1274Yv\nfAH+93+DSd9cvBQUwEMPwbXXBvdlcHXmCcC5mtx6a9Dx+61vRR2Jq8nZZwdnZ507Rx1JVvImIOdq\n8vWvQ/v2fsVv3A0aFPzcvBm6dIk2lizjZwDOJVuzBvbvhyOO8FE/2WL37mB67qeeijqSrOIJwLlE\n770HZ57pN3nPNm3aBNcGfOUrQZOQS4snAOeqLF8O55wTtPlfeGHU0bi6Ki6GJ56Ayy+Hl16KOpqs\n4AnAOYDFi6GkJLjY64Yboo7G1deZZ8Ijj8Cll8KiRVFHE3veCezc7t3BOPJJk+Dqq6OOxjXU+efD\nX/4Cxx4bdSSx52cALneZBT/btAmu9PWDf/MxdGhww56NG4P7N+zzO4lVxxOAy02bN8OXvhS0GQMc\nfni08bjGIcELL8AFF8CHH0YdTex4AnC5xSwYKjh4cDDM06cQaN66doWnnw76BgYNgjvu8Hs5J/AE\n4HLHiy/C6acHt3OcPBl+/WufSTIX5OUF/TsvvQTPP++d/Am8E9g1bzt3Bt/627eH8nK48cZgfh+f\n2C33HH88/PWvwWcCYMkSmDkTrrwyOFPIQf5f4JqfnTuDi4GuuQZ69Pj4wqBLLgna/f3gn9vatfv4\n+Zw5cMwxcMUVMH06bNoUXVwRSOs/QdIISYslLZM0vpryNpIeDctfl9QnoeymcP1iSX51jcusykrY\nti14vm0bnHUWdO8OEycGbb4LF8LIkdHG6OKpf/9gNtEVK+BTn4I//hH69YOKiqD87bfh3Xeb9Qii\nlE1A4T197wLOB1YDsyXNMLPEqyyuBTab2bGSRgE/Ab4kaQDB7SEHAj2AZyX1N7P9mX4jrhkxgz17\ngn/ELVuCNtw+fYKyX/0K3n+fAW++GRzwFy+G//xP+N3vID8fbrsNhgwJnjuXjoKCoF/ghhuCg33L\n8LD4l7/AAw/AunVBYjjySI7u0CG4YBBg3jzYuzdoPjrssOAz165dVk0emE4fwBBgmZmtAJA0DRgJ\nJCaAkcCt4fPHgDslKVw/zcx2A/8O7xk8BHg1M+G7rHPRRbBhQ/CPtn9/8A90zjnw+98H5UcfHdyE\nJS8vaLfv3Dn4Bv+rXwXlmzdDz55szM/nExddBCec8PGEbRKce24078s1Dy0TDokTJgSPiorgi8aq\nVWx//fWPyx99NOhU3rQp+DJSURE0OS5fHpRffjm8/now8iimZ6GyqothaqogXQaMMLPrwuUrgaFm\nNi6hzjthndXh8nJgKEFSeM3MHgrX3wc8bWaPJb3GWGBsuHgcsLjhb+2AbsDGDO4v0+Icn8dWf3GO\nz2OrvzjHd5yZ1em+pbEYBWRmk4HJjbFvSXPMrLgx9p0JcY7PY6u/OMfnsdVfnOOTNKeu26TTCbwG\n6J2w3CtcV20dSS2BTsCmNLd1zjkXgXQSwGygn6S+kloTdOrOSKozAxgTPr8MeN6CtqUZwKhwlFBf\noB/wRmZCd8451xApm4DMbJ+kccAsIA+438wWSpoEzDGzGcB9wP+FnbzlBEmCsN50gg7jfcANEYwA\napSmpQyKc3weW/3FOT6Prf7iHF+dY0vZCeycc6558ksinXMuR3kCcM65HJVTCUDSNyWZpG5Rx1JF\n0s8k/UvS25L+LKlzDGKqdeqPKEnqLalU0iJJCyV9I+qYkknKk/SmpL9GHUsySZ0lPRZ+5t6V9Mmo\nY6oi6X/Cv+k7kqZKinSqVkn3S1ofXudUta5A0jOSloY/u8QotjofS3ImAUjqDVwArIw6liTPAIPM\n7CRgCXBTlMEkTP3xaWAAMDqc0iMu9gHfNLMBwOnADTGLD+AbwLtRB1GDXwN/N7PjgZOJSZySegJf\nB4rNbBDBgJNR0UbFg8CIpHXjgefMrB/wXLgchQc5NLY6H0tyJgEAvwS+DcSq19vM/mFmVbNNvUZw\nrUSUDkz9YWZ7gKqpP2LBzNaZ2bzw+TaCA1jPaKP6mKRewEXAvVHHkkxSJ+BsglF7mNkeM9sSbVQH\naQm0C68lag+sjTIYM3uRYFRjopHAlPD5FOCSJg0qVF1s9TmW5EQCkDQSWGNmb0UdSwrXAE9HHENP\nYFXC8mpidIBNFM46ewrweu01m9SvCL5oVEYdSDX6AhuAB8ImqnsldYg6KAAzWwP8nOAMfR3wkZn9\nI9qoqlVoZuvC5x8AhVEGU4u0jiXNJgFIejZsO0x+jAS+C0yMaWxVdSYQNG88HFWc2URSPvA48N9m\ntjXqeAAkfRZYb2Zzo46lBi2BU4Hfm9kpwHaia8I4SNiWPpIgSfUAOkj6crRR1S682DVWLQpQt2NJ\nLOYCygQzG17dekknEnyo3gomKKUXME/SEDP7IMrYqki6CvgscJ5Ff2FG7KfvkNSK4OD/sJk9EXU8\nCc4ALpb0GaAtcJikh8wsLgey1cBqM6s6Y3qMmCQAYDjwbzPbACDpCeBTwEORRnWoDyUdYWbrJB0B\nrI86oER1PZY0mzOAmpjZAjP7hJn1MbM+BP8EpzbVwT8VSSMImgwuNrMdUcdDelN/RCacZvw+4F0z\nuyPqeBKZ2U1m1iv8nI0imBIlLgd/ws/8KknHhavO4+Bp3aO0EjhdUvvwb3weMemgTpI47c0Y4KkI\nYzlIfY4lzT4BZIE7gY7AM5LmS/pDlMGEnUhVU3+8C0w3s4VRxpTkDOBK4Nzw9zU//Mbt0vM14GFJ\nbwODgR9GHA8A4VnJY8A8YAHBsSnSaRckTSW4d8lxklZLuhb4MXC+pKUEZy0/jlFsdT6W+FQQzjmX\no/wMwDnncpQnAOecy1GeAJxzLkd5AnDOuRzlCcA553KUJwDnnMtRngCccy5H/X956WNzThQD4QAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 30000, D:[array(0.6931748986244202, dtype=float32), array(0.5, dtype=float32)], G loss:0.1359509825706482\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFeWVx/Hvj2anWQVRFlkiKIgLdgNJiNooajtG0GgM\n6jgao2hGMslkGx2NRtTEJI46GU0iiQsTjWjUGGKIuARGTaKyujQKNLiwKfvSgNBNn/mjqvFy7eV2\nd3VX3b7n8zz36Vreqjp36TpVb731lswM55xzuadV3AE455yLhycA55zLUZ4AnHMuR3kCcM65HOUJ\nwDnncpQnAOecy1GeABwAkkzS4XHH0dwk/UXSJRGt6wRJS1PG35M0Pop1h+srkVQU1foy3KYkPSBp\ni6TXmnG7p0t6KsOyr0k6qqljaok8ASRQuOPYLaks5XV33HFVkTRJ0lJJ2yStlzRdUpeU+T0k/UHS\nTknvS7owbfkLw+k7JT0lqUcUy1YTp4XlyiRtkvSCpK+kljGzM8xsegbvuc4EaWYvmdkRda0rE5Ie\nlHRL2vqPMrO5Uay/Hr4AnAr0M7PR6TMlXSppX/gZb5e0WNIXI9jurcBtGZa9HZgawTZzjieA5DrL\nzPJTXlPiDijF34CxZtYVGAy0BlJ3VvcAe4HewEXAL6uO0MK/9wIXh/N3Ab+IaNnqHGtm+cARwIPA\n3ZJubNC7roWk1lGvMyEGAO+Z2c5ayvwj/Iy7AfcBj0nq3tANShoFdDWzVzJcZCYwTtIhDd1mzjIz\nfyXsBbwHjK9h3qUEO+C7gW3AO8ApKfP7EPxDbAZKgStS5uUB/wmsAHYAC4D+4TwDrgKWA1sJdsTK\nINZ84H+BWeF4J4Id+NCUMr8FbguHfwT8LmXeZ8LynRuzbA2xGXB42rTzgI+Bg8LxucDl4fDhwP+F\nn+tG4NFw+ovhunYCZcBXgCJgNfAfwIdhnEXA6rTv8VpgCbAFeABon/I9vlxdvMBkoDx8b2XAn9J/\nF0A74C5gbfi6C2gXzquK7TvAemAd8NVavsNqfzPA18LPal8Yx001/B5fThnvFL6Pwjp+N98P41oL\nXJ76XQE3AL9JKfv58Puo+q0eG36eR6aUeQ64JO7/3Wx7+RlAdhpDsBPvCdwIPJlSFTKD4J+/D8HO\n7keSTg7nfRu4APgnoAtwGcFRdJUvAqOAY4DzgdNrCkDSFyRtI0gk5xLsgACGAhVmtiyl+OtAVR3t\nUeE4AGa2gnCn38hlM/VHgjOWT1VnADcDzwLdgX7A/4TbOTGcf6wFZ2OPhuOHAD0IjpIn17C9iwg+\nx8+EcV5fV4BmNg14GPhpuL2zqil2HfBZ4DiCHeLotHUfAnQF+hLsyO+p5ai82t+Mmd1HcFDwjzCO\nWs+cwrOgywmSxfJayhUT/BbHEyS8orQiRwP7r6WY2d8JzvymS+oAPAT8wMzeSVnmbYLPwdWDJ4Dk\nekrS1pTXFSnz1gN3mVl5uDNaCpwpqT8wFvgPM/vYzBYDvwH+JVzucuB6M1tqgdfNbFPKem8zs61m\n9gEwh2DnUi0ze9mCKqB+wM8Ijk4hOCPYnlZ8G8ERftX8bTXMb8yyGTGzcoKjyequHZQT7Mz7hJ/f\ny3WsrhK40cz2mNnuGsrcbWarzGwzQb32BZnGWoeLgKlmtt7MNgA3EVSNVSkP55eb2SyCnfKnrk9k\n8JvJxGclbSU4E7oAOMfM0r+nVOcDD5hZiZntAn6YNr8bwYFFqh8SJLTXgDUEZ6ipdoTLuXrwBJBc\nZ5tZt5TXr1PmrTGz1F783ic4eusDbDazHWnz+obD/QnOHGryYcrwLoIdbq3MbA3wDMFRJAQ7mi5p\nxbrwyT90bfMbs2xGJLUBehFUd6T7PiDgtbDFzWV1rG6DmX1cR5lVKcNV31MU+oTrq2ndm8ysImW8\npu+zrt9MJl4Jf6M9zeyzZvZ8BrGnfi6r0uZvIS2ph4n7QWAE8F9pv3/C8lvrEbPDE0C26itJKeOH\n8UldcA9JndPmrQmHVxFURUStdcp6lwGtJQ1JmX8sUBIOl5Byqi5pMEF99rJGLpupiUAFwZHkAczs\nQzO7wsz6AFcCv6ij5U8mXen2Txmu+p4guJ7QsWpGNRcw61r3WoKzlerWXR91/WaawjqCM8cq/dPm\nv0FatZ6kvgTVnQ8A/yWpXdoyw0ipHnSZ8QSQnQ4G/k1SG0lfJvjxzzKzVcDfgR9Lai/pGIL634fC\n5X4D3CxpSNi++xhJB9V345IuknRYODyAoGrjBQALWos8CUyV1EnSWIKd7m/DxR8GzgrbzHciaL73\npJntaMyyGcTcQ9JFBFUHP0mr+qoq82VJVTumLQQ74cpw/COCFk/1dbWkfuE1muuAqusHrwNHSTpO\nUns+XQ1S1/YeAa6X1EtST4ILpw/VUr5aGfxmmsJjwFclDZPUEfhB2vxZwElVI+HBzoMELYy+RpBA\nbk6Z3x4oILgQ7Ooj7qvQ/vr0i6A+fTdBlUfV6w/hvEs5sBXQMuC0lGX7AU8TVHGsAK5KmZdHcKHw\nXYJqk3kE7bshrcUMwT/cLTXEdyvBRcOd4d9phK1qwvk9gKfC+R8AF6Ytf2E4fSfBRdkeUSxbTZyp\nLXc2E1zXSF/fXD5pBfRTgiPfsvCzm5xS7iqCHc9WgjrsIlJa/IRlDpjGga2AtgLTgY4p868juB6x\nCvhnDmwJMwRYHC73VMr6qloBtQd+Hsa0LhxuX10c6ctW8znV9pu5lLTWSmnL1jq/luWuJahyXAt8\nPXzv/VPmzwPGhMPfJEiYbcPxPsAG4IRw/MsEBwKx/+9m20vhB+iyhKRLCXZYX4g7FueiIGkY8BZB\nM9aKcNppwL+a2dkZLP8q8DUze6tpI215WurNK865BJN0DkFVT0fgJwT3Ouy/aG1mzxI0ya2TmY1p\nkiBzQEbXACQVK7j1v1TSNbWUOze8Zb4wHB+ooEuDxeHrV1EF7pxLLkn/qQO7Mql6/SUsciVBc+YV\nBDeafT22YHNYnVVAkvII6plPJajvnQdcYGZL0sp1Bv4MtAWmmNl8SQOBp81sRPShO+eca4xMzgBG\nA6VmttLM9hK0955YTbmbCU7l6moX7ZxzLgEyuQbQlwNv1FhN0BXBfpKOJ7iC/2dJ30tbfpCkRQR3\neF5vZi+lb0DSZMJb6Tt06FDQv396s+CGq6yspFWr5LZ2TXJ8HlvDJTk+j63hkhzfsmXLNppZr3ot\nlEFzrfM4sGOmiwlub68ab0XQlG5gOD6XsCMogpt0qjrdKiBIJF1q215BQYFFac6cOZGuL2pJjs9j\na7gkx+exNVyS4wPmWz2bgWaSytZw4J16/TjwLsHOBLdnz5X0HkEHVTMlFVrQR8qmMNEsILjgU5+O\nu5xzzjWRTBLAPGCIpEGS2gKTCLqOBcDMtlnQB8hAMxsIvAJMsOAicK/wInLVbftDgJWRvwvnnHP1\nVuc1ADOrkDQFmE1wJ+n9ZlYiaSrBKcfMWhY/keC2/nKCW+qvsqBXROecczHL6EYwC7qTnZU27YYa\nyhalDD8BPNGI+JxzzjWRZF7Ods451+Q8ATjnXI7yBOCccznKE4BzzuUoTwDOOZejPAE451yO8gTg\nnHM5yhOAc87lKE8AzjmXozwBOOdcjvIE4JxzOcoTgHPO5ShPAM45l6M8ATjnXI7yBOCcczkqowQg\nqVjSUkmlkq6ppdy5kkxSYcq0a8Pllko6PYqgnXPONV6dD4QJH+l4D3AqsBqYJ2mmmS1JK9cZ+Cbw\nasq04QSPkDwK6AM8L2mome2L7i0455xriEzOAEYDpWa20sz2AjOAidWUuxn4CfBxyrSJwIzw4fDv\nAqXh+pxzzsUskwTQF1iVMr46nLafpOOB/mb25/ou65xzLh4ZPRO4NpJaAXcAlzZiHZOByQC9e/dm\n7ty5jQ1rv7KyskjXF7Ukx+exNVyS4/PYGi7p8dWbmdX6Aj4HzE4Zvxa4NmW8K7AReC98fQysBQqr\nKTsb+Fxt2ysoKLAozZkzJ9L1RS3J8XlsDZfk+Dy2hktyfMB8q2N/nv7KpApoHjBE0iBJbQku6s5M\nSSDbzKynmQ00s4HAK8AEM5sflpskqZ2kQcAQ4LVG5CvnnHMRqbMKyMwqJE0hOHrPA+43sxJJUwky\nzsxali2R9BiwBKgArjZvAeScc4mQ0TUAM5sFzEqbdkMNZYvSxm8Fbm1gfM4555qI3wnsnHM5yhOA\nc87lKE8AzjmXozwBOOdcjvIE4JxzOcoTgHPO5ShPAM45l6M8ATjnXI7yBOCccznKE4BzzuUoTwDO\nOZejPAE451yO8gTgnHM5yhOAc87lKE8AzjmXozwBOOdcjsooAUgqlrRUUqmka6qZf5WkNyUtlvSy\npOHh9IGSdofTF0v6VdRvwDnnXMPU+UQwSXnAPcCpwGpgnqSZZrYkpdjvzOxXYfkJwB1AcThvhZkd\nF23YzjnnGiuTM4DRQKmZrTSzvcAMYGJqATPbnjLaCbDoQnTOOdcUZFb7vlrSeUCxmV0ejl8MjDGz\nKWnlrga+DbQFTjaz5ZIGAiXAMmA7cL2ZvVTNNiYDkwF69+5dMGPGjEa+rU+UlZWRn58f2fqiluT4\nPLaGS3J8HlvDJTm+cePGLTCzwnotZGa1voDzgN+kjF8M3F1L+QuB6eFwO+CgcLgAWAV0qW17BQUF\nFqU5c+ZEur6oJTk+j63hmiq+ogeL9r8aKsmfXZJjM0t2fMB8q2N/nv7KpApoDdA/ZbxfOK0mM4Cz\nw+Syx8w2hcMLgBXA0Iwyk3POuSaVSQKYBwyRNEhSW2ASMDO1gKQhKaNnAsvD6b3Ci8hIGgwMAVZG\nEbhzzrnGqbMVkJlVSJoCzAbygPvNrETSVIJTjpnAFEnjgXJgC3BJuPiJwFRJ5UAlcJWZbW6KN+Kc\nc65+6kwAAGY2C5iVNu2GlOFv1rDcE8ATjQnQOedc0/A7gZ1zLkd5AnDOuRzlCcA553KUJwDnnMtR\nngCccy5HeQJwzrkclVEzUOdcvMZNHxd3CK4F8jMA55zLUZ4AnMsFH3wAmzYBkF9aCl//OqxbF3NQ\nLm6eAJxr6V59FQoK4PXXASjv2hU6dYIxY2DRopiDc3HyBOBcS/bmmzBhAjz4IJx8MgB7evWC22+H\nO+6A006DJ5+MN0YXG78I7FxLVVoKxcXw3/8NZ5756fnnnQeDBsHZZ0O3bvsThMsdngCca4kqK+H8\n8+HGG2HSpJrLFRTAwoXQo0fzxeYSwxOAcy1Rq1bw7LPQs2fdZXv1Cv6uWweHHAJS08bmEsOvATjX\n0mzcGJwBZLLzr2IGEyfCU081XVwucTJKAJKKJS2VVCrpmmrmXyXpTUmLJb0saXjKvGvD5ZZKOj3K\n4J3LZeOmj9v/2s8MvvSl+u/IJfjxj+E734GPP442UJdYdVYBhY90vAc4FVgNzJM008yWpBT7nZn9\nKiw/AbgDKA4TwSTgKKAP8LykoWa2L+L34VyL06C7f597DtavD1r+1Ncpp8Bxx8Gdd8K119Z/eZd1\nMjkDGA2UmtlKM9tL8ND3iakFzGx7ymgnwMLhicCM8OHw7wKl4fqcc1Ezg+uvh6lToXUDL+/dfjv8\n13/BmjXRxuYSSWZWewHpPKDYzC4Pxy8GxpjZlLRyVwPfBtoCJ5vZckl3A6+Y2UNhmfuAv5jZ42nL\nTgYmA/Tu3btgxowZkbw5gLKyMvLz8yNbX9SSHJ/H1nBRxLds07KMyw49aCgHvfwygx54gPm//nVw\nEbiBsQ267z729OjB2nPOqVe8UciF77WpjBs3boGZFdZnmchaAZnZPcA9ki4ErueTB8Nnsuw0YBpA\nYWGhFRUVRRUWc+fOJcr1RS3J8XlsDRdFfDdNvynjsnPOnQO33gp33klRHe3564ztpJNAYmjGW49O\nLnyvSZJJAlgD9E8Z7xdOq8kM4JcNXNY511B//CN06ND49VQ1A92zB9q1a/z6XGJlcg1gHjBE0iBJ\nbQku6s5MLSBpSMromcDycHgmMElSO0mDgCHAa40P2zl3ADPo2DG6Nvzz5sEJJ0SzLpdYdSYAM6sA\npgCzgbeBx8ysRNLUsMUPwBRJJZIWE1wHuCRctgR4DFgCPANc7S2AnItWj617YNSoIAlE5fjjg9ZE\nCxZEt06XOBldAzCzWcCstGk3pAx/s5ZlbwVubWiAzrnajf/HR3BsUbR38OblweWXw7RpcO+90a3X\nJYrfCexcNjOj+OUP4ZKM21xk7rLL4LHHYMeO6NftEsETgHNZbOj7ZbTdWwlf+EL0K+/TB4qKIMJm\n2S5ZvDM457LY6S99yLNfOISv1tLuv1F+/ONoWha5RPIE4FwWWzysG+8M6sxXm2oDRx7ZVGt2CeAJ\nwLks9lJh0JVzar9Bcy6ZE+1G3ngjeLLYRRdFu14XO78G4FyWOnHeBjrsrmj6De3bFzxYJspmpi4R\nPAE4l4W6bd/L9+5/B2uOZ7ccd1yQBN54oxk25pqTJwDnstDnF21k/ogefNy+GWpxpeAZA/7w+BbH\nrwE4lyCZPgNg7MJNzBlzcBNHk+JLX4KrroKbMu+gziWfnwE4l2Xa79nHsUu38sqxzfgg9899LugY\nbtOm5tuma3J+BuBclhleuo13BnemrFOb5ttoq1Ywf37zbc81C08AzmWZhUf14M0hXePZuFm0fQ65\nWHkVkHNZqLxtXvNv1CxoEbRqVfNv2zUJTwDOZZHhpdu48tEV8WxcCrqJfuqpeLbvIucJwLkscuL8\nDexpG+O/rTcHbVEy+iVJKpa0VFKppGuqmf9tSUskvSHpBUkDUubtk7Q4fM1MX9Y5lyEzxi7axN9G\n9owvhlNPhUWLYMOG+GJwkakzAUjKA+4BzgCGAxdIGp5WbBFQaGbHAI8DP02Zt9vMjgtfE3DONciA\ntbtoU17J8gH58QXRvj2cfDLMnh1fDC4ymZwBjAZKzWylme0leOj7xNQCZjbHzHaFo68QPPzdOReh\nsYs28veRB8XfCucb34BBg+KNwUVCVkcHT5LOA4rN7PJw/GJgjJlNqaH83cCHZnZLOF4BLAYqgNvM\n7FNXkCRNBiYD9O7du2BGhA+gKCsrIz8/xiOmOiQ5Po+t4Roa37JNy2qcd9Sf/8rGzxzGR0ceXus6\nhh40tEliaw5Jjg2SHd+4ceMWmFlhfZaJ9D4ASf8MFAInpUweYGZrJA0G/irpTTM7oBmDmU0DpgEU\nFhZaUVFRZDHNnTuXKNcXtSTH57E1XEPju2l6LV0tnATwEZTNq3Udc86tvTvoSD67FSuCB8X06dO4\n9aRpqd9rUmVSBbQG6J8y3i+cdgBJ44HrgAlmtqdqupmtCf+uBOYCIxsRr3M5KX9nOa0qE9Qd8y9+\nAffdF3cUrpEySQDzgCGSBklqC0wCDmjNI2kkcC/Bzn99yvTuktqFwz2BscCSqIJ3Lldc/btSzpy7\nNu4wPlFcDM88E3cUrpHqTABmVgFMAWYDbwOPmVmJpKmSqlr1/AzIB36f1txzGDBf0uvAHIJrAJ4A\nnKsPMwpLtrDgqO5xR/KJE04InhK2eXPckbhGyOgagJnNAmalTbshZXh8Dcv9HTi6MQE6l+sGr97J\nnjatWNu7Y9yhfKJ9ezjxRHj+eTj//LijcQ3kdwI7l3Cj3tzM/KObsevnTBUXw1/+EncUrhG8N1Dn\nEq6wZAtPndI37jA+7aKL4Jxz4o7CNYInAOcS7snxfVl8ZLe4w/i07t2Dl8taXgXkXML9Y2RPdndI\n6LHayy9753BZzBOAczEYN33c/ldtji/ZTM8te2otE6vt2+HnP487CtdAngCcS7B/e6iUHtv2xh1G\nzYqKgkdF7tgRdySuARJ6XumcO3jTx3QpK2f5YfXreyb1rGLOJbV3C9FoHTvC6NHw4otw5plNuy0X\nOT8DcC6hRr25mQVHdcdaJfwZvOPHB/cDuKzjCcC5hBr11mbmj0hg+/9048fD8uVxR+EawKuAnItZ\ndReCVWkcu3Qb/3PRkBgiqqdRo+Dpp+OOwjWAJwDnEshaiYtvG01ZpzZxh1K3uB9Q4xrMq4CcS6go\ndv6ZNDWNxOzZ8K1vNf12XKQ8ATiXQJc/vpI+63fHHUbmBg+Gxx+HOp4w6JLFE4BzCdNm7z7OeX4N\n2/KzoPqnyuGHQ14eLF0adySuHjwBOJcwI0q3827fTuzsmEWX6KSgNdBzz8UdiauHjBKApGJJSyWV\nSrqmmvnflrRE0huSXpA0IGXeJZKWh69LogzeuZaoYMkWFgzPwk7W/H6ArFNnApCUB9wDnAEMBy6Q\nNDyt2CKg0MyOAR4Hfhou2wO4ERgDjAZulJSFv2znms/xJVtYmKSnf2XqlFNgSBY0W3X7ZXIGMBoo\nNbOVZrYXmAFMTC1gZnPMbFc4+grBg+MBTgeeM7PNZrYFeA4ojiZ051qevIpKKlqLJZ/pEnco9Xfw\nwXD77XFH4epBVsdVe0nnAcVmdnk4fjEwxsym1FD+buBDM7tF0neB9mZ2SzjvB8BuM7s9bZnJwGSA\n3r17F8yYMaORb+sTZWVl5OfXry+V5pTk+Dy2hqsrvmWbljVjNDD0oKH7h5v0s6uspM327ZR3a9jz\nC7L9e43TuHHjFphZYX2WifQqk6R/BgqBk+qznJlNA6YBFBYWWlFRUWQxzZ07lyjXF7Ukx+exNVxN\n8dXZJt+sSW6smnPuJ53CNeln9+yzcMcdQedwDZCt32u2yqQKaA3QP2W8XzjtAJLGA9cBE8xsT32W\ndc4F7v3hAg7Npvb/6caOhYULoaws7khcBjJJAPOAIZIGSWoLTAJmphaQNBK4l2Dnvz5l1mzgNEnd\nw4u/p4XTnHNpem36mIM37+HDnu3jDqXhOnWCwkJ46aW4I3EZqDMBmFkFMIVgx/028JiZlUiaKmlC\nWOxnQD7we0mLJc0Ml90M3EyQROYBU8Npzrk0xy/ZwsJh3ZLf/XNdTjnFm4NmiYyuAZjZLGBW2rQb\nUobH17Ls/cD9DQ3QuVxRsGQLC7Ox/X+68ePh61+POwqXAb8T2LkkMKOgZAvzs7H9f7pRo+Daa71f\noCyQRfeaO9dytdtbyR9P7stHvTrEHUrjtW4NX/lK3FG4DPgZgHMJsKddHv979sC4w4jO+vXeL1AW\n8ATgXAIctnYnrfZVxh1GdDZuhCuu8GqghPME4FzMWldUcs/NC8nfvS/uUKIzbBjs3QsrV8YdiauF\nJwDnYjZsxXbW9O7A9mzq/78uUtAc9IUX4o7E1cITgHMxy9run+vi3UMnnicA52JWULKFBU3c/LPq\n2cDN8nzgKqecAnPmQGULurbRwngCcC5GnXZV8JlVZbw1pGvcoUSvXz8oKYFWvptJKv9mnIvR3jat\n+P53j2Vv27y4Q2kaBx8cdwSuFp4AnItReZtWLfPov8p778ENN9RZzMXDE4BzMTr7+TW02xNf888m\nvzbQowfceSfs2lV3WdfsPAE4F5OeW/Zw6R/epbxNC/437NIFRo5s8ANiXNNqwb8855KtoGQLi4Z1\np7KZu39etmlZ87YIOv10mO2PAUkiTwDOxWTUm5uZd3QLbP+f7rTTgkdFusTJKAFIKpa0VFKppGuq\nmX+ipIWSKsKHyKfO2xc+JGb/g2Kcy3WtKo3Cks3MG9Ej7lD2a7LrAccfD926+WMiE6jO7qAl5QH3\nAKcCq4F5kmaa2ZKUYh8AlwLfrWYVu83suAhida7FOGzdLjZ2b8eGg7L48Y+ZysuDv/0t7ihcNTJ5\nHsBooNTMVgJImgFMBPYnADN7L5znt/w5l4H3+nbiyhsL4g6jeZkFfQS5xJDV0V1rWKVTbGaXh+MX\nA2PMbEo1ZR8Enjazx1OmVQCLgQrgNjN7qprlJgOTAXr37l0wY8aMBr+hdGVlZeTn50e2vqglOT6P\nreFqim/ZpmUxRHOgHnk92Lyv9kdzDz1oaKTbbF1WRsGVV/Lq//5vcEZQg2z9XpNg3LhxC8yssD7L\nNMcTwQaY2RpJg4G/SnrTzFakFjCzacA0gMLCQisqKops43PnziXK9UUtyfF5bA1XU3w3Tb+J/J3l\nXPPrd7j+myNiOSK+IP8CHil7pNYyc86dE/2Gu3WjqEuX4JGRNcjW7zVbZXIReA3QP2W8XzgtI2a2\nJvy7EpgLjKxHfM61OMcv2ULrfTlYHeKtgRInkwQwDxgiaZCktsAkIKPWPJK6S2oXDvcExpJy7cC5\nXDTqzS3MOzo5rX+ajd8PkDh1JgAzqwCmALOBt4HHzKxE0lRJEwAkjZK0GvgycK+kknDxYcB8Sa8D\ncwiuAXgCcLnLjNFvbea1ETnQ/j/diSfCwoWwfXvckbhQRtcAzGwWMCtt2g0pw/MIqobSl/s7cHQj\nY3SuxRiwdheVglWHdow7lObXsSPcckvQL1CXLnFH42iei8DOuVDnXRX88eS+WVP/n3pT2JxLIrgw\n/K1vNX4dLjKeAJxrRm8N6dqyu3+ui1lQDTRypD8oJgH8G3CuuZSX02ZvfF0/J4IEF14IixbFHYnD\nE4BzzeeZZ7jl52/FHUX8zjoLnn467igcngCcaz4zZ/JaLjb/TPfFL3oCSAhPAM41h8pK+NOf+MfI\nnnFHEr+xY6G0FNatizuSnOcJwLkmNm76OP71xkLebb2DtQd3iDuc+LVpE9wUNmtW3WVdk/JWQM41\ng7GLN/F3P/r/xE9+Al1zuDVUQngCcK4Z/O24g9jWuU3cYSTHgAFxR+DwBOBcZFJvmrpxwI0HzHv7\ncD/a/ZTHHgsSwZgxcUeSszwBONcElm1axk3TbwJgxLKtbOvcNuu7f4j8ruB334UXX/QEECO/COxc\nE/vqH96j/4e74g4jeaqag9bxUKrm0mTPRE4wTwDONaH8neUc8e4OFgzPwd4/6zJ8eNAdxOuvxx1J\nzvIqIOea0Jg3NrP4yG7saVfzYxCTqFmOgiU47zz4/e/huOOafns1yKUj/nSeAJxrQp9ftJG/jzwo\n7jCS6/zz4ac/jTuKT4n8ekdCZVQFJKlY0lJJpZKuqWb+iZIWSqoIHyKfOu8SScvD1yVRBe5c0rXa\nV8kxy7bxj2NzJwHUuw69sDBoDdQMcrGOvy51ngFIygPuAU4FVgPzJM1Me7LXB8ClwHfTlu0B3AgU\nAgYsCJeEI1meAAAQTElEQVTdEk34ziVXZV4rLvrpGPa2za7qn0xEfoRcWendQ8cgk098NFBqZivN\nbC8wA5iYWsDM3jOzN4DKtGVPB54zs83hTv85oDiCuJ3LCi1x5x+5FSuC5wMkpDVQLpHV8aGHVTrF\nZnZ5OH4xMMbMplRT9kHgaTN7PBz/LtDezG4Jx38A7Daz29OWmwxMBujdu3fBjBkzGvu+9isrKyM/\nPz+y9UUtyfF5bPWzbNOy/cMH7+3AqB/dyqwffAvLS9aRbY+8Hmzetzmy9Q09aOj+4arPIHVancwY\nc+GFvHXzzXx0yCFN9r2mfj/VxVyT1LJJ/N1VGTdu3AIzK6zPMom4CGxm04BpAIWFhVZUVBTZuufO\nnUuU64takuPz2GpWVQWSWv1RdeMXwA8WDuaDvA38bvejzR5bXS7Iv4BHyh6JbH1zzv30Z5A6LSMX\nX8yo995j7uGH7/9ea6pmamj1U+r3U13MNUktG/fvLmqZJIA1QP+U8X7htEysAYrSlp2b4bLOZa3P\nvDyPh8YcHHcYzaKhF1UP2JGf/7PgSWGnnBJVWJ/ahvu0TBLAPGCIpEEEO/RJwIUZrn828CNJVXfB\nnAZcW+8oncsincvKOfSd5fztinqdjee0cW99l99tWUWnFStgXOMSSiZnBZ4YAnUmADOrkDSFYGee\nB9xvZiWSpgLzzWympFHAH4DuwFmSbjKzo8xss6SbCZIIwFQzi67y0bkEOmHBBlYfM5zdHRJRw5od\nJP7nosM5eu9HfL+anXNNO2zfkTdORr9QM5sFzEqbdkPK8DyC6p3qlr0fuL8RMTqXCJnubHZ0akNJ\ncRGwsEnjyUa1fYb/GNmTgfm9oKzptuEO5IcozjVCdTublwp70S//CCjL3QTQ0Au1PVe8z4CKnbzf\nt1NThOXSeAJwLkL91+1iY7e2kMyWgrGozxH5oUuWcUHpB9x2xbAmjMhVSVYDZeey3HX3LmHE8m1x\nh5G1lp/4WcYu3EinXRVxh5ITPAE4F5Gh726nS1kF80f0iDuUrPVx184sOKo7J7+6Pu5QcoJXATlX\ni/pUX5w1Zx1/PulQrJWaMKKWb9aJh3LpH97jT+P6xB1Ki+cJwLk0DWlF0nF3BSfN38AlPxrVBBHl\nlvkjevCvj6ygx9Y9bO7WLu5wWjRPAM7R+KaDX1i4kYXDu7HFd1iNVtlKfPXWUX4m1Qw8ATgXgWc/\n35u/jewZdxgthrUSmCHDE0ET8ovAzkVBYmdHP56K0renL+Ok+RviDqNF8wTgcloUT4j610dKOb7E\neziJ2uIjuzHhr2vjDqNF80MWl3Oi7Cqg085yil/6kN+deVhk63SB/yvsxeTHVnLEyu0sHdwl7nBa\nJD8DcK4Rznj5Q+aN6M7WLm3jDqXF2de6Fb8/vR+TZq2KO5QWyxOAcw3UZu8+zn9mFTP+yY/+m8qf\nTzqU45Zupc9Hu+IOpUXyBOBcAxW//CEr+uezfGDnuENpsT5u35rrvjmCzV39DKsp+DUA5xpo+cDO\nvDWka9xhtHhLDvfPuKlkdAYgqVjSUkmlkq6pZn47SY+G81+VNDCcPlDSbkmLw9evog3fufi8M7gL\n7/b3bj+bw1HLtzHxhUyfROsyVWcCkJQH3AOcAQwHLpA0PK3Y14AtZnY4cCfwk5R5K8zsuPB1VURx\nOxebVvsq+drjK2lTXhl3KDljc9e2fPUP79Jht/cSGqVMzgBGA6VmttLM9gIzgIlpZSYC08Phx4FT\nJPnte65FOvnVDRyzbBvlrf0n3lzWHdyBBcO7c46fBUQqkwTQF0hth7U6nFZtGTOrALYBB4XzBkla\nJOn/JJ3QyHidi5UqjYuefp/fThgAfozTrO7/0iDOf2YV3bftjTuUFkNmVnsB6Tyg2MwuD8cvBsaY\n2ZSUMm+FZVaH4yuAMcAOIN/MNkkqAJ4CjjKz7WnbmAxMBujdu3fBjBkzonp/lJWVkZ+f3HraJMfX\nUmNbtmlZg7c7dM7fGfbci/zx1v+oNQH0yOvB5n3JvDs4m2MbM/1x2u7azUtfv7jZYhp60ND9w0n+\nnxg3btwCMyuszzKZtAJaA/RPGe8XTquuzGpJrYGuwCYLssseADNbECaGocD81IXNbBowDaCwsNCK\niorq8x5qNXfuXKJcX9SSHF9Lje2m6Tc1aLn8neVM/+1rXPvvR7NsZ+0HKRfkX8AjZY80aDtNLZtj\nm1lczhcWbmR2M8Y/59xPnmmc5P+JhsikCmgeMETSIEltgUnAzLQyM4FLwuHzgL+amUnqFV5ERtJg\nYAiwMprQnWte7fdW8uDZA1k2yLsliMvOTm2YfcKhcYfRYtR5BmBmFZKmALOBPOB+MyuRNBWYb2Yz\ngfuA30oqBTYTJAmAE4GpksqBSuAqM0vmuadzddjYvR1/Ojn98peLw0mvrWdP21a8cpx3wd0YGd0I\nZmazgFlp025IGf4Y+HI1yz0BPNHIGJ2LlSqNyb9fyUNnDfAunxNiR34bvvPAUhYM705527y4w8la\n3hWEc3U488V1jFi+jV3tfUeTFAuHd2fZgM5c8cS7cYeS1TwBOFeLgzd9zGVPvMtd/zLUn0yVMHdc\nOpQT521gzOub4g4la3kCcK4Gbcor+eE9JTx6Rn9WHJbMpn+5bEd+G3505TC+d/9SOu0sjzucrOQJ\nwLkaXPLUe2zo3o5Hz+hfd2EXizeO6MZ3v3cMOzu1iTuUrORXtJyrwZOn9mVP2zy/4zfh3usXnJ3l\n7yynzBNBvfgZgHNpem7ZQ6tKY3O3dt7qJ0u0Ka9k2o0LGLtwY9yhZBVPAM6l6L1hNz+/dREFJVvi\nDsXVQ3mbVvzw6uF854GlFLzltxplyhOAc6E+63dz122Leay4P/OO7hF3OK6elg3qwg3fOIrr732b\no5dujTucrOAJwDmg/7pd3HnbYh4+awBPjfe7fbPVW0O7ccuVw7jp7hIGrNkZdziJ5xWcLue1Ka/k\nx3e8wQPnDOQZ72cm6y0Y0YPrvnU0a3p3iDuUxPMzAJe7wq7Qy9u04hvXjfSdfwvy9me6UNG6FV12\n7OWime/Tap8/va06ngBcTsrfWc6Nv1jCCfM3ALClW7uYI3JNQuLYpVv52e1v+INkquEJwOUWM8Yu\n3Mivb5jPpm5teeUYv9jbkm3Pb8M13zmGt4Z05f7r5/HlZ1b5s5xT+DUAlztefBG+9z2+uvZd7rj0\nCG/pkyMqW4kHvjSI5z97MF9/dAUD1u7k9suOjDusRPAE4Fq23buDuv6OHWHzZvj2t7li1y+9Y7cc\ntKpPJ/7z34+h7d59APT7cBdjXt/Ec2MPYXt+bt5B7FVAruXZvRueew4uuwz69AmGAc4+G77yFd/5\n57i9Kc8POOK9HTz8vVe47ldLKHptPV3KcqtTuYwSgKRiSUsllUq6ppr57SQ9Gs5/VdLAlHnXhtOX\nSjo9utCdAyorYceOYHjHDjjhBOjVC264AUaMgJISmDgx3hhdIq0+pCM/unI4F/7ss5Qc3pXT/vYh\nv/2PV2n/cQUAg1eVcdjanVBREXOkTafOKqDwmb73AKcCq4F5kmaa2ZKUYl8DtpjZ4ZImAT8BviJp\nOMHjIY8C+gDPSxpqZvuifiOuBTGDvXuhrAy2boW8PBg4MJh3113w/vsMX7Qo2OEvXQr/8i/wi19A\nfj7cdBOMHh0MO5eBHflteGp8X54a35dW+yqpzAuOiz+3aBNnvLwObukKQ4bAYYcxuFMnqHoo/MKF\nUF4OBx0EXboEv7kOHbKq88BMrgGMBkrNbCWApBnARCA1AUwEfhgOPw7cLUnh9Blmtgd4N3xm8Gjg\nH9GE77LOmWfChg3BUdW+fcE/0EknwS9/GcwfPBg++CDY6XfsCN26BUfwd90VzN+yBfr2ZWN+Pgef\neSYMGwZduwbzJDj55Hjel2sRqnb+AA9PGMDDEwYw59w/BQcaq1ax89VXPyn86KPw17/Cpk3BwUhZ\nWVDluGJFMP/CC+HVV+GOOxJ7FioLb4apsYB0HlBsZpeH4xcDY8xsSkqZt8Iyq8PxFcAYgqTwipk9\nFE6/D/iLmT2eto3JwORw9AhgaePf2n49gSR3EZjk+Dy2hktyfB5bwyU5viPMrHN9FkhEKyAzmwZM\na4p1S5pvZoVNse4oJDk+j63hkhyfx9ZwSY5P0vz6LpPJReA1QOojkfqF06otI6k10BXYlOGyzjnn\nYpBJApgHDJE0SFJbgou6M9PKzAQuCYfPA/5qQd3STGBS2EpoEDAEeC2a0J1zzjVGnVVAZlYhaQow\nG8gD7jezEklTgflmNhO4D/hteJF3M0GSICz3GMEF4wrg6hhaADVJ1VKEkhyfx9ZwSY7PY2u4JMdX\n79jqvAjsnHOuZfI7gZ1zLkd5AnDOuRyVUwlA0nckmaSeccdSRdLPJL0j6Q1Jf5DULQEx1dr1R5wk\n9Zc0R9ISSSWSvhl3TOkk5UlaJOnpuGNJJ6mbpMfD39zbkj4Xd0xVJP17+J2+JekRSe1jjud+SevD\n+5yqpvWQ9Jyk5eHf7gmKrd77kpxJAJL6A6cBH8QdS5rngBFmdgywDLg2zmBSuv44AxgOXBB26ZEU\nFcB3zGw48Fng6oTFB/BN4O24g6jBfwPPmNmRwLEkJE5JfYF/AwrNbARBg5NJ8UbFg0Bx2rRrgBfM\nbAjwQjgehwf5dGz13pfkTAIA7gS+DyTqqreZPWtmVb1NvUJwr0Sc9nf9YWZ7gaquPxLBzNaZ2cJw\neAfBDiwxT3GX1A84E/hN3LGkk9QVOJGg1R5mttfMtsYb1QFaAx3Ce4k6AmvjDMbMXiRo1ZhqIjA9\nHJ4OnN2sQYWqi60h+5KcSACSJgJrzOz1uGOpw2XAX2KOoS+wKmV8NQnawaYKe50dCbxae8lmdRfB\ngUYSHzs1CNgAPBBWUf1GUqe4gwIwszXA7QRn6OuAbWb2bLxRVau3ma0Lhz8EescZTC0y2pe0mAQg\n6fmw7jD9NRH4T+CGhMZWVeY6guqNh+OKM5tIygeeAL5lZtvjjgdA0heB9Wa2IO5YatAaOB74pZmN\nBHYSXxXGAcK69IkESaoP0EnSP8cbVe3Cm10TVaMA9duXJKIvoCiY2fjqpks6muBH9XrQQSn9gIWS\nRpvZh3HGVkXSpcAXgVMs/hszEt99h6Q2BDv/h83sybjjSTEWmCDpn4D2QBdJD5lZUnZkq4HVZlZ1\nxvQ4CUkAwHjgXTPbACDpSeDzwEOxRvVpH0k61MzWSToUWB93QKnquy9pMWcANTGzN83sYDMbaGYD\nCf4Jjm+unX9dJBUTVBlMMLNdccdDZl1/xCbsZvw+4G0zuyPueFKZ2bVm1i/8nU0i6BIlKTt/wt/8\nKklHhJNO4cBu3eP0AfBZSR3D7/gUEnKBOk1qtzeXAH+MMZYDNGRf0uITQBa4G+gMPCdpsaRfxRlM\neBGpquuPt4HHzKwkzpjSjAUuBk4OP6/F4RG3y8w3gIclvQEcB/wo5ngACM9KHgcWAm8S7Jti7XZB\n0iMEzy45QtJqSV8DbgNOlbSc4KzltgTFVu99iXcF4ZxzOcrPAJxzLkd5AnDOuRzlCcA553KUJwDn\nnMtRngCccy5HeQJwzrkc5QnAOedy1P8Dhs9tZ3dWzL0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 35000, D:[array(0.6922645568847656, dtype=float32), array(0.4950000047683716, dtype=float32)], G loss:0.12878786027431488\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFOW5/vHvzSDrsI0iyhJBBSMaRR3BE7dBUccYQeMS\n0BiMGqI/OdkXPSYYiCaaGLMcMZETF6KJaNQoGhTFMHFJVBZRA8jqAogB2UdZZuD5/VE12LQz0z09\nNVPV08/nuvqiq+qt6runm3q6qt6qkpnhnHOu8LSKO4Bzzrl4eAFwzrkC5QXAOecKlBcA55wrUF4A\nnHOuQHkBcM65AuUFwAEgySQdHHeO5ibpSUmjI1rWiZIWpQy/LWlYFMsOlzdfUllUy8vyNSXpbkkb\nJL3SjK97hqRHs2z7iqTDmjpTS+QFIIHCFcdWSZUpj9vizlVD0khJiyRtkrRG0mRJnVOmV0jalpJ9\nUdr8F0l6R9KHkh6VVJIyrUTSX8Np70i6KNt5a8lpYbtKSeskPSvpi6ltzOxMM5ucxXvOWCDN7Hkz\nOyTTsrIh6R5JN6Qt/zAzq4hi+Q1wAnAa0NvMBqdPlHSppJ3h33izpHmSPh/B694I3JRl21uACRG8\nZsHxApBcZ5tZccpjbNyBUrwIHG9mXYADgdbADWltxqZk371SDH+p3QFcAvQAPgJuT5lvIrAjnHYx\n8LuaX3dZzFubI82sGDgEuAe4TdL1DX7HGUhqHfUyE+IA4G0z+7CeNv8K/8ZdgTuBByV1y/UFJR0L\ndDGzl7KcZSowVNJ+ub5mwTIzfyTsAbwNDKtj2qUEK+DbgE3Am8CpKdN7EvyHWA8sBb6aMq0I+B9g\nGbAFmAP0CacZcCWwBNhIsCJWFlmLgT8C01LGVQBX1NH+p8CfU4YPIljhdwI6hs8HpEy/F7gp07x1\nvJYBB6eNOx/YBuydnhU4GPhH+Hf9AHggHP9cuKwPgUrgi0AZsBL4AfB+mLMMWJn2OV4LLAA2AHcD\n7VI+xxdqywuMAarC91YJPJ7+vQDaAr8G3gsfvwbahtNqsn0HWAOsBr5Sz2dY63cGuDz8W+0Mc4yv\n4/v4Qspwx/B9lGb43nw/zPUecEXqZwWMA/6Q0vaz4edR8109Mvx7fjqlzTPA6Lj/7+bbw7cA8tMQ\ngpX4PsD1wCMpu0KmEPzn70mwsvuppFPCad8GRgGfAzoDlxH8iq7xeeBY4AjgQuCMugJIOkHSJoJC\nch7BCijVzyR9IOnFtP3WhwGv1QyY2TLClX74qDazxSntXwvnyTRvth4j2GL5xO4M4CfA00A3oDfw\nv+HrnBROP9KCLZoHwuH9gBKCX8lj6ni9iwn+jgeFOX+YKaCZTQL+BPw8fL2za2l2HXAcMIhghTg4\nbdn7AV2AXgQr8on1/Cqv9TtjZncS/Cj4V5ij3i2ncCvoCoJisaSeduUE38VhBAWvLK3JZ4Dduw3N\n7J8EW36TJbUH7gN+ZGZvpsyzkODv4BrAC0ByPSppY8rjqynT1gC/NrOqcGW0CDhLUh/geOAHZrbN\nzOYBfwC+HM53BfBDM1tkgdfMbF3Kcm8ys41m9i4wk2DlUisze8GCXUC9gV8Q/Dqt8QOCXUO9gEnA\n45IOCqcVE/zCTrWJYAugGNhcx7RM82bFzKoIfk3WduygimBl3jP8+72QYXG7gOvNbLuZba2jzW1m\ntsLM1hPs1x6VbdYMLgYmmNkaM1sLjCfYNVajKpxeZWbTCFbKnzg+kcV3JhvHSdpIsCU0CjjXzNI/\np1QXAneb2Xwz+wj4cdr0rgQ/LFL9mKCgvQKsIthCTbUlnM81gBeA5DrHzLqmPP4vZdoqM0u9it87\nBL/eegLrzWxL2rRe4fM+BFsOdXk/5flHBCvcepnZKuApgl+RNeNeNrMt4YpxMsEuq8+FkysJtj5S\ndSb4D1zftEzzZkXSXkB3gt0d6b4PCHgl7HFzWYbFrTWzbRnarEh5XvM5RaFnuLy6lr3OzKpThuv6\nPDN9Z7LxUvgd3cfMjjOzGVlkT/27rEibvoG0oh4W7nuAw4Ffpn3/CdtvbEBmhxeAfNVLklKGP8XH\n+4JLJHVKm7YqfL6CYFdE1FpnWK4RrFgB5pOyqS7pQIL92YvDR2tJ/VPmPTKcJ9O82RoBVBP8ktwz\npNn7ZvZVM+sJfA24PUPPn2wupdsn5XnN5wTB8YQONRNqOYCZadnvEWyt1Lbshsj0nWkKqwm2HGv0\nSZv+Omm79ST1ItjdeTfwS0lt0+Y5lJTdgy47XgDy077A1yXtJekCgi//NDNbAfyTYP97O0lHEOz/\nvS+c7w/ATyT1D/t3HyFp74a+uKSLJX0qfH4Awa6NZ8PhrmEf7naSWku6GDiJYCsBgn3bZyvoM9+R\noPveI+EWw4fAI8AESR0lHU+wwr4307xZZC4Js0wEbk7b9VXT5gJJNSumDQQr4V3h8H8Idms11NWS\neofHaK4Dao4fvAYcJmmQpHZ8cjdIpte7H/ihpO6S9iE4cHpfPe1rlcV3pik8CHxF0qGSOgA/Sps+\nDTi5ZiD8sXMPQQ+jywkKyE9SprcDjiE4EOwaIu6j0P745INgf/pWgl0eNY+/htMuZc9eQIuB01Pm\n7Q08QbCLYxlwZcq0IoIDhW8R7DaZRdC/G9J6zBD8h7uhjnw3Ehw0/DD8dxIf96rpHi53C8Em+UvA\naWnzXwS8G87/GFCSMq0EeDSc9i5wUbbz1pIztefOeoLjGunLq+DjXkA/J/jlWxn+7caktLuSYMWz\nkWAfdhkpPX7CNnuMY89eQBuByUCHlOnXERyPWAF8iT17wvQH5oXzPZqyvJpeQO2A34aZVofP29WW\nI33eWv5O9X1nLiWtt1LavPVOr2e+awl2Ob4HXBW+9z4p02cBQ8Ln3yAomG3C4Z7AWuDEcPgCgh8C\nsf/fzbeHwj+gyxOSLiVYYZ0QdxbnoiDpUODfBN1Yq8NxpwP/z8zOyWL+l4HLzezfTZu05WmpJ684\n5xJM0rkEu3o6ADcTnOuw+6C1mT1N0CU3IzMb0iQhC0BWxwAklSs49X+ppGvqaXdeeMp8aTjcV8El\nDeaFj99HFdw5l1yS/kd7Xsqk5vFk2ORrBN2ZlxGcaHZVbGELWMZdQJKKCPYzn0awv3cWMMrMFqS1\n6wT8DWhDcBmA2ZL6Ak+Y2eHRR3fOOdcY2WwBDAaWmtlyM9tB0N97RC3tfkKwKZepX7RzzrkEyOYY\nQC/2PFFjJcGlCHaTdDTBEfy/Sfpe2vz9JL1KcIbnD83s+fQXkDSG8FT69u3bH9OnT3q34Nzt2rWL\nVq2S29s1yfk8W+7iyretes/fX+1at/tEmyT/7ZKcDZKdb/HixR+YWfeGzNPog8CSWgG3EnQHS7ca\n+JSZrZN0DMHlDQ4zsz1O97fg2ieTAEpLS2327NmNjbVbRUUFZWVlkS0vaknO59lyF1e+oZOH7jE8\nc/TMT7RJ8t8uydkg2fkkvZO51Z6yKWWr2PNMvd7seZZgJ4LTsyskvU1wgaqpkkotuBTAOgAzm0Nw\nwKchF+5yzjnXRLIpALOA/pL6SWoDjCS4dCwAZrbJgmuA9DWzvgQn/gwPDwJ3Dw8i15y23x9YHvm7\ncM4512AZdwGZWbWkscB0gjNJ7zKz+ZImALPNbGo9s59EcFp/FcEp9VdacFVE55xzMcvqGIAFl5Od\nljZuXB1ty1KePww83Ih8zjnnmkgyD2c755xrcn4pCOdagPTeP85lw7cAnHOuQHkBcM65AuUFwDnn\nCpQXAOecK1BeAJxzrkB5AXDOuQLlBcA55wqUFwDnnCtQXgCcc65AeQFwzrkC5QXAOecKlBcA55wr\nUF4AnHOuQGVVACSVS1okaamka+ppd54kk1SaMu7acL5Fks6IIrRzLjtDJw/d/XAuXcbLQYe3dJwI\nnAasBGZJmmpmC9LadQK+AbycMm4gwS0kDwN6AjMkDTCzndG9Beecc7nIZgtgMLDUzJab2Q5gCjCi\nlnY/AW4GtqWMGwFMCW8O/xawNFyec865mGVTAHoBK1KGV4bjdpN0NNDHzP7W0Hmdc87Fo9F3BJPU\nCrgVuLQRyxgDjAHo0aMHFRUVjY21W2VlZaTLi1qS83m23DV3vlHFozK2qcmT5L9dkrNB8vM1VDYF\nYBXQJ2W4dziuRifgcKBCEsB+wFRJw7OYFwAzmwRMAigtLbWysrLs30EGFRUVRLm8qCU5n2fLXXPn\nGz95fMY2M8+bCST7b5fkbJD8fA2VzS6gWUB/Sf0ktSE4qDu1ZqKZbTKzfcysr5n1BV4ChpvZ7LDd\nSEltJfUD+gOvRP4unHPONVjGLQAzq5Y0FpgOFAF3mdl8SROA2WY2tZ5550t6EFgAVANXew8g55xL\nhqyOAZjZNGBa2rhxdbQtSxu+Ebgxx3zOOeeaiJ8J7JxzBcoLgHPOFSgvAM45V6C8ADjnXIHyAuCc\ncwXKC4BzzhUoLwDOOVegvAA4VyD8vgAunRcA55wrUF4AnHOuQHkBcM65AuUFwDnnCpQXAOecK1Be\nAJxzrkB5AXDOuQLlBcA55wpUVgVAUrmkRZKWSrqmlulXSnpD0jxJL0gaGI7vK2lrOH6epN9H/Qac\nc87lJuMdwSQVAROB04CVwCxJU81sQUqzP5vZ78P2w4FbgfJw2jIzGxRtbOecc42VzRbAYGCpmS03\nsx3AFGBEagMz25wy2BGw6CI655xrCjKrf10t6Xyg3MyuCIcvAYaY2di0dlcD3wbaAKeY2RJJfYH5\nwGJgM/BDM3u+ltcYA4wB6NGjxzFTpkxp5Nv6WGVlJcXFxZEtL2pJzufZctcc+RavW5zTfD3b9kzs\n384/19wNHTp0jpmVNmSeyApASvuLgDPMbLSktkCxma2TdAzwKHBY2hbDHkpLS2327NkNeQ/1qqio\noKysLLLlRS3J+Txb7pojX64Xdrv+gOsT+7fzzzV3khpcALLZBbQK6JMy3DscV5cpwDkAZrbdzNaF\nz+cAy4ABDQnonHOuaWRTAGYB/SX1k9QGGAlMTW0gqX/K4FnAknB89/AgMpIOBPoDy6MI7pxzrnEy\n9gIys2pJY4HpQBFwl5nNlzQBmG1mU4GxkoYBVcAGYHQ4+0nABElVwC7gSjNb3xRvxDnnXMNkLAAA\nZjYNmJY2blzK82/UMd/DwMONCeicc65p+JnAzjlXoLwAOOdcgfIC4JxzBcoLgHPOFaisDgI755Ij\n1xPAnEvnWwDOOVegvAA451yB8gLgnHMFyguAcwVg33Xb6FxZBUDx0qVw1VWwenXMqVzcvAA418Id\numwzd/x4Dge9WwlAVZcu0LEjDBkCr74aczoXJy8AzrVg/VZUcsNv3uDmyz/NqwO7AbC9e3e45Ra4\n9VY4/XR45JGYU7q4eDdQ51qonv/5iJt/+Tq3XXQwLw3a+5MNzj8f+vWDc86Brl3hlFOaP6SLlW8B\nONcCaZdx/e0L+OM5fZl5XI89pi1et/jjcwmOOQbmzoWTT44hpYubbwE41wJZK/G97x7B5k5tMjfu\n3j34d/Vq2G8/kJo2nEsM3wJwroXpvGUH2mXZrfxrmMGIEfDoo00XzCVOVgVAUrmkRZKWSrqmlulX\nSnpD0jxJL0gamDLt2nC+RZLOiDK8cy6NGRP+dz4nzP2gYfNJ8LOfwXe+A9u2NU02lzgZC0B4S8eJ\nwJnAQGBU6go+9Gcz+4yZDQJ+DtwazjuQ4BaShwHlwO01t4h0zkWvdP4Gum3ewYtH1XLQN5NTT4VB\ng+BXv4o+mEukbLYABgNLzWy5me0guOn7iNQGZrY5ZbAjYOHzEcCU8ObwbwFLw+U556JmxmUPv8Xd\nX+jHrqIc9+7ecgv88pewalW02VwiyczqbyCdD5Sb2RXh8CXAEDMbm9buauDbQBvgFDNbIuk24CUz\nuy9scyfwpJk9lDbvGGAMQI8ePY6ZMmVKJG8OoLKykuLi4siWF7Uk5/NsuWvKfIvXLa51/AGvzKP0\ngcd5+BfXQau6C0BJUQnrd65nwN4Dap3e78472V5SwnvnnhtJ3oYo5M+1sYYOHTrHzEobMk9kvYDM\nbCIwUdJFwA/5+Mbw2cw7CZgEUFpaamVlZVHFoqKigiiXF7Uk5/NsuWvKfOMnj691/C/+9hq3ntOL\nf370QL3zjyoexf2V90NwYjAzR8/cs8HJJ4NE7eWhaRXy5xqHbArAKqBPynDvcFxdpgC/y3Fe51yO\nfvj1w9neJoKOfTXdQLdvh7ZtG788l1jZfFtmAf0l9ZPUhuCg7tTUBpL6pwyeBSwJn08FRkpqK6kf\n0B94pfGxnXN7MGN726Lo+vDPmgUnnhjNslxiZSwAZlYNjAWmAwuBB81svqQJkoaHzcZKmi9pHsFx\ngNHhvPOBB4EFwFPA1Wa2swneh3MFq2Tjdn4/fk7Qlz8qRx8Na9bAnDnRLdMlTlbHAMxsGjAtbdy4\nlOffqGfeG4Ebcw3onKvfsH/9h2V9iqM9g7eoCK64AiZNgjvuiG65LlH8TGDn8pkZ5S+8z/QT9ot+\n2ZddBg8+CFu2RL9slwheAJzLYwPeqaTNjl280b9L9Avv2RPKyiDCbtkuWfxicM7lsTOef5+nT9gP\na9VEF3D72c+gffumWbaLnRcA5/LYvEO78ma/Tk33Ap/+dNMt28XOdwE5l8eeL+3O2r3bNe2LvP46\n/OlPTfsaLhZeAJzLUyfNWkv7rdVN/0I7d8L110fbzdQlghcA5/JQ1807+N5db2LNce+WQYOCIvD6\n683wYq45eQFwLg999tUPmH14CdvaNcNhPAm+8AW/eXwL5AXAuTx0/Nx1vHjUPs33gl4AWiQvAM7l\nmXbbd3Lkoo28dGRJ873of/1XcGG4deua7zVdk/NuoM7lmYFLN/HmgZ2o7LhX871oq1Ywe3bzvZ5r\nFl4AnMszcw8raZozf7NhFu01h1ysfBeQc3moqk0Mt9Y2C3oErVjR/K/tmoQXAOfyyb/+xdceWBbP\na0vBZaIffTSe13eR8wLgXD55+OFo7vqVK+8N1KJk9U2SVC5pkaSlkq6pZfq3JS2Q9LqkZyUdkDJt\np6R54WNq+rzOuSyZwWOPNW/3z3SnnQavvgpr18aXwUUmYwGQVARMBM4EBgKjJA1Ma/YqUGpmRwAP\nAT9PmbbVzAaFj+E453KzcCFs386SA4rjy9CuHZxyCkyfHl8GF5lstgAGA0vNbLmZ7SC46fuI1AZm\nNtPMPgoHXyK4+btzLkqPPQbDh8ffC+e//xv69Ys3g4uELMMFniSdD5Sb2RXh8CXAEDMbW0f724D3\nzeyGcLgamAdUAzeZ2SeOIEkaA4wB6NGjxzFTIrwBRWVlJcXFMf5iyiDJ+Txb7poiX6+HH2bLgAHM\n7tm2UcspKSph/c71u4cH7D2gsdEiU4ifa1SGDh06x8xKGzJPpOcBSPoSUAqcnDL6ADNbJelA4O+S\n3jCzPboxmNkkYBJAaWmplZWVRZapoqKCKJcXtSTn82y5a5J84fK+M3looxYzqngU91fev3t45nkz\nG76QZcuCG8X07NmoLOkK8nONUTYFYBXQJ2W4dzhuD5KGAdcBJ5vZ9prxZrYq/He5pArgKCCmfmzO\n5akNGzj10XPZ1VR3/mqo22+Hrl3hRz+KO4lrhGyOAcwC+kvqJ6kNMBLYozePpKOAO4DhZrYmZXw3\nSW3D5/sAxwMLogrvXMH41rc4q+K9Jn2JoZOH7n5kVF4OTz3VpHlc08tYAMysGhgLTAcWAg+a2XxJ\nEyTV9Or5BVAM/CWtu+ehwGxJrwEzCY4BeAFwriHM4OmnmXNYt7iTfOzEE+GNN2D9+sxtXWJldQzA\nzKYB09LGjUt5PqyO+f4JfKYxAZ0reG+8Ae3b816PDnEn+Vi7dnDSSTBjBlx4YdxpXI78YnDOJd30\n6XDGGQQb4NHLapdPbcrL4cknvQDkMb8UhHNJ9/TTYQFImIsvhhtuiDuFawQvAM4l3de/Hpx9mzTd\nukGvXnGncI3gBcC5pDv7bOjUKe4UtXvhBb84XB7zAuBcAtV0x/zO94+EVZ847SY5Nm+G3/427hQu\nR14AnEuwr9+3FN5/P+4YdSsrC24VuWVL3ElcDrwAOJdQ+67bRufKKjjqqLij1K1DBxg8GJ57Lu4k\nLgdeAJxLqGPfWB+c/NUq4f9Nhw0LzgdweSfh3yznCtex/17P7MNL4o6R2bBhsGRJ3ClcDrwAOJdA\n2mUcuWgTs5N0+Ye6HHssPPFE3ClcDvxMYOcSyFqJS24aTGXHvXI/U7e5xH2DGpcz3wJwLqEqO+4V\nd4TsTZ8O3/xm3ClcA3kBcC6BrnhoOT3XbI07RvYOPBAeeii4cqnLG14AnEuabds4d8YqNhXn0RbA\nwQdDUREsWhR3EtcAXgCcS5p//pO3enXkww55dIhOCnoDPfNM3ElcA2RVACSVS1okaamka2qZ/m1J\nCyS9LulZSQekTBstaUn4GB1leOdapBkzmDMwD3r/pPPzAfJOxgIgqQiYCJwJDARGSRqY1uxVoNTM\njgAeAn4ezlsCXA8MAQYD10vKw2+2c81oxgzm5kP3z3Snngr9+8edwjVANlsAg4GlZrbczHYAU4AR\nqQ3MbKaZfRQOvkRw43iAM4BnzGy9mW0AngHKo4nuXAtUVQVt2rDgoM5xJ2m4ffeFW26JO4VrAFmG\no/aSzgfKzeyKcPgSYIiZja2j/W3A+2Z2g6TvAu3M7IZw2o+ArWZ2S9o8Y4AxAD169DhmypQpjXxb\nH6usrKS4uDiy5UUtyfk8W+4am2/xusURptlTSVEJ63fWfy/fAXsPyG3hu3ax1+bNVHXtmtPsLf1z\nbUpDhw6dY2alDZkn0qNMkr4ElAInN2Q+M5sETAIoLS21srKyyDJVVFQQ5fKiluR8ni13OeczA4nx\nk8dHnqnGqOJR3F95f71tZp43M7eFP/003HprzheHa7Gfa0JlswtoFdAnZbh3OG4PkoYB1wHDzWx7\nQ+Z1zoVKS2H58rhT5O7442HuXKisjDuJy0I2BWAW0F9SP0ltgJHA1NQGko4C7iBY+a9JmTQdOF1S\nt/Dg7+nhOOdcuhUr2LjkDU75x2VxJ9l9Q5oG69gxKGLPPx99KBe5jAXAzKqBsQQr7oXAg2Y2X9IE\nScPDZr8AioG/SJonaWo473rgJwRFZBYwIRznnEv37LPMPbQr1irPr61z6qneHTRPZHUMwMymAdPS\nxo1LeT6snnnvAu7KNaBzBWPGDObmY///dMOGwVVXxZ3CZcHPBHYuCcxgxoz8uPxzJsceC9de69cF\nygNeAJxLgq1b4aqr+E/39nEnabzWreGLX/TLROcBLwDOJUGHDnD99XGniM6aNX5doDzgBcC5JFi4\nEKqr404RnQ8+gK9+1XcDJZwXAOfitmMHHHccbNoUd5LoHHpo8L7y+ZyGAuAFwLm4vfxycBG1vfeO\nO0l0pKA76LPPxp3E1cMLgHNxmzEj6DrZ0vjloRPPC4BzcUtwAcj5jGAItgBmzoRdu6IN5SLjBcC5\nOG3aBK+9FlxDp6Xp3Rvmz4dWvppJKv9knItTu3YwfTq0T3b//5y3BPbdN/owLjJeAJyLU9u2LfPX\nf42334Zx4zI2c/HwAuBcnCZOhI8+ytwuX5WUwK9+1bLfYx7zAuBcXFatCn4dt20bd5Km07kzHHVU\nzjeIcU3LC4BzcZkxA045BYqK4k7StM44IzjO4RLHC4BzcXnqqWDl2NKdfnpwq0iXOFkVAEnlkhZJ\nWirpmlqmnyRprqTq8CbyqdN2hjeJ2X2jGOcK3s6dwcXSWkAByNhD6OijoWtXv01kAmW8IYykImAi\ncBqwEpglaaqZLUhp9i5wKfDdWhax1cwGRZDVuZbjzTehVy/o0ydz23xXVAQvvhh3CleLbO4INhhY\nambLASRNAUYAuwuAmb0dTvNT/pzLxmGHwezZcadoXmZ+j4CEkWW4XGu4S6fczK4Ihy8BhpjZ2Fra\n3gM8YWYPpYyrBuYB1cBNZvZoLfONAcYA9OjR45gpU6bk/IbSVVZWUlxcHNnyopbkfJ4tdw3Nt3jd\n4iZMs6eSohLW78zt1twD9h7wiXE12WubVqN1ZSXHfO1rvPzHP9Z70Lulfa7NaejQoXPMrLQh82R1\nT+BGOsDMVkk6EPi7pDfMbFlqAzObBEwCKC0ttbKysshevKKigiiXF7Uk5/Nsuas334YNMHo0PPbY\n7l/E4yePb7Zso4pHcX/l/TnNO/O8mZ8YV5O9tml76NqVss6dg1tG1iGvP9c8lM1B4FVA6o7K3uG4\nrJjZqvDf5UAFcFQD8jnX8jz7LFRVtdjdIXUeFPbeQImTTQGYBfSX1E9SG2AkkFVvHkndJLUNn+8D\nHE/KsQPnCtL06VBeHneK5ufnAyROxgJgZtXAWGA6sBB40MzmS5ogaTiApGMlrQQuAO6QND+c/VBg\ntqTXgJkExwC8ALjCZZbX/f9rft3ndGG4k06CuXNh8+bog7mcZHUMwMymAdPSxo1LeT6LYNdQ+nz/\nBD7TyIzOtRwLFwYHQQ85JO4kjdbgItChA9xwQ3BdoM6dmyaUa5DmOAjsnKuxYQNcdVWL3P+fVUH4\n5jebPojLmhcA55rT8ce37Ms/Z2IW7AY66ii/UUwC+CfgXHOpqoJt2+JOES8JLroIXn017iQOLwDO\nNZ+nnoJzzok7RfzOPhueeCLuFA4vAM41n6lTC7P7J2nnBnz+814AEsILgHPNYdcuePzx4NdvoTv+\neFi6FFavjjtJwfODwM41h1degX32gYMOijtJs6mzV9BeewXnQUybBpdfXud8M0dnuLSEazQvAM41\nh6lTYfjwuFMkx803Q5cucacoeF4AnGsOw4cHWwAucMABcSdweAFwrnkcd1zcCRIhdbdQ2StruP7L\nd8GQIQ2e13cPRcMPAjvX1F54ARYtijtF4uy3dhvce+/u4aGThzbrfRGcFwDnmt64cbBoUeMupNYC\nvTRo76A7aIabUrmm4wXAuaa0YUNw68dhw2qdXMgF4e2eHYLLQbz2WtxRCpYfA3CuKT35JJSVBVfC\ndHuS4Pzz4S9/gUGD6mxWW4H0rqLR8ALgXFOqo/tnof7q/4QLL4Sf/zzn2b0QNE5Wu4AklUtaJGmp\npGtqmX5eZWyRAAAPu0lEQVSSpLmSqsObyKdOGy1pSfgYHVVw5xKvuhqeey649IGr1dD532PoWWu9\nIMYk4xaApCJgInAasBKYJWlq2p293gUuBb6bNm8JcD1QChgwJ5x3QzTxnUuw1q1h2TJo3z7uJImn\nXYa1ann3SEi6bLYABgNLzWy5me0ApgAjUhuY2dtm9jqwK23eM4BnzGx9uNJ/BijMq2G5wuQr/4x6\nrtnK/10/+xO9gQr5AHlzyeYYQC9gRcrwSiC7Mzdqn7dXeiNJY4AxAD169KCioiLLxWdWWVkZ6fKi\nluR8ni13W9esYcPRR/PaL34R3AISGFU8KuZUgZKiksRkAaCj0X37dVy97kTomlu25vouJP1711CJ\nOAhsZpOASQClpaVWVlYW2bIrKiqIcnlRS3I+z5aboZOH8qO5B9KtZ0/KTj119/jxk8fHmOpjo4pH\ncX/l/XHH2EPnYzpQ9Y8/srXvdTllm3le8xwETvL3LhfZ7AJaBfRJGe4djstGY+Z1Lm8d9MIsGDky\n7hh5Y+bg7pS9stZPCmtm2RSAWUB/Sf0ktQFGAlOzXP504HRJ3SR1A04PxznXYnWqrGL/N5fAiBGZ\nGzsAFvftROudRsk7K+OOUlAyFgAzqwbGEqy4FwIPmtl8SRMkDQeQdKyklcAFwB2S5ofzrgd+QlBE\nZgETwnHOtVgnzlnLyiMGQqdOcUfJHxL/e/HBVLVvF3eSgpLVMQAzmwZMSxs3LuX5LILdO7XNexdw\nVyMyOpdXtnTci/nlZRwYd5A886+j9qFvcXeojDtJ4UjEQWDn8t0e3RVLu9O7+BDvwpiDfZa9wwHV\nH/JOr45xRykIfjE45yLUZ/VHtN9aHXeMvLX/gsWMmvZu3DEKhhcA5yJ03R0LOHzJprhj5K0lJx3H\n8XM/oONHXkSbgxcA5yIy4K3NdK6sZvbhJXFHyVvbunRizmHdOOXlNXFHKQheAJyLyNkzV/O3k/f3\na9o00rST9ufM51bHHaMgeAFwLgIdtlZz8uy1TDtxv7ij5L3Zh5fQYdtOSjZujztKi+e9gJzLQnqP\nnprrz9eMP33uB8wd2JUNXds2e7aWZlcr8ZUbj/UtqWbgBcC5CDz92R68eNQ+ccdoMayVwAwZXgia\nkBcA50INubvUJ/r4S3zYwf87Renbkxczd2A3KgbvG3eUFsuPATjXSP/v/qUcPd+vcBK1eZ/uyvC/\nvxd3jBbNC4BzjdDxwyrKn3+f5X2K447S4vyjtDs912zlkOWb447SYnkBcK4RznzhfWYd3o2NndvE\nHaXF2dm6FX85ozcjp63I3NjlxHdaOleHTNfy2WvHTi58agXXfeMzzZSo8Pzt5P350hPv0vM/H/Fe\njw5xx2lxfAvAuRyVv/A+y/oUs6SvX/a5qWxr15rrvnE467v4FlZT8C0A59JkexXPJX078e/+XZo4\njVtwsP+Nm0pWWwCSyiUtkrRU0jW1TG8r6YFw+suS+obj+0raKmle+Ph9tPGdi8+bB3bmLT/42ywO\nW7KJEc/63WSjlrEASCoCJgJnAgOBUZIGpjW7HNhgZgcDvwJuTpm2zMwGhY8rI8rtXGxa7dzF5Q8t\nZ6+qXXFHKRjru7ThK399yy+1HbFstgAGA0vNbLmZ7QCmAOk3Ox0BTA6fPwScKslP33Mt0ikvr+WI\nxZuoau1f8eayet/2zBnYjXN9KyBS2RSAXkBqP6yV4bha24T3EN4E7B1O6yfpVUn/kHRiI/M6Fyvt\nMi5+4h3uHX4A+G+cZnXXF/px4VMr6LZpR9xRWgyZWf0NpPOBcjO7Ihy+BBhiZmNT2vw7bLMyHF4G\nDAG2AMVmtk7SMcCjwGFmtjntNcYAYwB69OhxzJQpU6J6f1RWVlJcnNz9tEnOV2jZFq9bnLHNgJn/\n5NBnnuOxG39QbwEoKSph/c5knh2cz9mGTH6INh9t5fmrLtlj/IC9BzR1NCDZ/yeGDh06x8xKGzJP\nNr2AVgF9UoZ7h+Nqa7NSUmugC7DOguqyHcDM5oSFYQAwO3VmM5sETAIoLS21srKyhryHelVUVBDl\n8qKW5HyFlm385PH1Ti/+sIrJ977Ctd/6DIs/rP9HyqjiUdxfeX+U8SKTz9mmlldxwtwPmJ7WZuZ5\nma/fFIUk/5/IRTa7gGYB/SX1k9QGGAlMTWszFRgdPj8f+LuZmaTu4UFkJB0I9AeWRxPduebVbscu\n7jmnL4v7dY47SsH6sONeTD9x/7hjtBgZtwDMrFrSWGA6UATcZWbzJU0AZpvZVOBO4F5JS4H1BEUC\n4CRggqQqYBdwpZklc9vTuQw+6NaWx09JP/zl4nDyK2vY3qYVLw3yS3A3RlYngpnZNGBa2rhxKc+3\nARfUMt/DwMONzOhcrLTLGPOX5dx39gF+yeeE2FK8F9+5exFzBnajqk1R3HHyll8KwrkMznpuNYcv\n2cRH7XxFkxRzB3Zj8QGd+OrDb8UdJa95AXCuHvuu28ZlD7/Fr788wO9MlTC3XjqAk2atZchr6+KO\nkre8ADhXh72qdvHjifN54Mw+LPtUMrv+FbItxXvx068dyvfuWgQbN8YdJy95AXCuDqMffZu13dry\nwJl9Mjd2sXj9kK5893tHQNeucUfJS35Ey7k6PHJaL7a3KfIzfhPu7d7h1tmGDdCtW7xh8oxvATiX\nZp8N22m1y1jfta33+skX27fD0UfDY4/FnSSveAFwLkWPtVv57Y2vcsz8DXFHcQ3Rti385S/w1a/C\nM8/EnSZveAFwLtRzzVZ+fdM8Hizvw6zPlMQdxzVUaSk88ghcdBE8/3zcafKCFwDnABYt4lc3zeNP\nZx/Ao8P8bN+8dcIJ8Oc/w3nnwYIFcadJPN/B6dz27fC5z3H3uX15yq8zk/9OOw0efxwOPjjuJInn\nWwCucNVcCr1tW3jxRV/5tyRDhkCbNvDBB3DjjVDtdxKrjRcAV5g2bIAvfjHYZwyw337x5nFNQ4J/\n/ANOPx3+85+40ySOFwBXWMyCroKDBsH++8PnPhd3IteU9t4bnnwyODZw+OFw663BLj8HeAFwheS5\n5+C44+BHP4JJk+A3v4F27eJO5ZpaURFMmBD0DPr73+Hqq+NOlBh+ENi1bFu3Br/6O3SA9evh29+G\nCy6AVv7bp+B8+tPwxBPBdwJg8WKYNg0uuSTYUihA/r/AtTxbtwYnA112GfTs+fGJQeecE+z395V/\nYWvf/uPns2fDQQfBxRfDgw/CusK6smhW/xMklUtaJGmppGtqmd5W0gPh9Jcl9U2Zdm04fpGkM6KL\n7hywaxds2RI837IFTjwRuneHceOCfb7z58OIEfFmdMk0YADcdx8sXw6f/Sz88Y/Qvz9UVgbTX38d\nFi5s0T2IMu4CCu/pOxE4DVgJzJI01cxSz7K4HNhgZgdLGgncDHxR0kCC20MeBvQEZkgaYGY7o34j\nrgUxgx07gv+IGzcG+3D79g2m/frX8M47DHz11WCFv2gRfPnLcPvtUFwM48fD4MHBc+eyUVISHBe4\n+upgZd86XC0+/jjcfTesXh0Uhk99igM7doSam8LPnQtVVcHuo86dg+9c+/Z5dfHAbI4BDAaWmtly\nAElTgBFAagEYAfw4fP4QcJskheOnmNl24K3wnsGDgX9FE9/lnbPOgrVrg/9oO3cG/4FOPhl+97tg\n+oEHwrvvBiv9Dh2Cy/yOGBGs+CHovtmrFx8UF7PvWWfBoYdCly7BNAlOOSWe9+VahtYpq8Trrgse\nlZXBD40VK/jw5Zc/nv7AA8FB5XXrgh8jlZXBLsdly4LpF10EL78c9DxK6FaorOZkmLoaSOcD5WZ2\nRTh8CTDEzMamtPl32GZlOLwMGEJQFF4ys/vC8XcCT5rZQ2mvMQYYEw4eAixq/FvbbR/ggwiXF7Uk\n5/NsuUtyPs+WuyTnO8TMOjVkhkT0AjKzScCkpli2pNlmVtoUy45CkvN5ttwlOZ9ny12S80ma3dB5\nsjkIvApIvSVS73BcrW0ktQa6AOuynNc551wMsikAs4D+kvpJakNwUHdqWpupwOjw+fnA3y3YtzQV\nGBn2EuoH9AdeiSa6c865xsi4C8jMqiWNBaYDRcBdZjZf0gRgtplNBe4E7g0P8q4nKBKE7R4kOGBc\nDVwdQw+gJtm1FKEk5/NsuUtyPs+WuyTna3C2jAeBnXPOtUx+SqRzzhUoLwDOOVegCqoASPqOJJO0\nT9xZakj6haQ3Jb0u6a+SuiYgU72X/oiTpD6SZkpaIGm+pG/EnSmdpCJJr0p6Iu4s6SR1lfRQ+J1b\nKOm/4s5UQ9K3ws/035LulxTrpVol3SVpTXieU824EknPSFoS/tstQdkavC4pmAIgqQ9wOvBu3FnS\nPAMcbmZHAIuBa+MMk3LpjzOBgcCo8JIeSVENfMfMBgLHAVcnLB/AN4CFcYeow2+Ap8zs08CRJCSn\npF7A14FSMzucoMPJyHhTcQ9QnjbuGuBZM+sPPBsOx+EePpmtweuSgikAwK+A7wOJOuptZk+bWc3V\npl4iOFciTrsv/WFmO4CaS38kgpmtNrO54fMtBCuwxNzFXVJv4CzgD3FnSSepC3ASQa89zGyHmW2M\nN9UeWgPtw3OJOgDvxRnGzJ4j6NWYagQwOXw+GTinWUOFasuWy7qkIAqApBHAKjN7Le4sGVwGPBlz\nhl7AipThlSRoBZsqvOrsUcDL9bdsVr8m+KGxK+4gtegHrAXuDndR/UFSx7hDAZjZKuAWgi301cAm\nM3s63lS16mFmq8Pn7wM94gxTj6zWJS2mAEiaEe47TH+MAP4HGJfQbDVtriPYvfGnuHLmE0nFwMPA\nN81sc9x5ACR9HlhjZnPizlKH1sDRwO/M7CjgQ+LbhbGHcF/6CIIi1RPoKOlL8aaqX3iya6L2KEDD\n1iWJuBZQFMxsWG3jJX2G4Ev1WnCBUnoDcyUNNrP348xWQ9KlwOeBUy3+EzMSf/kOSXsRrPz/ZGaP\nxJ0nxfHAcEmfA9oBnSXdZ2ZJWZGtBFaaWc0W00MkpAAAw4C3zGwtgKRHgM8C98Wa6pP+I2l/M1st\naX9gTdyBUjV0XdJitgDqYmZvmNm+ZtbXzPoS/Cc4urlW/plIKifYZTDczD6KOw/ZXfojNuFlxu8E\nFprZrXHnSWVm15pZ7/B7NpLgkihJWfkTfudXSDokHHUqe17WPU7vAsdJ6hB+xqeSkAPUaVIvezMa\neCzGLHvIZV3S4gtAHrgN6AQ8I2mepN/HGSY8iFRz6Y+FwINmNj/OTGmOBy4BTgn/XvPCX9wuO/8N\n/EnS68Ag4Kcx5wEg3Cp5CJgLvEGwbor1sguS7ie4d8khklZKuhy4CThN0hKCrZabEpStwesSvxSE\nc84VKN8CcM65AuUFwDnnCpQXAOecK1BeAJxzrkB5AXDOuQLlBcA55wqUFwDnnCtQ/x8HI6sV57fg\nsgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch : 40000, D:[array(0.6848969459533691, dtype=float32), array(0.4925000071525574, dtype=float32)], G loss:0.12272197008132935\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFPWd//HXmxscrgGcyKGAggkQRRlBV8UZRR2jAV01\ngWRdTTSs+Uli1k12NbgeRLNJzM/NocaQqMGfkZGgMWhQvGY8YlQOUQPIcHgAHtzHyM18fn9UDTTN\nHD09PVPV05/n49GP6ar6VvV7umfq01X1rSqZGc4553JPq6gDOOeci4YXAOecy1FeAJxzLkd5AXDO\nuRzlBcA553KUFwDnnMtRXgAcAJJM0jFR52hukhZJKsrQsr4u6ZmE4Yy+p5IqJQ3M1PJSfM2Okp6Q\ntEXSn5rxdf9N0i9SaNde0ruSejVHrpbGC0AMSXpf0o7wH776cVfUuWoi6flwRdcmYVx/SWWStof/\nnGOS5vl3SZ9I2irpfkntMzFvUrv+Ya7q9+9TSU9KOjuxnZkNNbPyen7H/sm/Y03M7I9mdk5dbVIl\nqVzSVUnLzzOzlZlYfgNcAhQAPczs0uSJkm6RtCd8jzdLelXSKY15QUntgBuBO+pra2a7gPuB6xvz\nmrnKC0B8fTn8h69+TIo6UDJJXwfa1jBpOvAm0AOYDMys/oYm6VyCf9azgKOAgcCtGZq3Jt3MLA84\nHngW+LOkKxr6u9anvuKQxY4CKsxsbx1tHgnf417AK8BjktSI1xwHvGtma1Js/zBweW1fBlwdzMwf\nMXsA7wNjapl2BfA34C5gC/AucFbC9N7ALGAjsBz4VsK01sAPgRXANmA+0C+cZsDVwDJgM3A3oDoy\ndgUqgJPDeduE4wcDu4DOCW1fBq4Onz8M/Dhh2lnAJ42dt4Z8/RNzJYz/PvAp0Cr5vQZGAvOArWGb\nO8PxH4bLqgwfpyR8Dv8LbABuC8e9kvBaBnwXWAmsJ/hGW/26twAP1ZQXuB3YB+wMX++uhOUdk/D+\nPwisAz4g+MZcvewrCFbEPwc2Ae8B59XxWX4BKA8/90XA2HD8rcBuYE+Y48oa5k3+PYaGOXvW8Xqt\ngf8bvifvAZOS/obuB25MaP/VsF2XcPg84BOgV0KbZcAZUf/vZtvDtwCy0yiClXhP4GaCb1z54bRS\nYDVBIbgE+LGkM8Np1wETgC8BXYBvAtsTlnsBcBJwHPAV4Nw6MvwY+A3BP2KiocBKM9uWMO6tcHz1\n9LeSphVI6tHIeVP1GHA4cGwN034J/NLMugBHAzPC8aPDn90s2Br7ezg8imDlXkCw0q7JRUAhcCLB\nN9tv1hfQzCYTFL5JVvvW368JisBA4AzgX4FvJEwfBSwl+Bv5GXBfTd/KJbUFngCeIXhfvgP8UdKx\nZnYzwef8SJjjvrpyh9/ArwBWmdn6Opp+i2AlPpzgfbkwafoXw+wAmNkjwKvAr8LP+j7gKjNblzDP\nEoKtPNcAXgDi6/Fwn2r141sJ09YCvzCzPeE/x1LgfEn9gFOB/zKznWa2EPg9wcoB4CqCb1ZLLfCW\nmW1IWO5PzGyzmX0IlBH8gx5CUmH4Or+uYXIewZZJoi1A51qmVz/v3Mh5U/VR+DO/hml7gGMk9TSz\nSjN7rb5lmdmvzWyvme2opc1PzWxj+J7+gqAAN4qk1sB44AYz22Zm7xN8o74sodkHZvY7M9sHTAOO\nIChUyU4meF9/Yma7zewF4MkG5vyKpM3AKmAEQdGrsz1BoV1tZpuAnyRN70awhZroGuBMgi2VJ8zs\nyaTp28L5XAN4AYivC82sW8LjdwnT1li43Rv6gOAbf29gY9I36A+APuHzfgRbDrVJ/Da/nWDFcBBJ\nrYB7gGut5v3ClQRbF4m6cOAfOnl69fNtjZw3VdXvxcYapl1JsBvqXUlzJV1Qz7JWpfB6iW2qP6fG\n6klw7OWDpGX3SRje/1maWfVW3iGfZ5hnlZlV1bGs+swI/0YPN7MzzWx+Pe17c/D7kvw+biKpqJvZ\nZuBPwDCCYpesM8EuLNcAXgCyU5+kzfkjCb7ZfgTkS+qcNK36YNoqgl0bjdGFYJfGI5I+AeaG41dL\nOp1gH/LApAzHh+MJfx6fNO3TcEukMfOm6iKCLailyRPMbJmZTSDYFfJTggPQhxHsn65JKpfS7Zfw\nvPpzAvgM6JQw7XMNWPZ6gq2Vo5KWnepB00QfAf3Cwt7YZaXqY6BvwnC/pOlvExTi/SQNJ9h9Nh34\nVQ3L/AIH7x50KfACkJ0OB74rqa2kSwn++Geb2SqCfaX/I6mDpOMIvtU+FM73e+BHkgYpcFwD959D\nsNulN8HuoeEExxMg2PR/3cwqgIXAzWGGiwiOKTwatnsQuFLSEEndCA5e/gGgMfPWR1KBpEkEx0xu\nSPrGW93mXyT1CqdVf5usIjjQWkWwv72hfiCpe7h77lrgkXD8QmC0pCMldQVuSJrv09peL9ytMwO4\nXVJnSUcRHN95qKb29XidYGvvP8O/pyLgywTHkprKDOBaSX3Cz/G/kqbPJjiuAYCkDgS/2w8JjnP0\nkfR/Eqb3IdilV98uO5cs6qPQ/jj0QdAzZQcHep1UAn8Op13Bwb2AKoBzEubtS7APdyPB7p6rE6a1\nJlhpvkew22Qu0Dectr+HSTj8B+C2FLL2J6m3TTiuPPwdlpLUo4lgZfUpQW+bB4D2mZi3llyVBN+2\n1xKsWEpqeK+rewE9FLarJNjauDCh3RSCQrCZYL/5FST0+En4bGrrBbSBYNdF64Tpd4fLW05wYDSx\nJ8wp4We7CfhV8mcEdA/zriPYsruJpF5ASdkO+nyTpg0FXgz/nhYDFyVMu4WEXj41zFvn9FrmacOB\n3lPvAf9OsEWjcHpbgp5XvcPh/wWeSpj/eIK/70Hh8A8Ie2z5o2GP6jfcZYmwD/tVZnZa1FmcywRJ\n5wH3mtlRCeMmAkPM7Hv1zNueYNfPaDNb27RJW56WevKKcy6mJHUEigm6nhYQ7Jb7c2IbM5uayrIs\nOBP485nOmCtSOgYgqUTSUknLJdV6yrWki8NT5gvD4f4KLmmwMHzcm6ngzrn4knSvDr6USfXjXkAE\nJ5ltIjjrewnBLizXzOrdBRT2Oa4AziY4wWguMMHMFie16wz8FWhHcALLPEn9gSfNbFjmozvnnGuM\nVLYARgLLzWylme0m6B0wroZ2PyLoOrczg/mcc841kVSOAfTh4BM1VhOcZr6fpBMJrinzV0k/SJp/\ngKQ3CXpt3GhmLye/QHjAZyJAx44dR/Trl9wtOH1VVVW0ahXf3q5xzufZ0hfnfJ4tfXHOV1FRsd7M\nGnZZ7BS6bF0C/D5h+DLCi1OFw60Iuu31D4fLgcLweXuCy8hC0E98FeEFnWp7jBgxwjKprKwso8vL\ntDjn82zpi3M+z5a+OOcD5lkDu4GmUsrWcPCZen05+CzBzgSnZ5dLep+gj/QsSYVmtsvCszQtOD18\nBUln+DnnnItGKgVgLjBI0oDwRg3jCS43DICZbTGznmbW38z6E5yNN9aCg8C9woPIKLiT0SCCk2Kc\nc85FrN5jAGa2NzyFfg7BmaT3m9kiSVMINjlm1TH7aGCKpD0Ep9JfbWY1XYTLOedcM0vpRDAzm01w\nGn3iuBr77ZpZUcLzRzlwHRfnnHMxEs/D2c4555qcFwDnnMtRXgCccy5HeQFwzrkc5QXAOedylBcA\n55zLUV4AnHMuR3kBcM65HOUFwDnncpQXAOecy1FeAJxzLkd5AXDOuRzlBcA553KUFwDnnMtRXgCc\ncy5HpVQAJJVIWippuaTr62h3sSSTVJgw7oZwvqWSzs1EaOecc41X7w1hwls63g2cDawG5kqaZWaL\nk9p1Bq4FXk8YN4TgFpJDgd7Ac5IGm9m+zP0Kzjnn0pHKFsBIYLmZrTSz3UApMK6Gdj8CfgrsTBg3\nDigNbw7/HrA8XJ5zzrmIpVIA+gCrEoZXh+P2k3Qi0M/M/trQeZ1zzkUjpXsC10VSK+BO4IpGLGMi\nMBGgoKCA8vLyxsbar7KyMqPLy7Q45/Ns6YtzPs+WvrjnazAzq/MBnALMSRi+AbghYbgrsB54P3zs\nBD4CCmtoOwc4pa7XGzFihGVSWVlZRpeXaXHO59nSF+d8ni19cc4HzLN61ufJj1R2Ac0FBkkaIKkd\nwUHdWQkFZIuZ9TSz/mbWH3gNGGtm88J24yW1lzQAGAS80Yh65ZxzLkPq3QVkZnslTSL49t4auN/M\nFkmaQlBxZtUx7yJJM4DFwF7gGvMeQM45FwspHQMws9nA7KRxN9XStihp+Hbg9jTzOeecayJ+JrBz\nzuUoLwDOOZejvAA418IVTyumeFpx1DFcDHkBcM65HOUFwDnncpQXAOecy1FeAJxzLkd5AXDOuRzl\nBcA553KUFwDnnMtRXgCccy5HeQFwzrkc5QXAuRxTsaHCzwx2QAbuCOaciydfybv6+BaAc87lKC8A\nzjmXo1IqAJJKJC2VtFzS9TVMv1rSO5IWSnpF0pBwfH9JO8LxCyXdm+lfwDnnXHrqPQYgqTVwN3A2\nsBqYK2mWmS1OaPawmd0bth8L3AmUhNNWmNnwzMZ2zjnXWKlsAYwElpvZSjPbDZQC4xIbmNnWhMHD\nAMtcROdcc/F7B+QWmdW9rpZ0CVBiZleFw5cBo8xsUlK7a4DrgHbAmWa2TFJ/YBFQAWwFbjSzl2t4\njYnARICCgoIRpaWljfy1DqisrCQvLy9jy8u0OOfzbOmLQ76KDRUHDQ/uMRiA9ZvXs3HfxkPGJ86T\nOK45xeF9q0uc8xUXF883s8KGzJOxApDQ/mvAuWZ2uaT2QJ6ZbZA0AngcGJq0xXCQwsJCmzdvXkN+\nhzqVl5dTVFSUseVlWpzzebb0xSFf8jf5ssvLAJj66FSmV04/ZHziPInjmlMc3re6xDmfpAYXgFR2\nAa0B+iUM9w3H1aYUuBDAzHaZ2Ybw+XxgBRDNVwvnnHMHSaUAzAUGSRogqR0wHpiV2EDSoITB84Fl\n4fhe4UFkJA0EBgErMxHcOedc49TbC8jM9kqaBMwBWgP3m9kiSVOAeWY2C5gkaQywB9gEXB7OPhqY\nImkPUAVcbWYbD30V51xTq969MyFvQo3jo9rt46KT0qUgzGw2MDtp3E0Jz6+tZb5HgUcbE9A551zT\n8DOBnXMuR3kBcM65HOUFwDnncpQXAOecy1F+PwDnWhi/lINLlW8BOOdcjvIC4FyW8wu4uXR5AXDO\nAb7rKBd5AXAuBxy+YSddKvcA0OO9VXxvWgX5m3dFnMpFzQuAcy3cF1Zs5be3zOfoDysB2Nklj53t\nW3HPlAUc88G2iNO5KHkBcK4FG7Cqktt++Q4/vfLzvDmkOwCf9ejOveOP4Z4JR3PHz9/m9HnrIk7p\nouLdQJ1roXp/up2f/t+3uetrx/Da8B6HTH/ppMP5pFdHfvSrf1DZqc3+AuFyhxcA51ogVRk337OY\nBy/sT9nJBbW2q+jfmYm3jGBbXttmTOfiwguAcy2QtRI/+P5xbO3crt62W7oEbfI372Jj13YgNXU8\nFxN+DMC5FqbLtt2oylJa+e9nxm2//AenLVjfdMFc7KRUACSVSFoqabmk62uYfrWkdyQtlPSKpCEJ\n024I51sq6dxMhnfOJTFjyq8XNXxFLvH7Swfy7dIVtN29b/9oP8msZau3AIS3dLwbOA8YAkxIXMGH\nHjazL5rZcOBnwJ3hvEMIbiE5FCgB7qm+RaRzrgk8+yzdt+7mbyccetC3PguGdGf5kXlc+szqJgjm\n4iiVLYCRwHIzW2lmuwlu+j4usYGZbU0YPAyw8Pk4oDS8Ofx7wPJwec65TDODG2/kgX8eQFXr9Pbu\n3vvVo/nK06tgzZoMh3NxJDOru4F0CVBiZleFw5cBo8xsUlK7a4DrgHbAmWa2TNJdwGtm9lDY5j7g\nKTObmTTvRGAiQEFBwYjS0tKM/HIAlZWV5OXlZWx5mRbnfJ4tfc2Zr2JDBQCnLFnLgAce4OGf/ABa\n1V4A8lvns3Ff7bfmLpz+OHl9BvHRRRftX/bgHoMzG7oW/rmmr7i4eL6ZFTZknoz1AjKzu4G7JX0N\nuJEDN4ZPZd6pwFSAwsJCKyoqylQsysvLyeTyMi3O+Txb+poz363TbgXgxNK3+J8v9+HV7Y/U2X5C\n3gSmV06vdfr0Cwz0Nnzw9v5xZRc3zw3j/XNtXqkUgDVAv4ThvuG42pQCv0lzXudcmm787jB2tctA\nx76wG2jbPVXsaesdBVuyVD7ducAgSQMktSM4qDsrsYGkQQmD5wPLwuezgPGS2ksaAAwC3mh8bOfc\nQczY1b51xvrwH7tyK7/88ZsZWZaLr3oLgJntBSYBc4AlwAwzWyRpiqSxYbNJkhZJWkhwHODycN5F\nwAxgMfA0cI2Z7TvkRZxzacvfvIt7b50fHATOkGX9O9N9624Gv+8Xi2vJUjoGYGazgdlJ425KeH5t\nHfPeDtyebkDnXN3G/P1TVvTLy+gZvFWtxF/POIILyj/iziuOzdhyXbz4Dj7nspkZJa98wpzTPpfx\nRT91+hEUvbGOjjv2ZnzZLh68ADiXzRYsoN3uKt4Z1DXji97QvT0LP9+NM19fm/Flu3jwi8E5l83+\n8AeeOe1zWKumuYDb7y4ZwO52fvJ+S+UFwLksVTytmNNZx7tNsPun2qrehzXZsl30fBeQc1ns5cJe\nrOvRoUlfY+CqSvjjH5v0NVw0vAA4l6VGz22eA7Stqgxuvjmj3UxdPHgBcC4brV3LD+5/F2uGe7cs\nPzIP9u2Dt9+uv7HLKl4AnMtGs2Yxb1g+Ozs0w2E8Cf75n+Gxx5r+tVyz8gLgXDb6y1/42wk9m+/1\nvAC0SF4AnIu5Q+7K9dln8OKLvHZ8fvOFOOUUaN8eNmxovtd0Tc67gTqXJaqLQFmfyTByJJWHNeNl\ntVq1gnnzmu/1XLPwLQDnss2YMfDkk9G8tvcEalG8ADiXjTo0bd//GpnB8OGwalXzv7ZrEl4AnMsi\nQ5Zvgf/8z2heXIITT4THH4/m9V3GeQFwLouMnrcOOnaMLoD3BmpRUioAkkokLZW0XNL1NUy/TtJi\nSW9Lel7SUQnT9klaGD5mJc/rnEuRGae+uQHGjWv2l97fE+nss+HNN2HdumbP4DKv3gIgqTVwN3Ae\nMASYIGlIUrM3gUIzOw6YCfwsYdoOMxsePsbinEvLUR9tp+2eKjjhhOhCdOgAZ54Jc+ZEl8FlTCpb\nACOB5Wa20sx2E9z0/aCvIGZWZmbbw8HXCG7+7pzLoFPfXM+rJ/TI6J2/0vKd78CAAdFmcBkhq6db\nl6RLgBIzuyocvgwYZWaTaml/F/CJmd0WDu8FFgJ7gZ+Y2SFHkCRNBCYCFBQUjCgtLU3/N0pSWVlJ\nXl5expaXaXHO59nSl8l8FRsqABj61xdYf/SRdD31SweNb6j81vls3LcxrXkH9xic1nypyqXPNdOK\ni4vnm1lhQ+bJ6Ilgkv4FKATOSBh9lJmtkTQQeEHSO2a2InE+M5sKTAUoLCy0oqKijGUqLy8nk8vL\ntDjn82zpy2S+W6fdGjw5A+BT+GBuo5Y3IW8C0yunpzVv2cVlwZMVK4KD0b17NypLslz6XOMglV1A\na4B+CcN9w3EHkTQGmAyMNbNd1ePNbE34cyVQDkS4A9O57JT32Z7gssxxcc89cN99UadwjZRKAZgL\nDJI0QFI7YDxwUG8eSScAvyVY+a9NGN9dUvvweU/gVGBxpsI7lyuueXg555d/FHWMA0pK4Omno07h\nGqneAmBme4FJwBxgCTDDzBZJmiKpulfPHUAe8Kek7p5fAOZJegsoIzgG4AXAuYYwo3DRJuYP7R51\nkgNOPx3eeQc2pncswcVDSscAzGw2MDtp3E0Jz8fUMt+rwBcbE9C5XDdw9WfsatuKjwo6RR3lgA4d\nYPRoeO45+MpXok7j0uRnAjsXcye9s5F5X2zGSz/X4aBLU5eUwFNPRRvINYpfDtq5mCtctInHz+oT\ndYxDff3rcNFFUadwjeAFwLmYe2xMHxZ+vlvUMQ7VvXvwcFnLdwE5F3N/P6EnOzrG9LvaK6/4xeGy\nmBcA5+LsuefouWlX/e2isnUr/OpXUadwafIC4Fycfec75G/ZHXWK2hUVBbeK3LYt6iQuDV4AnIur\nDz+EDRtYdmQ8rz0DQKdOMHIkvPRS1ElcGrwAOBdXc+bA2WdjrSK++md9xowJzgdwWccLgHNxNWcO\nnHNO1CnqN2YMLFsWdQqXBi8AzsVRVRW8+GJwB664O+kkePLJqFO4NMS0b5lzOa5VK6ioyI5+9lHf\noMalzbcAnIurbFj5V5szB773vahTuAbyAuBcHP3wh8FNV7LFwIEwcybUc4dBFy9eAJyLm5074de/\nhp49o06SumOOgdatYenSqJO4BvAC4FzcvPoqDBsGXbtGnSRlxQ+eyeyjdsOzz0YdxTVASgVAUomk\npZKWS7q+hunXSVos6W1Jz0s6KmHa5ZKWhY/LMxneuRbpueeCrpVZZv7Q7n4+QJaptwBIag3cDZwH\nDAEmSBqS1OxNoNDMjgNmAj8L580HbgZGASOBmyVl0ZEt5yKQpQVgwZDuMGhQ1DFcA6SyBTASWG5m\nK81sN1AKjEtsYGZlZrY9HHyN4MbxAOcCz5rZRjPbBDwLlGQmunMt0J490K4dnHxy1EnqdNCNYUKb\nu7SDn/88okQuHbJ6jtpLugQoMbOrwuHLgFFmNqmW9ncBn5jZbZK+D3Qws9vCaf8N7DCznyfNMxGY\nCFBQUDCitLS0kb/WAZWVleTlxfdaKnHO59nSl8l8FRsqMrKcavmt89m4LzP38h3cYzBwIOPg7sfQ\ndutW9nRL7/4FufS5ZlpxcfF8MytsyDwZPRFM0r8AhcAZDZnPzKYCUwEKCwutqKgoY5nKy8vJ5PIy\nLc75PFv60s5ndsiJVbdOuzUzoUIT8iYwvXJ6RpZVdnEZcCBjWecb4M470744XIv9XGMqlV1Aa4B+\nCcN9w3EHkTQGmAyMNbNdDZnXORcqLISVK6NOkb5TT4UFC6CyMuokLgWpFIC5wCBJAyS1A8YDsxIb\nSDoB+C3Byn9twqQ5wDmSuocHf88Jxznnkq1aFVwCun//qJOk7JBjAYcdFhSxl1+OLpRLWb0FwMz2\nApMIVtxLgBlmtkjSFEljw2Z3AHnAnyQtlDQrnHcj8COCIjIXmBKOc84le/55OOus4DpA2eyss7w7\naJZI6RiAmc0GZieNuynhea191szsfuD+dAM6lzOeey5YeYaSe9lkjTFjWP7Vs/nWcQsou7ws6jSu\nDln+VcO5FsIsKADZcPnn+px0Eg9fcJRfFygL+OWgnYuDHTvg29/Oqv3/tWrThrJRh0edwqXAC4Bz\ncdCpE9x8c9QpMqbb1t0c/aH3BIo73wXkXBwsWQJ790adImO6btvD9x9Y6ruBYs4LgHNR2707uPTD\nli1RJ8mYD3p3os0+y+5zGnKAFwDnovb668FF1Hr0iDpJ5kgs+EL3oGuriy0vAM5FLUuv/lmfBX55\n6NjzAuBc1FpoAZg/pBuUlUFVVdRRXC28ADgXpS1b4K23gmvotDDr8zvAokXZf2ZzC+bdQJ2LUocO\nMGcOdOwYdZKMOOTs5cP9fIA489LsXJTat2+R3/6rjf/5yTw4rn/UMVwtvAA4F6W774bt2+tvl6W2\n5bXlkmdWt+jfMZt5AXAuKmvWwE03BVsBLdT2jm1YdmRe2jeIcU3LC4BzUXnuOTjzTGjdOuokTWru\nsPzgOIeLHS8AzkXl6afh3HOjTtHk5g3rDs88E3UMV4OUCoCkEklLJS2XdH0N00dLWiBpb3gT+cRp\n+8KbxOy/UYxzOW/fPnj22ZwoAMv6d4Zu3fw2kTFUbzdQSa2Bu4GzgdXAXEmzzGxxQrMPgSuA79ew\niB1mNjwDWZ1rOd59F/r0gX796m+b5apaCf72t6hjuBqkch7ASGC5ma0EkFQKjAP2FwAzez+c5qf8\nOZeKoUNh3ryoUzQvM5CiTuESyOq5XGu4S6fEzK4Khy8DRpnZpBra/gF40sxmJozbCywE9gI/MbPH\na5hvIjARoKCgYERpaWnav1CyyspK8vLyMra8TItzPs+Wvkzkq9hQkaE0B8tvnc/Gfc17a+4h7Xsz\n4t/+jdcffLDOg9658Lk2leLi4vlmVtiQeZrjTOCjzGyNpIHAC5LeMbMViQ3MbCowFaCwsNCKiooy\n9uLl5eVkcnmZFud8ni19debbtAkuvxz+8pc6vxHfOu3WJsk2IW8C0yunN8mya1N2cRl060ZRly5w\n0km1tsvqzzULpXIQeA2QuKOybzguJWa2Jvy5EigHTmhAPudanuefhz17cm93yDnneG+gmEllC2Au\nMEjSAIIV/3jga6ksXFJ3YLuZ7ZLUEzgV+Fm6YZ1rEebMgZKSQ0Yfch2dlubcc+HHP4bJk6NO4kL1\nbgGY2V5gEjAHWALMMLNFkqZIGgsg6SRJq4FLgd9KWhTO/gVgnqS3gDKCYwCLD30V53KEWc70/09U\nPK2Ykg9/DAsWwNatUcdxoZSOAZjZbGB20ribEp7PJdg1lDzfq8AXG5nRuZZjyZLgIOixx0adpNnt\nat8abrstuC5Qly5Rx3H45aCda16bNsG3v33Q/v8Wv+sn0fe+F3UCl8ALgHPN6dRTW/Tln+tT/Ici\nBn9QyW//+w2/UUwM+CfgXHPZswd27ow6RbQkJt+7GN58M+okDi8AzjWfp5+GCy+MOkXk/j68Bzz5\n5EHjiqcV59ausJjwAuBcc5k1q8bun7nm78cfWgBcNLwAONccqqrgiSfgy1+OOknk/jGoKyxfDh9/\nHHWUnOcFwLnm8MYb0LMnHH101Ekit69NK14Y3JY7Jvsun6h5LyDnmsOsWTB2bNQpYmPqV46msmNr\nZvt+/0h5AXCuOYwdG2wBOAA+7dkh6ggOLwDONY+TT97/tLq3S9nlZVGliYWiN9byaY8OLDnazwqO\nih8DcK6pvfIKLF0adYrY+dy6nZz96idRx8hpXgCca2o33eQFoAavDe/BKQs3BBfIc5HwAuBcU9q0\nKbj145gxUSeJnfd7d6KqlTj6Q79ZfFT8GIBzTempp6CoCDp1OmRSzp/5KvFSYS+K5q5jxVGdD5rk\nx0mah28dKwrDAAAPkUlEQVQBONeUvPtnncpG9qLvpzv2D1dsqKixMPqlIppGSgVAUomkpZKWS7q+\nhumjJS2QtDe8iXzitMslLQsfl2cquHOxt3cvvPQSXHBB1Eliq2JAF269ZmjUMXJWvbuAJLUG7gbO\nBlYDcyXNSrqz14fAFcD3k+bNB24GCgED5ofzbspMfOdirE0bWLECOnYEfJdPXVRlWKtD75Hs71nT\nSmULYCSw3MxWmtluoBQYl9jAzN43s7eBqqR5zwWeNbON4Ur/WcCvhuVyR7jyd7XrvXYHv7t5nvcG\nikAqB4H7AKsShlcDo1Jcfk3z9kluJGkiMBGgoKCA8vLyFBdfv8rKyowuL9PinM+zpW/H2rVsOvFE\n3rrjjuAWkMCEvAkRpwrkt86PTRYADjN67ZrMNRtOh251Z5v66FQABvcY3FzpDhL3v7uGikUvIDOb\nCkwFKCwstKKioowtu7y8nEwuL9PinM+zpW/x5Ml0792borPO2j/u1mm3RpjogAl5E5heOT3qGAfp\nMqITe158kB39J6eUreziaHoHxf3vrqFS2QW0BuiXMNw3HJeKxszrXNYqeOEFGD8e8B4sqSgb2Yui\nN9alvBvI39PMSKUAzAUGSRogqR0wHpiV4vLnAOdI6i6pO3BOOM65lmvjRrq+8w6MG1d/WwdARf/O\ntNln5H+wOuooOaXeAmBme4FJBCvuJcAMM1skaYqksQCSTpK0GrgU+K2kReG8G4EfERSRucCUcJxz\nLddjj7GxsBA6d66/rQtI/Prrx7Cno18ltDmldAzAzGYDs5PG3ZTwfC7B7p2a5r0fuL8RGZ3LLvn5\nfDRuHIdHnSPL/P2EnvTP6wV+ZYhm42cCO5dhxdt+zRtHHhZ1jKzUc8UHHLXms6hj5AwvAM5l0tKl\ndNyxF/ADlek4YnEFE2Z/GHWMnOEFwLkMKZ5WzNKSQoYt2xJ1lKy1bPTJnLpgPYdt3xt1lJzgBcC5\nDBn83la6VO5l3rD8qKNkrZ1dOzN/aHfOfH1t1FFyghcA5zLky2Uf89czjqjxmjYudbNHH8F5L30c\ndYyc4AXAuUzYupUz5q1j9umfizpJ1ps3LJ9OO/eRv3lX1FFavFhcCsK5bFLjzUoef5wFQ7qxqVv7\niFK1HFWtxDduP8m3pJqBFwDnMuGyy7jjs99FnaLFsFYCM2R4IWhCXgCca6T9XT07+b9TJl03rYIF\nQ7pTPtJPqWsqfgzAuUb6P9OXc+Iiv8JJpi38fDfGvvBR1DFaNC8AzqWpeFoxF9xzGiUvf8LKfnlR\nx2lxXizsRe+1Ozh25daoo7RYXgCca4TzXvmEucO6s7lLu6ijtDj72rTiT+f2ZfzsVfU3dmnxAuBc\nmtru3sdXnl5F6ZeOjDpKi/XXM45g+NLN9P50e9RRWiQvAM6lqeSVT1jRL49l/f2yz01lZ4c2TL52\nGBu7+hZWU/BuC86laVn/zvxjUNeoY7R4i4/x97ippLQFIKlE0lJJyyVdX8P09pIeCae/Lql/OL6/\npB2SFoaPezMb37novDuwC+/5wd9mMXTZFsY973eTzbR6C4Ck1sDdwHnAEGCCpCFJza4ENpnZMcD/\nAj9NmLbCzIaHj6szlNu5yLTaV8WVM1fSdk9V1FFyxsau7fjGn9/bf6ltlxmpbAGMBJab2Uoz2w2U\nAsk3Ox0HTAufzwTOkuSn77kW6czX13FcxRb2tPE/8eby8eEdmT+kOxf5VkBGpVIA+gCJ/bBWh+Nq\nbBPeQ3gL0COcNkDSm5JelHR6I/M6F62qKr7+5Af8v7FHgX/HaVb3//MAvvL0Krpv2R11lBZDZlZ3\nA+kSoMTMrgqHLwNGmdmkhDb/CNusDodXAKOAbUCemW2QNAJ4HBhqZluTXmMiMBGgoKBgRGlpaaZ+\nPyorK8nLi+9+2jjn82yH+tzTT9P9zzP4y+3/VWcByG+dz8Z98Tw7OJuzjZo2k3bbd/Dyty8DYHCP\nwc0VDYj3/0RxcfF8MytsyDyp9AJaA/RLGO4bjqupzWpJbYCuwAYLqssuADObHxaGwcC8xJnNbCow\nFaCwsNCKiooa8jvUqby8nEwuL9PinM+zJdm0CcaP59+u7kPFZ3V/SZmQN4HpldObKVjDZHO2WSV7\nOG3BeuaEbcouLqu1bVOI8/9EOlLZBTQXGCRpgKR2wHhgVlKbWcDl4fNLgBfMzCT1Cg8iI2kgMAhY\nmZnozjWz7dvhlluoGNAl6iQ567PD2jLn9COijtFi1FsAwn36k4A5wBJghpktkjRF0tiw2X1AD0nL\ngeuA6q6io4G3JS0kODh8tZnFc9vTufr06QNXe0e2ODjjjbWcvHB91DGyXkongpnZbGB20ribEp7v\nBC6tYb5HgUcbmdG5aFVVwfXXw+TJ0NVPSoqDbXlt+Y8HlsL/7IQOHaKOk7X8UhDO1ef3v4e//Q06\n+yUf4mLBkO5UHNUZfvjDqKNkNS8AztXlww/hxhvhnnuglf+7xMmdVwyGmTNh9uz6G7sa+V+0c7XZ\ntQsuvRR+8AM4/vio07gk2/LawkMPwZVXwubNUcfJSl4AnKvNLbcEB36///2ok7jajB4Nzz4L3bpF\nnSQr+dVAnavNd78LnTr5Gb9xN2xY8HPTJujePdosWca3AJxLtmYN7NsHRxzhvX6yxa5dcOKJ8Je/\nRJ0kq3gBcC7R++/DaafBc89FncQ1RPv28Kc/wbe+FewScinxAuBctRUr4Iwzgn3+554bdRrXUIWF\n8Nhj8LWvwcsvR50mK3gBcA5g6VIoKgpO9rrmmqjTuHSddho8/DBcfDEsXhx1mtjzg8DO7doFX/oS\nTJkC3/hG1GlcY519NjzxBBxzTNRJYs+3AFzuqr4Uevv2wZm+vvJvOUaNgnbtYP16uP122Ot3EquJ\nFwCXmzZtgq9+NdhnDPC5z0WbxzUNCV58Ec45Bz79NOo0seMFwOUWs6Cr4PDhQTfPL30p6kSuKfXo\nAU89FRwbGDYM7rwz2OXnAC8ALpe89BKcfDL893/D1Knwy1/6lSRzQevWwfGdl1+GF17wg/wJ/CCw\na9l27Ai+9XfqBBs3wnXXBdf38Qu75Z7Pfx6efDL4mwCoqAguJHfZZcGWQg7y/wLX8uzYEZwM9M1v\nQu/eB04MuvDCYL+/r/xzW8eOB57PmwdHHw1f/zrMmAEbNkSXKwIp/SdIKpG0VNJySdfXML29pEfC\n6a9L6p8w7YZw/FJJfnaNy6yqKti2LXi+bRucfjr06gU33RTs8120CMaNizaji6fBg4Oria5cCf/0\nT/DggzBoEFRWBtPffhuWLGnRPYjq3QUU3tP3buBsYDUwV9IsM0s8y+JKYJOZHSNpPPBT4KuShhDc\nQ3go0Bt4TtJgM9uX6V/EtSBmsHt38I+4eXOwD7d//2DaL34BH3zAkDffDFb4S5fCv/5rcL3+vDy4\n9VYYOTJ47lwq8vOD4wLXXBOs7NuEq8UnnoAHHoCPPw4Kw5FHMvCww4ITBgEWLIA9e4LdR126BH9z\nHTtm1cUDUzkGMBJYbmYrASSVAuOAxAIwDrglfD4TuEuSwvGlZrYLeC+8Z/BI4O+Zie+yzvnnw7p1\nwT/avn3BP9AZZ8BvfhNMHzgwuAlL69bBfvtu3YJv8L/4RTB90ybo04f1eXkcfv758IUvHLhgmwRn\nnhnN7+VahjYJq8TJk4NHZWXwRWPVKj57/fUD0x95JDiovGFD8GWksjLY5bhiRTD9a1+D118Peh7F\ndCtUVn0yTG0NpEuAEjO7Khy+DBhlZpMS2vwjbLM6HF4BjCIoCq+Z2UPh+PuAp8xsZtJrTAQmhoPH\nAksb/6vt1xOI892j45zPs6Uvzvk8W/rinO9YM2vQfUtj0QvIzKYCU5ti2ZLmmVlhUyw7E+Kcz7Ol\nL875PFv64pxP0ryGzpPKQeA1QL+E4b7huBrbSGoDdAU2pDivc865CKRSAOYCgyQNkNSO4KDurKQ2\ns4DLw+eXAC9YsG9pFjA+7CU0ABgEvJGZ6M455xqj3l1AZrZX0iRgDtAauN/MFkmaAswzs1nAfcD/\nCw/ybiQoEoTtZhAcMN4LXBNBD6Am2bWUQXHO59nSF+d8ni19cc7X4Gz1HgR2zjnXMvkpkc45l6O8\nADjnXI7KqQIg6T8kmaSeUWepJukOSe9KelvSnyV1i0GmOi/9ESVJ/SSVSVosaZGka6POlExSa0lv\nSnoy6izJJHWTNDP8m1si6ZSoM1WT9O/hZ/oPSdMlRXqpVkn3S1obnudUPS5f0rOSloU/u8coW4PX\nJTlTACT1A84BPow6S5JngWFmdhxQAdwQZZiES3+cBwwBJoSX9IiLvcB/mNkQ4GTgmpjlA7gWWBJ1\niFr8EnjazD4PHE9MckrqA3wXKDSzYQQdTsZHm4o/ACVJ464HnjezQcDz4XAU/sCh2Rq8LsmZAgD8\nL/CfQKyOepvZM2ZWfbWp1wjOlYjS/kt/mNluoPrSH7FgZh+b2YLw+TaCFVifaFMdIKkvcD7w+6iz\nJJPUFRhN0GsPM9ttZpujTXWQNkDH8FyiTsBHUYYxs5cIejUmGgdMC59PAy5s1lChmrKlsy7JiQIg\naRywxszeijpLPb4JPBVxhj7AqoTh1cRoBZsovOrsCcDrdbdsVr8g+KJRFXWQGgwA1gEPhLuofi/p\nsKhDAZjZGuDnBFvoHwNbzOyZaFPVqMDMPg6ffwIURBmmDimtS1pMAZD0XLjvMPkxDvghcFNMs1W3\nmUywe+OPUeXMJpLygEeB75nZ1qjzAEi6AFhrZvOjzlKLNsCJwG/M7ATgM6LbhXGQcF/6OIIi1Rs4\nTNK/RJuqbuHJrrHaowANW5fE4lpAmWBmY2oaL+mLBH9UbwUXKKUvsEDSSDP7JMps1SRdAVwAnGXR\nn5gR+8t3SGpLsPL/o5k9FnWeBKcCYyV9CegAdJH0kJnFZUW2GlhtZtVbTDOJSQEAxgDvmdk6AEmP\nAf8EPBRpqkN9KukIM/tY0hHA2qgDJWrouqTFbAHUxszeMbPDzay/mfUn+Cc4sblW/vWRVEKwy2Cs\nmW2POg+pXfojMuFlxu8DlpjZnVHnSWRmN5hZ3/DvbDzBJVHisvIn/JtfJenYcNRZHHxZ9yh9CJws\nqVP4GZ9FTA5QJ0m87M3lwF8izHKQdNYlLb4AZIG7gM7As5IWSro3yjDhQaTqS38sAWaY2aIoMyU5\nFbgMODN8vxaG37hdar4D/FHS28Bw4McR5wEg3CqZCSwA3iFYN0V62QVJ0wnuXXKspNWSrgR+Apwt\naRnBVstPYpStwesSvxSEc87lKN8CcM65HOUFwDnncpQXAOecy1FeAJxzLkd5AXDOuRzlBcA553KU\nFwDnnMtR/x8fIWb+IRpVGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEICAYAAACqMQjAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VFX6wPHvm4QQehfp3QIKChHXulhBRdlddRfsFXvX\nFctPEMsq7tpWXUHFTrGLiiBWbCgBkd5rAElooQZS3t8f54aZJHMzk2SSmYT38zzz5M45t7xzZzLv\n3HPOvVdUFWOMMSaUhFgHYIwxJn5ZkjDGGOPLkoQxxhhfliSMMcb4siRhjDHGlyUJY4wxvixJVEMi\n8qKI/F+U13mhiHxRxmVPEJFF0YwnmkRkpYicGus4SktE+ohIeqzjMNWbJYkqxvtC2y0i20Vkq4j8\nJCLXisi+91JVr1XVh6K5XVV9W1VPL+Oy36vqwdGIQ0S+FZGrorEuY0x4liSqprNVtR7QDngMuBt4\npaI2JiJJFbXuyiSOfeYrQXX5zBhLElWaqmap6gTgH8ClInIYgIi8JiIPe9NNReRT76hjs4h8X/BF\nKSJtROQDEckUkU0i8pxXfpmI/CgiT4nIJmCYV/ZDwbZFREXkehFZ4h3VPCQinbwjm20i8o6IJHvz\nFmoW8Y6G7hSR2SKSJSLjRSTFq2vkxZspIlu86dZe3SPACcBzIrIjKN5jRWS6t67pInJs0La+FZFH\nRORHYBfQsaR9KiI1ReRpEVnnPZ4WkZoR7Mu7RWStty8WicgpPus/S0R+8/bRGhEZFlTX3tuvl4rI\nahHZKCL3BdXX8t7bLSIyHzgqzGt5xtvGNhGZISInBNUlisi9IrLMi3mGiLTx6rqJyBTvNW4QkXu9\n8n2fqxLe17tFZDawU0SSRGRI0Dbmi8hfi8R4tYgsCKrvKSJ3icj7ReZ7VkSeKen1mgqiqvaoQg9g\nJXBqiPLVwHXe9GvAw970v4AXgRre4wRAgETgd+ApoA6QAhzvLXMZkAvcBCQBtbyyH4K2p8DHQH2g\nG7AH+Ar3JdwAmA9c6s3bB0gv8hp+BVoCjYEFwLVeXRPgXKA2UA94F/goaNlvgauCnjcGtgAXe7EO\n8p43CZp/tRdjElCjpH0KDAemAQcAzYCfgIfC7MuDgTVAS2++9kAnn/evD3A47gdad2AD8Jeg5RR4\nydvnPbz9eqhX/xjwvfea2wBzg/driG1d5O3PJOAO4A8gxau7C5jjxS7etpp4+3y9N3+K9/zoop+r\nEt7XWV5stbyy8733OQH3Y2Yn0CKobi0u2QnQGXd03MKbr6E3XxKQAfSK9f/f/viwI4nqYx3uy6Oo\nHNw/XTtVzVHXP6BAb9w/712qulNVs1X1h+D1qep/VTVXVXf7bHOEqm5T1Xm4L6wvVHW5qmYBnwNH\nlhDvs6q6TlU3A58ARwCo6iZVfV9Vd6nqduAR4M8lrOcsYImqvunFOhZYCJwdNM9rqjrPq88pYV0A\nFwLDVTVDVTOBB3EJCPz3ZR5QE+gqIjVUdaWqLgu1clX9VlXnqGq+qs4GxoZ4fQ+q6m5V/R2XyHt4\n5X8HHlHVzaq6Bni2pBeiqm95+zNXVf/jxVjQN3QVcL+qLlLnd1XdBPQH/lDV/3ifie2q+kuYfRbs\nWVVdU/CZUdV3vfc5X1XHA0twn72CGEao6nQvhqWqukpV1wNTcUkEoB+wUVVnlCIOEyWWJKqPVsDm\nEOVPAEuBL0RkuYgM8crbAKtUNddnfWsi2OaGoOndIZ7XLWHZP4KmdxXMKyK1RWSkiKwSkW24L4uG\nIpLos56WwKoiZatw+6NAJK/Fb32rvDLw2ZequhS4FRgGZIjIOBFpSQgicrSIfOM1p2UB1wJNi8wW\nct94cQS/lqKvu+i27vSacrJEZCvuCK9gW22AUInMrzxShfa1iFwiIrO8JrqtwGERxADwOu5ICO/v\nm+WIyZSDJYlqQESOwn0p/lC0zvsleIeqdgTOAW732svXAG3Fv4MxVpcHvgP3a/doVa0PnOiVi/e3\naFzrcE0UwdrimjEKlOa1FF1fW6+spH2Jqo5R1eO9ZRV43Gf9Y4AJQBtVbYBrvhKfeYtaj/tiDY4t\nJK//4Z+4o49GqtoQyAra1hqgU4hF1+Dfb7MT1wxY4MAQ8+zb1yLSDtd0diOu+a8h7ogzXAwAHwHd\nxfWz9Qfe9pnPVDBLElWYiNQXkf7AOOAtVZ0TYp7+ItJZRAT3JZEH5OP6BNYDj4lIHRFJEZHjKjN+\nH/VwRyFbRaQxMLRI/QYKf4lNBA4SkQu8jtJ/AF2BT8u4/bHA/SLSTESaAg8Ab4H/vhSRg0XkZK+D\nO9uLP7+E17dZVbNFpDdwQSliewe4R1znfmtcn5Gferh+pUwgSUQewPUfFXgZeEhEuojTXUSa4PZb\nCxG5VVwnfj0ROdpbZhZwpog0FpEDcUdPJamDSxqZACJyOe5IIjiGO0WklxdDZy+xoKrZwHu4pPqr\nqq4Osy1TQSxJVE2fiMh23C+x+4Angct95u0CfAnsAH4GXlDVb1Q1D9du3xnXsZuO61iMtadxnbYb\ncR3Ik4rUPwOc543weTaoHf0OYBPu13N/Vd1Yxu0/DKQBs3EduzO9MvDZl7i2/se8mP/AdXrf47P+\n64Hh3vv3AO6LP1IP4pqYVgBfUHITzGTcvlvsLZNN4aagJ71tfwFsww2hruX1A52G+2z8getDOMlb\n5k1cH8lKb7nxJQWrqvOB/+D21QZch/2PQfXv4vqcxgDbcUcPwf1qr3vLWFNTDInrdzPGmPgiIm1x\ngxAOVNVtsY5nf2VHEsaYuCPu/JPbgXGWIGLLzoo0xsQVEamDa55ahRv+amLImpuMMcb4suYmY4wx\nvuKyualp06bavn37WIdhjDFVxowZMzaqarNorzcuk0T79u1JS0uLdRjGGFNliEiJZ+CXlTU3GWOM\n8WVJwhhjjC9LEsYYY3xZkjDGGOPLkoQxxhhfliSMMcb4siRhjDHG136dJOav28aMVVtiHYYxxsSt\nuDyZrrKc+ez3AKx87KwYR2KMMfFpvz6SMMYYUzJLEsYYY3xZkjDGGOPLkoQxxhhfliSMMcb4siRh\njDHGlyUJY4wxvixJGGOM8RX2ZDoRGQ30BzJU9bAQ9XcBFwat71CgmapuFpGVwHYgD8hV1dRoBW6M\nMabiRXIk8RrQz69SVZ9Q1SNU9QjgHuA7Vd0cNMtJXr0lCGOMqWLCJglVnQpsDjefZxAwtlwRGWOM\niRtR65MQkdq4I473g4oV+EJEZojI4DDLDxaRNBFJy8zMjFZYxhhjyiGaHddnAz8WaWo6XlV7AmcA\nN4jIiX4Lq+ooVU1V1dRmzZpFMSxjjDFlFc0kMZAiTU2qutb7mwF8CPSO4vaMMcZUsKgkCRFpAPwZ\n+DiorI6I1CuYBk4H5kZje8YYYypHJENgxwJ9gKYikg4MBWoAqOqL3mx/Bb5Q1Z1BizYHPhSRgu2M\nUdVJ0QvdGGNMRQubJFR1UATzvIYbKhtcthzoUdbAjDHGxJ6dcW2MMcaXJQljjDG+LEkYY4zxZUnC\nGGOML0sSxhhjfFmSMMYY48uShDHGGF+WJIwxxviyJGGMMcaXJQljjDG+LEkYY4zxZUnCGGOML0sS\nxhhjfFmSMMYY48uShDHGGF+WJIwxxviyJGGMMcZX2CQhIqNFJENEQt6fWkT6iEiWiMzyHg8E1fUT\nkUUislREhkQzcGOMMRUvkiOJ14B+Yeb5XlWP8B7DAUQkEXgeOAPoCgwSka7lCdYYY0zlCpskVHUq\nsLkM6+4NLFXV5aq6FxgHDCjDeowxxsRItPokjhGR30XkcxHp5pW1AtYEzZPulRljjKkikqKwjplA\nO1XdISJnAh8BXUq7EhEZDAwGaNu2bRTCMsYYU17lPpJQ1W2qusObngjUEJGmwFqgTdCsrb0yv/WM\nUtVUVU1t1qxZecMyxhgTBeVOEiJyoIiIN93bW+cmYDrQRUQ6iEgyMBCYUN7tGWOMqTxhm5tEZCzQ\nB2gqIunAUKAGgKq+CJwHXCciucBuYKCqKpArIjcCk4FEYLSqzquQV2GMMaZChE0SqjooTP1zwHM+\ndROBiWULzRhjTKzZGdfGGGN8WZIwxhjjy5KEMcYYX5YkjDHG+LIkYYwxxpclCWOMMb4sSRhjjPFl\nScIYY4wvSxLGGGN8WZIwxhjjy5KEMcYYX5YkjDHG+LIkYYwxxpclCWOMMb4sSRhjjPFlScIYY4wv\nSxLGGGN8WZIwxhjjK2ySEJHRIpIhInN96i8UkdkiMkdEfhKRHkF1K73yWSKSFs3AjTHGVLxIjiRe\nA/qVUL8C+LOqHg48BIwqUn+Sqh6hqqllC9EYY0ysJIWbQVWnikj7Eup/Cno6DWhd/rCMMcbEg2j3\nSVwJfB70XIEvRGSGiAwuaUERGSwiaSKSlpmZGeWwjDHGlEXYI4lIichJuCRxfFDx8aq6VkQOAKaI\nyEJVnRpqeVUdhddUlZqaqtGKyxhjTNlF5UhCRLoDLwMDVHVTQbmqrvX+ZgAfAr2jsT1jjDGVo9xJ\nQkTaAh8AF6vq4qDyOiJSr2AaOB0IOULKGGNMfArb3CQiY4E+QFMRSQeGAjUAVPVF4AGgCfCCiADk\neiOZmgMfemVJwBhVnVQBr8EYY0wFiWR006Aw9VcBV4UoXw70KL5E/Jk0dz39DmsR6zCMMSbu2BnX\nwGOfL4x1CMYYE5csSRhjjPFlSQJ3MocxxpjiLEkYY4zxZUnCGGOML0sSgFp7kzHGhGRJwhhjjC9L\nEsYYY3xZkjDGGOPLkgSgNgjWGGNCsiRhjDHGlyUJY4wxvixJGGOM8WVJAjtPwhhj/FiSMKYa2r03\nj3fT1qD2C8iUU9TucW2MiR//+nwBb/y8iub1UzjxoGaxDsdUYXYkYUw1lLFtDwA79+TGOBJT1VmS\nwPokTPVj5/6YaIkoSYjIaBHJEJG5PvUiIs+KyFIRmS0iPYPqLhWRJd7j0mgFbozxV/DDx91i3piy\ni7RP4jXgOeANn/ozgC7e42jgf8DRItIYGAqk4u7tM0NEJqjqlvIE7Wv7H5C3FyQBEPc3IdGVJdQA\nzXP/PZIAKM3YQiYNKyQUY4ypDiJKEqo6VUTalzDLAOANdUMppolIQxFpAfQBpqjqZgARmQL0A8aW\nJ2hf/zm4VLNPT4Hf8ztyPf+pkHCMMaaqi1afRCtgTdDzdK/Mr7wYERksImkikpaZmRmlsIA2R5dY\nvUXrha5Y/zusnx29OIyJCWtvMuUTN0NgVXUUMAogNTW1bL1uw7JKNfv6oR3YoI1CV448sUzrNMaY\n6iRaRxJrgTZBz1t7ZX7lcaGFbOYfSd9yXc7r/jNtXFJ5ARljTJyJVpKYAFzijXL6E5ClquuBycDp\nItJIRBoBp3tlceWivI/8K59LrbxAjIkSGwBroiWi5iYRGYvrhG4qIum4EUs1AFT1RWAicCawFNgF\nXO7VbRaRh4Dp3qqGF3RiG2Mqng2BNeUV6eimQWHqFbjBp240MLr0oRljjIk1O+M6EjNK6LMwJg7Z\nVQRMtFiSiMQnN8OeHbGOwphSs9YmU16WJApsXlFy/aqfKicOY6LCDiVMdFiSKPDsEbBwon/9mPMr\nLxZjjIkTliSCrf891hEYY0xcsSQRTPNiHYExUSU2BtaUkyWJYLs2w86NsY7CmHKz0U0mWixJBEt7\nBZ7oFOsojDEmbliSMMYY48uShDHVUEFrk/VImPKyJBHKkimxjsCYqkkVfn0J9u6KdSQmSixJhPL2\nebGOwJiqafEkmHgnTHkg1pGYKLEkYUw1VukjYPfudH93bKjkDZuKYknCGFMmKzfuZP66bYULf3jK\n/V0wofIDMhUibm5faoypWvr8+1sAVj52VqBww9zYBGMqjCUJY0yZJJFLI7bHOgxTway5qTSyt4Wf\nJ1h+Pgxv4kZ7GFOJvl6YAUB2Tn6FbWNpyiVMT7kB1kwPP7OpsiJKEiLST0QWichSERkSov4pEZnl\nPRaLyNaguryguqrdULl9fenm1zzIz4XP766YeCpTvl3XqirauntvxW/ktzcqfhsmZsImCRFJBJ4H\nzgC6AoNEpGvwPKp6m6oeoapHAP8FPgiq3l1Qp6rnRDH2ynHcLYHpgk65SOXluL9V/cKBm5fD8MYw\n+51YR2JKSSrjdLrl31X8NkzMRHIk0RtYqqrLVXUvMA4YUML8g4Cx0QguLnQ8KTCdlV66ZbOzohtL\nrGQsdH/nvh/bOEx82roqMJ1QI3ZxmAoRSZJoBawJep7ulRUjIu2ADsDXQcUpIpImItNE5C9+GxGR\nwd58aZmZmRGEVUlaHxWYLm2Ti1Zce3ClSvDGNyz/NqZhmCogPzfWEZgoi3bH9UDgPdVC7SvtVDUV\nuAB4WkRCXmZVVUepaqqqpjZr1izKYZVDQmAA2JbtpbzPtVSTcQHZXhdTbnZs4zCltmrTzkreol2j\nvLqJ5FtsLdAm6HlrryyUgRRpalLVtd7f5cC3wJGljjKWgk5ZbbRldqkW3bArcCTx4W/ptB/yGRnb\nq+AXbRweEemwhjCsAe2HfMYd79gdBf2MnLq8Qtabnx8iGUy6t0K2ZWIrkiQxHegiIh1EJBmXCIqN\nUhKRQ4BGwM9BZY1EpKY33RQ4DpgfjcArTQlHA6rKj0s3okXu8KKqfLMogzOenrqv7Lbx7otsyQZ3\nNDLml9Ws2byL/327jFlrtu5bLicvn09nr+O7xZlsz84ptE5VZd66LBZv2E76FncBtbVbd/PDko18\nMe8PtmfnsHXXXqbM38Cc9CxuHz+LjG3ZzF2bxd7cfLJz8rj3wzn8tHQja7fuBuCrBRt45YcVxV7b\nVws2cM5zP5CXr5AT+mJtuXmRJ4/snDyGTZjHkg3bWb1pFys27mTeuizmrs3irWmrWJqx3SXRbYWT\n6Dtpa2g/5DM27djD6k27WLxhO6qKBP1ifX9mKfuKqonx01ezcmP4I4Wpiws3367P2l3ubf+xLcSP\nnWnPl3u9VdmmHXuKfRfk5uXz49KqfSOzsCfTqWquiNwITAYSgdGqOk9EhgNpqlqQMAYC47TwXjoU\nGCki+biE9JiqVukksWbzLv779RLeSQv/xdQkxKH3rys2c+HLv0QtvHA++K34Qd+YX1YXK3vo09Bv\nS6d7JzIgYQnPJLvn7Yd8VuoYendozK8rNgPw2k8rS5730a9Clvd6+MtCz1emFK7P2p1Dg1pVr9N0\n2vJNzE7fyuATO7Fpxx7e+HkVInB0hyYMemkan918PB2b1qVWciIAOXn53PPBHLq1rM+Dn7j3bN6D\nfVmeuZPte3I4sk0jtu/JKbSNS0b/GnLbrRvV4pweLXnh22UMPrEjC9Zv4/slGxlxbndGTl3GskyX\ngPp1O5DzerVmV04eTeokc9XraezOySv8HmxcUmz9u/fmUTMpgdx8JXPHHuauzeKaN2cA0KtdI164\nsCfN67uVTJr7B5t37uXeD+dw4dFtuebETpz4xDcA/HrvKazctIt309Zw62kHkZ+vZOfkkZOnbNq5\nh6PaNyY5MYG9eflk7c5h2vJNDDgi0G365s8rGf3jSibefAJPf7WYA+qlcEHvtmRsz6ZhrWTq10pi\n5aZdNK6TvO8ztDxzBzNWbeFPHZtwwohvmHbPKTSu4/4J0lZt5uPf1jE+bQ2Tbj2Bdo3rcOgDkwA4\nok1Dxl79J7Jz8pg4dz3rtu7m+W+WuffhmHb8s98h7MnJ2/d5vuO0g7j0uPZc++YMZqdnMeriXhzb\nuWkEn5zKI0UzXzxITU3VtLS0it/QsAbh53lgCwxvtO9p++wxEa++GVuZnnJ9qZerCInkcWzCPL7P\n717qZf+a8D1PJf8PiP3rKLAy5QLAxfP3xG+4O2kcTYauhgSX1F/+fjmndz2Qtk1q71vm8znrWZKx\ng5tP6RJynWf/9wd27c3lwxuOIzkxgZQaicXm+XT2Okb/sIJ3rjmGpMTAD4ilGTvIzsnjsFYNmDhn\nPUkJQqM6ybRsWIsW9VN44+eVdGlejwXrt5GX744Yp8zfwO/pVXcEXMF7AJCuTWkthX8xx8tnpaop\ndJmTUhCRGV7/b1TZZTnCKddlNOMnAd+a9D43JX3EoL338XN+txLnHZj4NdPyD2WltgCgqcTvF1ki\neTya9ApJks+enL1cOHomaau2APDwZwtoJ39wW6f1LGx1Hi9+t4xE8qg17SmanHILNWrV4853f+f6\nPp3RHRvYum4xa7Q53Yd9AUDHZnW4/6xDycuHq99wP1pOTZhBotah8337zhfl4xuOY8DzP1b+i48j\nRROEqT4sSYRTjiQRT3cF6yB/ANCEwKVFmrGF8xO/49W8fuwm0HbwWI2XydLa9NjzMgAXJIZuAiqv\nFPZwXuJU3so7lRT2sjDlch7PGcj/8iI/5zKRfJLE9Y08NHwIs/P6AIFmpw+Sh9IkfTsdl/bgALI4\nK3EaV+e8zUufbuHqpImcnQSdvnyTZSkXc2tNOHXPCNpIJt/kH8nyzJ1c8VrBEa3yRNJIzk9y/UzB\nv5LjM0EonWQdyzTkaPVyeyLpxYjm69GmIfVTkvh+iSWRqsqSRDmNvLgXpx3anIQEgd/HuXHiR14E\nwDMffgclDLyZ+2BfsnPyaFq3Zqm2uWNPLlu3ZdG0JiQlCPmJNUmuVQe+HObOCh+WRcb2bOokJ1Fn\nTybUb8GON9+GZTCgeQbPDT4WajWCF46FjHn888CZcOqDMP7CfdtoILsCh73DLigWw8SbT6Bry/rw\n8/PQqAMcciYAu/bmkq+wInMnh7WqjwQn2T/mwm9vQsue0OYoGPMP2LiYhy8+ne01WsKbcHeNcdz9\nyEiY/S58cBXcvZJdiV4zzfr57N69nUN6nQRPulVelxgYQ/FwjVd5uMarHJX9PDkkMSvlmn115yV+\nx4gagWtoXZ00cd/0spSL901/WfOfAHyddwRT8nsxNu8UtwuSXt+XICLVlCy2UJc8ijdbVbQBCT/y\nTPILXL73Ll599P4yr2fLzr0kJQp5+UrD2q5NPmtXDg1GFP9MFPX5LSdwaIv6hco+nb2OG8f8Rmq7\nRrx33bH7ynfsySUpQdixJ5eGtWqwfONOTn8qsL8vTZzMgzVep0v2G+TY11alsr1dBhNuPI7urRsW\nLkxPgw+9L6W8HDj4DA5lZcjlV/zrTPfluXgydbOzoPvf/Te2dyc82gr+/gZ0db+w6351L3V/HRmY\np9mhcMO0wGVDXjiGAzKCOqL7P03dZa7D+bQt4+Hx8XDKA5Axz9VvWlooQewz9d+wbV2x4kJtppO9\nYY/DsiA7i9rrf4cOJ3J44zyY857bxilDYfk38OZfQ7/GnRnU+ynoTmZrZ8LP/3XTn95O7Xkf0OuM\nJ2DSXa6sRWCU9W01ip8FPj3lhmJlwQkiEicnzuLkxFkMSvyabJLpnbCoUP0JCbOZl9+emSnXMmjv\nfYxNfoSP8o7l1pwbAajPTtJSruPV3L48mHtpqbYdDV0T3FnQB0kpRn7t2QE16xYqauR11gZrUDuy\nAQJFEwRA/+4tad2oNp2a1SlUXrem+yoq6Ac6qHm9Qp8zffwG2A112UX9Jgfy3rXH8vGstTz82QJG\nXtyLnLx8vl2UyaI/tnPPGYeQr3DRK5U3QCRavrz9z7EOoRjruA47T1ah+dpnjwndsRRmXcHNE4Ff\n6A0C21CFBxvCgYfD8bdDzm6odyC89beglZwAA8fAY8GnrVSu7ntHM/vRcyFrrbtMx5T/cxX/twke\nauKmL3gHxgQlvjZHw5qq9w9bFgXv80WJU3i4xqsA3J9zOT/mH8YKr4+nPK45sSMXHt2OoRPmsmLj\nTl69vDftGtcmJz+f2elZHNW+MQA//98xHJM4n5n5nek5fEb4Fa+bBaP+DOe/Bt18knmwSP93ouXx\n9rB7C7l3LCWpXmQn2+blK5kLf2Zz3Y50bXsg2Tl5rN26m07N6rI3N5+nvlxMbl4+1/y5E6neaKPz\nerVmeeYORpzXg5e/X87d/Q6hUZ1k3k1bQ7eWDcjJy2fHnlwSE4Rxv67mxpM70/mAeqRv2cXI75Zz\nZ9+DaVCrBlt27qVeShLZufnUrZnEhm3ZNK6TTKKIa3XADWvPy1e+XpjBjj25/K1n63LtoorquLYk\nEXaewkki+77NxUe9bF4Bzx5R4mraZ7/NwbKGRdqWlTcdCKt/gcn3uMorJkOLHvDIgaV9BZXuQb2a\noddfAR9fD+t+Cz1Tw7awtfgw2/3dOm1Mvz2PU4ds1tMk5DxtGtdizebdjDi3O78tX8fMeQuYPPyy\nUm9rx9Dm1BXvXIZQX9bZ29yZ9Hk5UL8lzB4Pn9wCPS+Bs56EX0dB78HuNqTJdaFWkSPnsiaJLx+E\nH56EyydBu2Mif0EF2/vH23Bofxh1EqyfBUO3+C/z8Y2uedMvliArNu6kSd1k6qdUvWHUBWx0U5xI\nef8S90t/0hBIDz3+PJTbak3kFn2bnxN6wkszC1eO7hvlKCvOUHkJ/hem6cYSREgtZTOzU64G3BFH\nE7K4IPErbrn2OhLSp5PQ8yI0uS7rs7Jp2bAWf59/PSRMBS4r9bbySzpPdu0MeOnkwPND+kOX09z0\nzDfggK6uGXFy0BnUx9wIfR9x07sDI7tKtHMj1Cky5v8HrzPpg8Fw25zI1hPsqwddklg3s+T5Ni4N\nJIgIdGhaJ/xMkdiRASkNIKl0/YzxrJpcXKhizcoPutzUwk/h5ZNLlSAAbtG3ATgmP8yH2+wXFl1V\nnxkp13FHjfdIeuUUEiYPgX+1RvZso+VvT8OG+bDC67gd1gBy94RfabbXbAkkUeRilHt2QJ538b3g\nBAHuMx1sUrFbxsDPz7k4ln0Nj7eL4BUCK38ooTLCFoycbPcosHExvH1+4PmwBu6x0xs99Vp/GDMQ\nnutVZHNhtrf0S9hThrvs7d0ZuCUAwL+7wLuXlX49ccySRBi79+bxZV7PWIdhqpmab/UPXfFYW/ju\nMfhfkaaYjDAXKti23i3r/VKvLUWSyr9awRsD4MUTQi//1fAIoqbwF3Q4672hfat+CiSoAllrAl+u\n014MecY2AI80d49gS74oPt/r57gjnJXfw+LPi9e/c7EbEBHq8v1bV8Nb58IbQRep/uJ+eKfIgINt\n62HG6y5pk+hmAAAVBElEQVTu/DyXBB9tCa+eCbPGwH+9lp5FEynRlAdgXIiBInHKmpvCyM7JIzcG\nQxiNKWRUHxi6FX58GnL3woa5cPrDMOttl0AWfOLmmz8BTrij8LKzvNFgq0r4Zb9rU2RxlOZS4CJu\n1N+rZ4Sun/MudP8HTPLu3HjJBPjucfc3MSlwdBCJjHklH+Es+CSwj859xTULTb4HOp0Mrbwv97Vp\n8OLxbkj3Am9odeZiaHaQm37yEPf3k1vg+FsDownTfy1dy8KPz7i/WelQ90B4/WzoMwQ6xt/IJrCO\n67CzTDpvIb+NfZB7alSf+yiZaq5JZzesOdbCDWA47hY47DwY6R3d1GvhbhF8+wLXmT76DFj9U+XE\nGm016kD74+D8113CmXAzDFkNNVIKf++0PQZWe9dEvWyiW6aMrOM6RlZv3kV+XJ07bUwY8ZAgIPwA\nhh+fCfyqhsA95NfNgicPrbi4KkPOTtcs9mjQsOdHmkPNIueOrP45MP3amXDTTGgS8pY7MWN9EmH8\nqWMT1JKEMZVn3KBYR1Bx9mwruf6/8df/aUkijFo1EuPoMn3GGFO5rLkpjLemrWJOfuhLSxtjTHVn\nSSKM139eBRwU6zCMMSYmrLnJGGOML0sSxhhjfEWUJESkn4gsEpGlIlLsnH0RuUxEMkVklve4Kqju\nUhFZ4j0q/5rJZv/x15HuOkRFdf8HJAZdSyclgovTGWOACJKEiCQCzwNnAF2BQSLSNcSs41X1CO/x\nsrdsY2AocDTQGxgqIo1CLGtM+R1+Pvz9TbizyCUeTr4f7l0beD5kNTywGS54153FnFTLlV8R4nIP\nxuznIum47g0sVdXlACIyDhgAhLmYDAB9gSmqutlbdgrQD7DTl030JXiXT6l7gLunRatUqBN0Se6b\nZsLOzMC8B53upv+53F1uIqU+3LMWUPhXa3ezpMPPhy0r3KUTwB2R5O1xl57OWusuOLd2BiyeBOnT\n3TypV0LaK5Xyko2paJEkiVbAmqDn6bgjg6LOFZETgcXAbaq6xmfZkDfdFZHBwGCAtm3bRhCWMSU4\nKMTl15t0Cn02a3LtwHTBndmC7z/QsA1c8jHs2gwH9YPdm115g1bu0ekkOPFO2LrGXRq7Ri1ISoFp\nz0fv9RgTI9HquP4EaK+q3YEpwOulXYGqjlLVVFVNbdYssjtPVabf8zvGOgQTSx37wGF/cwmlgc8d\nxBq2cQkCoPPJoecxlatNqN+zpjQiSRJrgeD7Zbb2yvZR1U2qWnBt4peBXpEuW1VMzz841iGYqqTz\nqXB/RuAKoz0vgfs2uGTTurfrZO98aiwj3D8MGhfrCKq8SJqbpgNdRKQD7gt+IHBB8Awi0kJVvatz\ncQ6wwJueDDwa1Fl9OnBPuaOOgSdzz+eqpBDXqTfGT1JNuPBddxe1goRwyceB+h4DC8+/eLK7KN4R\nF8KM1wK3tzVlV7sxXPRB4XvFm1IJeyShqrnAjbgv/AXAO6o6T0SGi8g53mw3i8g8EfkduBnvfote\nh/VDuEQzHRhe0Ild1ewiJdYhmKqoduPIjxgO6gu9r3ZNWsdc70Zh3bXMdZ6bsut8ihvFds5zcMYI\nV9b/Kf/5U6+snLhCadQ+dtv2EVGfhKpOVNWDVLWTqj7ilT2gqhO86XtUtZuq9lDVk1R1YdCyo1W1\ns/d4tWJehjHVUEoD1xHe0rsy6MAxgbrDzgtMH1Tkpj73Z1Z8bFWNCPS8GI6+xg1KSL3C3bcboOtf\nIMFrVOnSF/o/WfK6jr0JTvxn4PngbwPPuxQZMPHnu9327s+A1kcVrjv9Ybj+F3f/jPNGu7K/vFiW\nV1eh7NpNpfHAFhhup3mYSnb0tdC8W+E7l533invk5wECKGxbB7nZkJTsvvjmfxSriKuGvo9A1wHQ\n/DBIetUNYW7ezdUd2B3+mO36kma+EVjmqKvdlzvAYee6RF6/BTQ/HDqcCB1OgOXfwRvnuBFuJ93r\n5k2qCVd9Gbjh0BWToe2fAus97Fw4dIC7I1+cib+I4lmCXcXExEBCQiBBXPJx4ftBJwTdWrdh0BiR\nv78e0Z0X49Ih/eH0h+DZIyt+W216B6bbBo2Euvb7wHS/x909uffuhFZB93s44JDAdGKSSxBF11nU\nNVMhuW7oodhxmCDArt1Ueg3ahJ8nlMYd3a+FgrN7jSmLjn1cv0UkbovkfNc4cvR17u/xt7v/l0gM\nWQ2nPRR4fsnH0N0bEHBAt+jElVwbmh1cOEGUJCkFel0Ol35SvK5Fj7i781w48Zm64tmh55TtJKlT\nhkK3v8CvL8HEO6Mf137P7h5YTIOQ561Wjo59YPm3gedD1sBjIX5gtejhmnBadHfTZzwWft2pV8CK\n7+GqKa6559ib3H292x0LtRq6bbc/DjqfFpWXUmoicPbTsdl2BbAjidIqOKTveFLpljvUu6xDhxOj\nG49xhm6JdQTx6eKPYOBYN7qnMtVtDn972U23O85d8iSUa6a6DuUWPYrX1feSXK/LC5f3vgZuSoNa\nXv+gCBxypksQBXpe4voKTLlZkiit3te4f7qLPyzdcvvajqvwL96el8KAOLvUxOmPwFVfuy8KU1yn\nk9wXqEjhZpnSuOZ76HJ6KRcS6H4+3Ls+cG5I8PbrNocrp5S8ioIr+jY7xB2J3LseLnq/cF+AqXCW\nJEorISHwT3f3ysiWOfjMwHTwr52qpmMf94gnx94IrXuFn8/AcTe7CxiG+9xeMbnwtatadHcnBZam\nj6MgaSfXhsQage33GOSm//ZSyR28hag7EkmubWepx4D1SZRHrUZw+0KokQKPt/efr92xgem6B8CN\nM2DJZJh8b6C8YTv3D/RdBG2ysSLirltU8AVSVUfP7M8KLmB451L4d2fXbt/zYjcMtEFryEoPdKwe\n0A22rwssW9DH0fMSaNQBvnrQfzt1fK6/dsYIaNUrsmbX426G9b+7+4GYmLEkUV4F7Z5HXQ3TX4ps\nmaadoWFb2LMDVv0AK6bC1V+7E6fy9sAPJZwNGku1mxZ+fkBXyKhiI2iMU7dZ4aOFAsEjb67/qXh9\nwTJZ6SUniU4+fXYp9SMfndWgNVw5ObJ5TYWx5qZoOWOEO5Rve2zxukPOKl6WlAx97nZn0V72mUsQ\nAKcOKzx07upvSt7uzb+5C8cVGJYFDYIutT5ofGA6VGylUTAOvMBln7mRJUVdMxXuWg5nPQlt/lS8\nHtxZpn0fdfut3XEgEXwUW3nNSglJkJjsmkVMbPhdCbdAaQd2mLhlRxLRkpDgDuUHjYHJ98OZI9yR\nQr3mJS9Xsx60P75wWfCheKueruNw8WQ33O/zuwJ1KQ1Cjye/agpsmOeaEIK3f8Xnrvx/XrI4+1n4\n5ObCyx7SHxZ+Csfe7H71NTsUxl8YOvbajd3Zpz/91z2/eZY70atgpMpRV7rHpmXw6yj45UV357j2\nx7tlj7nBzXf0NYEb+Mx5D5ZOcZ3kU0cU3l7Hk9wNfga8AD2sCSKu2UCCasOSRLTVagR/8UYAJdcp\n37oKRpS06O4eAIef5y7FsOK7wn0dPS+Fmd5tPOod6B6hNO/mLi+yZYVrWmjYFr5+CK78MvQZ5TnZ\n0P4EOO7W8PE27uAeRTXpBGc8DkddBU27hF42+AY+BU6+z/39/G7XyXlIf/e67IJ3xlQaUdVYx1BM\namqqpqWlVfyGIuh4bZ/tLqo28uJe9O3m88Ub7+Z96K4u2bKCLnOQPsN1cBacC2L2DyX9/4Tq7zAV\nSkRmqGpqtNdrRxIROuWQA2IdQtl1+2vFrr91LwL3mTL7vbOfjXUEJoosSUQoKdH6+I3xZUcO1ZYl\niTCWPXomOXn5sQ7DmPjT4c+ub8xUa/bzOIzEBCGlRmL4GY3Z3wwaG+sITCWIKEmISD8RWSQiS0Vk\nSIj620VkvojMFpGvRKRdUF2eiMzyHhOiGbwxJoaS67jhzn3/FetITAUK29wkIonA88BpQDowXUQm\nqGrwqba/AamquktErgNGAAUD2Xer6hFRjtsYEw+umRrrCEwFi+RIojewVFWXq+peYBwwIHgGVf1G\nVXd5T6cBYU7HNMYYUxVEkiRaAWuCnqd7ZX6uBD4Pep4iImkiMk1E/uK3kIgM9uZLy8yMkxu5h7rk\nhDHG7EeiOrpJRC4CUoGgO7bTTlXXikhH4GsRmaOqy4ouq6qjgFHgTqaLZlxllpgc6wiMMSamIjmS\nWAsE33ewtVdWiIicCtwHnKOqewrKVXWt93c58C1QCXc3jxK/yx0bY8x+IpIkMR3oIiIdRCQZGAgU\nGqUkIkcCI3EJIiOovJGI1PSmmwLHAVXn2tI1asU6AmOMiamwzU2qmisiNwKTgURgtKrOE5HhQJqq\nTgCeAOoC74q7+uNqVT0HOBQYKSL5uIT0WJFRUfGtZr1YR2CMMTEVUZ+Eqk4EJhYpeyBoOuQ9BVX1\nJ+Dw8gRojDEmduyM6wKHnVe8rN3xxcuMMWY/YkmiwFFXwQXvQOqV7vmwrPA3DDLGmGrOLvAX7KC+\n7tH/yVhHYowxccGOJIwxxviyJGGMMcaXJQljjDG+LEkUcOd3GGOMCWJJokCtRrGOwBhj4o4lCYDL\nJ0Gzg2MdhTHGxB1LEgDtjol1BMYYE5csSRhjjPFlScIYY4wvSxLGGGN8WZIwxhjjy5KEMcYYX5Yk\njDHG+LIkYYwxxpclCWOMMb4iShIi0k9EFonIUhEZEqK+poiM9+p/EZH2QXX3eOWLRKRv9EIvLj9f\nuW38LF78bhkjJi1k994833kvHf1rRYZijDHVQtibDolIIvA8cBqQDkwXkQmqOj9otiuBLaraWUQG\nAo8D/xCRrsBAoBvQEvhSRA5SVf9v73LoeG+h23DzwrfLmHH/qdwwZiY5ecqMVVsAOKt7C75bnAkp\nFRGFMcZUH5Hcma43sFRVlwOIyDhgABCcJAYAw7zp94DnRES88nGqugdYISJLvfX9HJ3ww+v18JfF\nyj6bvb6yNm+MMVVaJM1NrYA1Qc/TvbKQ86hqLpAFNIlwWQBEZLCIpIlIWmZmZmTRB8nP11Iv0zn7\nDT46a0aplzPGmP1F3NzjWlVHAaMAUlNTS/2Nn5AgrHzsrKjHZYwx+7NIjiTWAm2Cnrf2ykLOIyJJ\nQANgU4TLGmOMiVORJInpQBcR6SAiybiO6AlF5pkAXOpNnwd8rarqlQ/0Rj91ALoANqzIGGOqiLDN\nTaqaKyI3ApOBRGC0qs4TkeFAmqpOAF4B3vQ6pjfjEgnefO/gOrlzgRsqamSTMcaY6BP3gz++pKam\nalpaWqzDMMaYKkNEZqhqarTXa2dcG2OM8WVJwhhjjC9LEsYYY3xZkjDGGOMrLjuuRSQTWFXGxZsC\nG6MYTmWwmCuHxVw5LObKUTTmdqraLNobicskUR4iklYRPfwVyWKuHBZz5bCYK0dlxWzNTcYYY3xZ\nkjDGGOOrOiaJUbEOoAws5sphMVcOi7lyVErM1a5PwhhjTPRUxyMJY4wxUWJJwhhjjK9qkyREpJ+I\nLBKRpSIyJAbbbyMi34jIfBGZJyK3eOWNRWSKiCzx/jbyykVEnvXinS0iPYPWdak3/xIRuTSovJeI\nzPGWeda7RWw0Yk8Ukd9E5FPveQcR+cXbznjvEvF4l3wf75X/IiLtg9Zxj1e+SET6BpVH/X0RkYYi\n8p6ILBSRBSJyTLzvZxG5zftczBWRsSKSEo/7WURGi0iGiMwNKqvwfeu3jXLE/IT3+ZgtIh+KSMOg\nulLtw7K8T2WJOajuDhFREWnqPY/tflbVKv/AXcJ8GdARSAZ+B7pWcgwtgJ7edD1gMdAVGAEM8cqH\nAI9702cCnwMC/An4xStvDCz3/jbypht5db9684q37BlRiv12YAzwqff8HWCgN/0icJ03fT3wojc9\nEBjvTXf19nlNoIP3XiRW1PsCvA5c5U0nAw3jeT/jbtm7AqgVtH8vi8f9DJwI9ATmBpVV+L7120Y5\nYj4dSPKmHw+KudT7sLTvU1lj9srb4G7LsApoGg/7udK+RCvyARwDTA56fg9wT4xj+hg4DVgEtPDK\nWgCLvOmRwKCg+Rd59YOAkUHlI72yFsDCoPJC85UjztbAV8DJwKfeh2pj0D/Yvn3rfXiP8aaTvPmk\n6P4umK8i3hfcXQ9X4A26KLr/4nE/E7jXe2Nvv30K9I3X/Qy0p/AXboXvW79tlDXmInV/Bd4OtW/C\n7cOy/D+UJ2bgPaAHsJJAkojpfq4uzU0F/4QF0r2ymPAOO48EfgGaq+p6r+oPoLk37RdzSeXpIcrL\n62ngn0C+97wJsFVVc0NsZ19sXn2WN39pX0t5dAAygVfFNZG9LCJ1iOP9rKprgX8Dq4H1uP02g/je\nz8EqY9/6bSMarsD9mi5LzGX5fygTERkArFXV34tUxXQ/V5ckETdEpC7wPnCrqm4LrlOXvuNmzLGI\n9AcyVHVGrGMphSTcYfr/VPVIYCfusHmfONzPjYABuATXEqgD9ItpUGVUGfs2mtsQkftwd8V8Oxrr\nqygiUhu4F3igsrYZ6X6uLkliLa4tr0Brr6xSiUgNXIJ4W1U/8Io3iEgLr74FkOGV+8VcUnnrEOXl\ncRxwjoisBMbhmpyeARqKSMGtbYO3sy82r74BsKkMr6U80oF0Vf3Fe/4eLmnE834+FVihqpmqmgN8\ngNv38byfg1XGvvXbRpmJyGVAf+BC7wuxLDFvovTvU1l0wv2I+N37f2wNzBSRA8sQc3T3c1nbLePp\ngft1udzbyQWdTt0qOQYB3gCeLlL+BIU7ikZ402dRuDPqV6+8Ma7NvZH3WAE09uqKdkadGcX4+xDo\nuH6Xwh1113vTN1C4o+4db7obhTsDl+M6AivkfQG+Bw72pod5+zhu9zNwNDAPqO2t83XgpnjdzxTv\nk6jwfeu3jXLE3A+YDzQrMl+p92Fp36eyxlykbiWBPomY7udK+xKt6AduBMBi3AiF+2Kw/eNxh26z\ngVne40xcG+VXwBLgy6A3UYDnvXjnAKlB67oCWOo9Lg8qTwXmess8Ryk6ySKIvw+BJNHR+5At9f5B\nanrlKd7zpV59x6Dl7/PiWkTQaKCKeF+AI4A0b19/5P2DxPV+Bh4EFnrrfRP3JRV3+xkYi+s3ycEd\ntV1ZGfvWbxvliHkprr2+4H/xxbLuw7K8T2WJuUj9SgJJIqb72S7LYYwxxld16ZMwxhhTASxJGGOM\n8WVJwhhjjC9LEsYYY3xZkjDGGOPLkoQxxhhfliSMMcb4+n/X+jg7J1IezwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXZ5cqVQQBKS4oSlNBig17AcEWC8EaNcYY\ng9EYC0bFaCwkJraf5muNRqOiqImolIhiA6RJb7L0pQhL79vO74+5MzuzO7s7u8zu7N77fj4e+2Du\nuXfvnLnsvOfOOeeea845RETEX9JSXQEREUk+hbuIiA8p3EVEfEjhLiLiQwp3EREfUriLiPiQwl0k\nAWb2hpk9mup6iCRK4S41jpkNMbOpZrbbzDZ6j281Myuy3Z/MzJnZCUXKr/fK7ylSnmVmZ1TBSxCp\ndAp3qVHM7A/As8CTQCugJXALcApQJ2o7A64Dtnj/FrUFuMfMGlV2nUVSQeEuNYaZNQEeAW51zn3g\nnNvpQmY55652zu2P2vxUoDXwO2CImdUpsrtFwBTgzgrW5VdmlmlmW8xstJkd5pWbmT3tfaPYYWbz\nzKy7t26gmS00s51mttbM7qrIc4skQuEuNclJQF3g4wS2/QXwCfC+t3xhnG0eBO4ws2blqYSZnQU8\nAQwm9AGyChjprT4POA04CmjibbPZW/ca8GvnXCOgO/BleZ5XpDwU7lKTNAeynXN54QIzm2xm28xs\nr5md5pUdBFwBvOOcywU+IE7TjHNuNvA5cG8563E18E/n3A/et4X7gJPMLAPIBRoBnQFzzi1yzq33\nfi8X6GpmjZ1zW51zP5TzeUUSpnCXmmQz0NzMaoULnHMnO+eaeuvCf88/A/KAMd7y28D5ZtYizj6H\nA78xs5blqMdhhM7Ww3XY5T1/G+fcl8DzwAvARjN72cwae5teBgwEVpnZ12Z2UjmeU6RcFO5Sk0wB\n9gMXl7HdL4CGwGoz2wCMAmoDVxXd0Dm3GPgIuL8c9VgHHB5eMLMGwCHAWm+fzznnegFdCTXP3O2V\nT3fOXQwcCvyXwiYjkaRTuEuN4ZzbBjwM/MPMLjezRmaWZmY9gAYAZtYGOBu4AOjh/RwH/IX4o2bw\n9nkD0DTBqrwL3GBmPcysLvA4MNU5t9LM+pjZCWZWG9gN7AMKzKyOmV1tZk28pqIdQEH5j4JIYhTu\nUqM45/5KaITLPcBP3s9LhNrNJwPXArOdc/9zzm0I/wDPAceGR64U2ecK4C28D4gE6jCBUGfsh8B6\n4AhgiLe6MfAKsJVQ081mQsM28eq20sx2EBq+eXX5Xr1I4kw36xAR8R+duYuI+JDCXUTEhxIKdzMb\nYGZLvCvyhsVZf72ZbTKz2d7PTcmvqoiIJKpWWRuYWTqhMbvnAlnAdDMb7ZxbWGTT95xzQyuhjiIi\nUk5lhjvQF8h0zi0HMLORhMYZFw33cmnevLnLyMg4kF2IiATOzJkzs51z8S7Ii5FIuLcB1kQtZwEn\nxNnuMu/y7x+B3zvn1sTZJiIjI4MZM2Yk8PQiIhJmZqvK3ip5HaqfABnOuWMJzdXxrxIqdbOZzTCz\nGZs2bUrSU4uISFGJhPtaoF3UcluvLMI5tzlqutVXgV7xduSce9k519s517tFizK/VYiISAUlEu7T\ngU5m1sGbE3sIMDp6AzNrHbV4EaG5skVEJEXKbHN3zuWZ2VBgPJBOaKrTBWb2CDDDOTca+J2ZXURo\nJr4twPWVWGcRESlDyqYf6N27t1OHqohI+ZjZTOdc77K20xWqIiI+pHAXEfGhRMa5Vyv5BY7XJ61g\nx97cUIFZZF34UbjIMHbtz2X5pt28dn2fqq2oiEgK1bhwHz1nLY9+Vv7BONNXbqFPRrnugywiUmPV\nuHCflBm6kfykYWfRpmn9YuvDHcThfuKOfwzdRnPnvtyqqaCISDVQ48L9iUuP4fqTM+IGO4B5bTLh\nppnWTeqxfvs+mjWoW1VVFBFJuRrXoVo7PY3ubZokvP0d53QC4JAGdSqrSiIi1U6NC/fySovqcBUR\nCQrfh7uISBD5PtzDbfC6D7iIBIn/wz3VFRARSQHfh3uYQ6fuIhIcvg/3cH+qmmVEJEgCE+4iIkHi\n+3AP04m7iASJ78Pd1KUqIgHk+3APS9VNSUREUsH34R7pUE1tNUREqpTvw11EJIgCE+5qlRGRIPF9\nuFtkLKTSXUSCw//hnuoKiIikgO/DPUzNMiISJL4Pd42WEZEg8n+4q2FGRALI9+EepmYZEQkS34e7\nJg4TkSDyfbiHaT53EQkS34d7ZJS7sl1EAsT/4a5mGREJIN+He5jO3EUkSAIQ7qFTd7W5i0iQ+D7c\n1SwjIkHk+3APU7OMiASJ78P984U/ATBz1dYU10REpOr4PtynLNsMwJysbSmuiYhI1Uko3M1sgJkt\nMbNMMxtWynaXmZkzs97Jq2JyaI4ZEQmSMsPdzNKBF4Dzga7AlWbWNc52jYDbganJrqSIiJRPImfu\nfYFM59xy51wOMBK4OM52fwb+AuxLYv0O2HUnHQ7AOV0OTXFNRESqTiLh3gZYE7Wc5ZVFmNnxQDvn\n3Gel7cjMbjazGWY2Y9OmTeWubEUc3aoRAC2b1KuS5xMRqQ4OuEPVzNKAp4A/lLWtc+5l51xv51zv\nFi1aHOhTl4uGQopIkCQS7muBdlHLbb2ysEZAd+ArM1sJnAiMri6dqqarmEQkgBIJ9+lAJzPrYGZ1\ngCHA6PBK59x251xz51yGcy4D+B64yDk3o1JqLCIiZSoz3J1zecBQYDywCHjfObfAzB4xs4squ4Ii\nIlJ+tRLZyDk3BhhTpGx4CdueceDVEhGRA+H7K1QLqUdVRILD9+Gu7lQRCSLfh7uISBAp3EVEfEjh\nLiLiQwp3EREfCky4a/oBEQkS34e7Zh8QkSDyfbiLiASRwl1ExIcU7iIiPhSYcFd/qogEie/DXTfG\nFpEg8n24i4gEkcJdRMSHFO4iIj6kcBcR8aHAhLumHxCRIPF9uGv6AREJIt+Hu4hIECncRUR8SOEu\nIuJDgQn3u0bNSXUVRESqjO/DPdyfunrLnlK3y8krYPKy7MqvkIhIFfB9uCdqxNjFXPXKVOZlbU91\nVUREDpjC3bN0404AtuzJSXFNREQOnMK9CKernUTEBxTuHvOudlK0i4gfKNw9upBVRPzE/+Fe3tTW\nqbuI+ID/wz1Bu/bnpboKIiJJo3D3zFy1FQCnU3cR8QGFexEaLCMifqBwFxHxIYV7ETpzFxE/SCjc\nzWyAmS0xs0wzGxZn/S1mNs/MZpvZd2bWNflVrRjTIEcRCaAyw93M0oEXgPOBrsCVccL7HefcMc65\nHsBfgaeSXtMqsmDdjlRXQUTkgCVy5t4XyHTOLXfO5QAjgYujN3DORSdiA2rwaPH/zMpKdRVERA5Y\nrQS2aQOsiVrOAk4oupGZ/Ra4E6gDnJWU2qXAtr25qa6CiMgBS1qHqnPuBefcEcC9wAPxtjGzm81s\nhpnN2LRpU7KeOqnyC2rslw4RkYhEwn0t0C5qua1XVpKRwCXxVjjnXnbO9XbO9W7RokXitaxk+3Lz\nCxeU7SLiA4mE+3Sgk5l1MLM6wBBgdPQGZtYpanEQsDR5VTwwiUzhm5NfEHmcW1BQypYiIjVDmW3u\nzrk8MxsKjAfSgX865xaY2SPADOfcaGComZ0D5AJbgV9UZqWTbdLSwtvr7ctVuItIzZdIhyrOuTHA\nmCJlw6Me357kelWpr3+snu3/IiIVpStUgb3Rbe4iIj4Q+HDfsjuHj2evS3U1RESSKvDhPm/t9lRX\nQUQk6Xwf7hrZKCJB5PtwL4umFRMRP/J9uJc1zN2U7iLiQ74PdxGRIPJ9uOvMXESCyPfhrjsriUgQ\n+T7cy6JZIEXEj3wf7q6MwZC6gElE/Mj34V6W/XmaekBE/Cfw4a4baIuIHwU+3EVE/Mj34a6LmEQk\niHwf7mXRWBkR8SOFuwbCi4gPBT7cx8zbkOoqiIgkXeDDXUTEj3wf7mp0EZEg8n24V4UXJmZy1P1j\nU10NEZGIWqmuQGWrig7TJ8cvqfTnEBEpD525J1GBJiETkWpC4Z5EOfkFqa6CiAigcE8qTR8sItWF\nwj2JFO0iUl34PtwVuCISRL4P96qkqQxEpLrwf7grb0UkgPwf7lVInyMiUl0o3JNIrTIiUl0o3EVE\nfEjhnkw6cxeRasL34e6UuCISQL4P96qkDxIRqS4U7iJSqj05eamuglRAQuFuZgPMbImZZZrZsDjr\n7zSzhWY218y+MLPDk1/VqpNbwQnANFpG/GZyZjZdh49ncmZ2qqsi5VRmuJtZOvACcD7QFbjSzLoW\n2WwW0Ns5dyzwAfDXZFe0oioSuFlb91bsuSr0WyIV9+ncdUxcsrHS9v+dF+rTVm6ptOeQypHImXtf\nINM5t9w5lwOMBC6O3sA5N9E5t8db/B5om9xqVi1NIyA1xdB3ZnHD69Mrbf//+GoZAIvW76i055DK\nkUi4twHWRC1neWUl+SUQ955zZnazmc0wsxmbNm1KvJYHoCpzukAfCuJT2btyUl0FKaekdqia2TVA\nb+DJeOudcy8753o753q3aNEimU+dVBWN6P/OWpvUeoiIVFQi91BdC7SLWm7rlcUws3OA+4HTnXP7\nk1O9A2dWdc+1ZbfObkSkekjkzH060MnMOphZHWAIMDp6AzPrCbwEXOScq7zenQqoSEuJWldqlsnL\nspm9ZltS97l9by7rtlWsY12kOigz3J1zecBQYDywCHjfObfAzB4xs4u8zZ4EGgKjzGy2mY0uYXe+\nps+E1Ljqlalc8sKkUrfZn5fPmi17St0m2tl//5qTR3x5oFXzDQ0yqHkSaZbBOTcGGFOkbHjU43OS\nXK+kif6TXLNlD+2aHVTO3yrHc+nvv1pxzvHwJwu5sm97nv3iR8bM28CSRwdQt1Z6mb+bvavatCxW\nCws1WqbGCdQVqqf+dSJr9VXb1/47ay0fzw51CW3YsY83Jq/kun9OZeLi0OisnLwCPp69loI4NzNf\nuG4H89dur9L61hT7cit2YZ+kTqDCHWDTzrLPyCp6Bl6er/3V1cBnv+W5L5amuhoVdsd7s7l95GwA\n0rze9Ogcf3vqam4fOZt3pq2OlO3LzWdPTh4Dn/uWC/7fdzH7i/4QGL9gQ9Lb9kUqS+DCvTID+LN5\n6ytt31Vl4fodPPX5j6muRpl27c8jr8g0EVOXb448npSZzW/+PROIDejNXnNLuNlly+4cOj84jq7D\nx8d9nj25+dzw+jTWbNnDr9+aySUvTOLTuesYMXYxl7wwia1RI6QWrd/B+AUbkvMCRQ6Q78O9aEfQ\nzn2aBMkPuj80nns+mBtTNnZ+YbBe/epUflgdOsvOj/obCD8M5/0t3gdAtOimme4PjWfikk08MXZR\npGzoO7N48etlzF6zjU/mrgNCzT3nP/stv36r+P786M0pK8kY9hn78/JTXRUpge/DvahEriLdtV8f\nADXBR0UuGntj8sq42+UXOPbmhkLo1e9WAPDcF0u5a9Qcpq0oPmdK0aYZgEmZm4uVRRv80pREqlyj\nlPY+eGZCqOlOJ0vVl8JdapzoM+tEOkBLCqAPZmYl/Jzb9+aWur6ibfFLf9pJxrDP+KoSJ/+qqPWl\nDD6owmsDpYKCF+5xRklI8mRt3cPdo+ZUeNrksoybvz7mzDreWXZ1Mn3lFvJL+ZubsWorAOPmV7+2\neivl8m69i6q/wIV7IhMgTU/y9Ka79+cxqQLzYYdHcZTX9r25vDAxMyUfZMM+nMeomVl8vzy2GeON\nSStYv71iw1D35+UzxzszfvSzRWVsXbU27tjPg/+dH3fdH/8zjytenMIjnyxgbtY2tu3J4d1pqyko\ncEzKzC419KuD0qbuyMnT0MjqLqGLmGqyom+f3SWEZbfDGrNgXehCjcfHLObm045IaP8rsnfHLO/J\nyWNfbgHNGtSJlN01ag5j529g0rCzaNO0fon7yssvwMxITwu9q054/Au2781l5YhBJf7OTzv2Ub9O\nOo3r1Y6UXffaVOZkbadL60ac1bllqfXfsH0fTerXpn6dsi/sqaj12/fyp08WMnL6GsbdcVq5f/+h\njxcwcvoavr3nzArPtV9Znp+YWawsL7+Af3y1jHemhoZb/nf2Ov41ZVVk/X0fzQPg4INqs3VP8eae\n3PwC0s1IS0tt40dpzx5uj5+xcisDureqmgpJuQTuzL2ks9mKTDCWvWs/Z/7tq5iyrsPHc/yfP48p\nC4/i2Ot9sMzN2ha3jfXI+8dy+YuTI8vR7bwL1+2Ie9XkCY9/wTl//zqmbE5WqB06J6/sM8MTn/iC\nLsPHMWHhT2VuW1HhM9SKdr6NnB6acbqmXGA0+KUpMcNJS2qvjw726DPhTveP5aY3Z1ReBRNUWrNM\n2I59pfdFSOr4PtyL9p/ml9ChWist9lDkFzjem7467lfnUTPWcMH/+7bUTralP+0scd1Fz0/i+hJu\nsDBrdfyOuYHPfct5T38Td93GqAuzfizleZ1z7MstHLr2u3dnRR7f9OYMPvWG9UHJIyWWbNiZ8FW+\n89du56y/fZVQqO/NyS+znf43b/+Q0POm2g8l/B+WpujIny8Xhz78Jy/LZvBLU4qN6a8KCX1xqN4t\nS4Hm+3BP1BEtGsYsvz11Ffd+OI83p6yMjOn97ds/MHbeeu7+YC7z1+5gfymXZJ/rBXH0m3L5pt0l\nbR7zIfKn0QvIGPZZsW3KmlJ42ootMR8AP6zeGrP+mQlL6fzgOHbsy2X73lxGz1kXs37oO4Vh3/2h\n8Yyes479efleU1M+zjn6P/MNp0RNqPXshKXMzSoeZnty8rnt3Vksz97Ns96wudImn+oyfBxDXv4+\npmzbnpy4xyFIrnplKtNWbGFTCua6SavK+bIl6Xwf7kX/PpvWL2wL3xn1lbLodm96baRb9+Qy/OMF\nQOgK1Oizx4HPfVvqc2dt3cOR9xfelOrmIhe4ZAz7jGtenYpzLia4i47Xvva1qTHLOXkFca+EfOnr\nZTHL2Tv3R6ZbKChw/HNSaIz31t05HPfw/0qtO8A3P27i/Ge+pevw8XR+cBy/+XfsmfOcNdt4esKP\nXPR88RkZf/3WzEh/xLgEr9qcuWprTAfy98uDdd/OvPwC7h41J7IcPVVGvM/F6I7ctdv2MqvIh7kE\nm+/Dveib4tvMbHZ7TQ6L1pfchJG5cRfAAc2z0u8vE4uVXf1q7Nnpd5nZPP9lJn0em1Difr5dmh31\neBNPT/iRX781k9e9sIbQWfsXi2Pb8T+atTay36cn/BhpHkm0WeWDmVksj+owjg7pNVv2cHGcaXa/\nK2VU0Lrt++j84NhSz+BPeiK40+xe/epURkWNvY/+mzh5xJeR8fDh0H/r+8JO2lNGfMnP/lHYX3Mg\nnHP8Z1YWeQmM5lmwrmb0gwSR78O9qDlrtjH0ndAZ6MrNJTeTVJZ4Vzr+vRxzuVz72rTIiJGHP1kY\nKS/tCsk3p6zk9UkrI8tXvTK1xG0Tta3IKI+ZqxI7y96XW8DY+RtwzvHzl6YU68iN7sfYtidYd7aa\nGudq2aKuf316qScCYXtzQs1od4+aw8xV5Tujn7BoI79/bw7PTij77zJ6FFCipq/cQsawz2I+nA7U\n0Q+M5b6P5pa9YYAEINyLn31MXLKJD2dm8fbUwpkB+2QcXJWVOiCfFGkrL8vwjxdU+pQKl/1f4pff\n3/r2D+TmO6au2MJNb84ocRTMMG/IoBRXUl/Evtx8Hv10IV2Gj2PGqq2MmpnFda9N5ZpXpxZr3oPQ\nN74/f7owpiw8uV5ltfM/8J9Qc1JJ1weUJi+/IKYJc9ueHJ7+/Ef25xXw7rQ1xbb/76y19PvLl3E7\n6ycu2ejreft9P869JH8YNYeOLRpElgf3bse9HypMEnXh88WvDL3xjfgjgOKJHi5a9CrT85/9lqcG\nH1fxygVY5wfHRR5f8WLhB264uWz99r0Yxuote2hzcP3IN74HL+ga2fYRL+zLmk+nog6kn/bBj+fz\n7rQ1LP7zAOrVTqfHI7HDjjOGfUadWmnk5BXQvGEdduzNIye/gE73j425XmR/Xj43vD6dzq0aMe6O\n05i8LJuOzRvSqkm9ileuiPwCx5INO+l6WOOk7bM8AnDmXrLo0SuJjOmV0n25OPH5UUr7JrFo/Q7O\nf7b0zmpJ3O6cwuGvJz3xJSc+8QWDX5rCqX8p7N8Y/OIU/jR6QanDURP9xphf4PjT6AVkbY2dXvv+\n/8xj8rJsFm8oua9r9eY9vD5pBePmrydj2GcxVzVv2rk/cna+v5QrZMPXDGTvyiEn6vWEz9L35uRH\npnsId/pf9cpUzvjbRL5bms0pI75k4859vDd9NWu37eXRTxfGDL5I1FOfL2Hgc9+ypJTXW5kCe+Yu\nEnTR/aXTVm5h2sotHHlowxK3HzF2MRced1iJ6zOGfca1Jx7Oz45vwxuTVzJv7XZevrYX2btyGL9g\nA29PXR3TFFpUfoHjtCdjByH8/r3ZvPaLPmzelROz7qLnv+P16/sk8CoLPTR6AZ/NXU/zhnUjQb8/\nryDSxLUvt4BrvKar//tqWUw/1cad+/nVqR15bMxCnhvSE4C+j3/B787uxM2ndWRyZjbndm1J1ta9\nTF2xhZOPOIQXJoZGr/20Yx8tGtWlwDmaN6xbrjofCN+HuyaBFEncA6W0gyfSBv/W96u49Pg2QOi6\njF6Plt75OzdrGxc9P4mOLRrQpH7tYuu/X76Fbg8Vv5HKqs17OKvIldll+Wxu6GY6ibSzRwc7wOg5\n6yLXhfR9/ItI+XNfLGXhuh1MWFTyFd6ZG3dx3T+nAXDNie3p3Kox15x4eLnqXhG+D3cRSY6Spu6Y\nv3Z7zEWA4SGZReddiid8jURpF/hVd6UFOxT2YQD8+/vQN5fWTepxdpfS5306UAp3EUlIgXNxR+lU\n92mXq6Ovf9xU6eEe6A5VEUlcNZ+huEZ5swLXB5SXwl1ExId8H+462RCRIPJ9uIuIBJHvw11DIUUk\niHwf7ok4tm2TVFdBRCSpFO5Az3ZNU10FEZGkUrgDTQ+qU/ZGIiJJcsc5nSr9ORTuwG/OOCLVVRCR\nAKlXO73Sn8P34e4SGAxZFQdakuvFa3qVuv6oliVPgCUSBL4P9/KoSTfsCLoB3VsVK1vxxMDI47G3\nn1aV1ZEaYHjUnPVhT/88OfcN6JvRjFkPnpv49h2aJeV5S+P7uWXKMxSyS+vGTF+pmwxXd9/fdzYA\nPds3ZdbqbZFyM+OBQV04ulUj0tMK5+efPOwsTh4Rmru8S+vGLFq/A4C/XXEcd0XdkHpIn3b8tGMf\nE5dsqoqXIRU04tJjqJWextqte3k6gVsBht3YrwMfz17LnKzCO3/179aKfkeu5bvMbB69pHtkVswV\nTwykw31jgNCHwpV927Nm6x6WbdzF7px82jc7KG5ArxwxiPenr+GeD0O3/Jtw52nUSU9n8EtT2LBj\nH3++uBsX92xD43rFZ8BMNt+He3ncP6hLlcz5IBXXpmn9yN1y/v3LE8jetZ/Rs9fR2Jsu9qZTOxb7\nncOa1o88/mW/Dtw1ag7ndm3J5b3aRsL9Txd25fpTOgChWQ4TmQzrg1tO4vIXi99e8Lh2TZmzZluc\n3/CPzq0alXrTjUQt/vOAmLtHleTcri3ZujuH137RhyYHhf6v9+Tk8fSEH7m0Zxs+mrU2su2kYWdx\ny1szuav/0dz7wVwu7nFY5OYeHw/tx7j569mxN4/BfdoBcMvpR/BdZjanH9WCT2/rR91aaTE377mx\nX+jv4qiWjTiqZaMy63pF77Z0atmQnu0LWwK+uedMCpyr0ibghMLdzAYAzwLpwKvOuRFF1p8GPAMc\nCwxxzn2Q7IpWlh5RwyDr1lLbe3V3z4CjI48b1K1Fg7q1uO3sxEcenNPlUG44JYNbzzgSgGd+3oPl\n2bsjwQ7QvU3hdQ9zHjoPgOWbdkWmsgW49sTD6Z0R/6v1eV1bsjcnjx9/2hVTPu3+s+n7WGgu8PvO\n78wTYxfH/f3Ljm/Lhz9klfo6rjmxfWT62Kq2csQg/jtrLXe8NxuA49s35Yeob1BzHjqP4x7+X8zv\nLH98IB3/OKbYvurVTufyXm25vFdb+mY0Iy3N+M+sLI5s0YgLn/+O4Rd0pX2zgzina/EZFA+qU4vv\n7j2TQxvViwn3Nk3r88lt/QD4/o9nF/u9Ad1bxyz369Q8cgu+dlHl7/7qROrUKv8d2swsJtgB6tSq\n+hbwMsPdzNKBF4BzgSxgupmNds5F31V3NXA9cFdlVPJAlNYqc8GxrfnbFbFtbitHDCrx5sOSel1b\nJ34/ym/uPpMWjWLvfFO3VjoPXdgtsnxJzzZxf7dN0/qs3bY3cgOJnu0P5tPb+tGkfm1aN6kXafY5\np0vLYvN5n3Jkc3575pF0eXAce3MLb3F3aKN6vHRtLzbvyuGqE9ozfsGGmFAEqJOext8HHxc33G84\nJYO7+x/Ntj25HNa0fpWH+9+vOC7SFHHhcYdFwv0vlx3LuU9/E9ku+qYb4TP8tDTjk6H9+GbpJp4c\nvwQIfUABxd6DP+vZFiDmnqclaXvwQUCoua1h3XQeGFS8Xb2iTjrikKTtKxUSOXPvC2Q655YDmNlI\n4GIgEu7OuZXeupJvbFjNLHl0gM7Ua6BOCXwtDmt/yEGRx3MeOo8lG3ZSv05i/+fj7jiV3fvzY8qi\nz+jDHvtZd1o0qhO5t+fs4edGrptY8HB/gJgz1v7dCjuCR91yMpf+3+SYJpwHL+hSYp3CH0oH1Qm9\nbT+9rV/S5lJfOWIQU5dv5ucvf1/iNpf1aht5HN2n0alloxJPisbdUdixfUzbJnRv05gpyzbzXWY2\n3Q5L3pXhY28/NWn78otEviu0AdZELWd5ZTWCK6FHtTKC/e2bTkj6PivDLaeXPK5/yaMDuLJvuxLX\nl9cr1/WOW16/hLbHUzs1Z/njhaNe3v3ViSz+8wCOatmQ7+49s8L1aFK/drlGKDSqVzvStl+alo3r\n8cSlx0aWoy+IS0sz0tJK/lqfnmb86tRQc1AD70On1+GhOt54Sgf6Hdk8su1vzyz+fxb9YfPU4OOY\neNcZTLjzdA4+qGKddSd0PISPf3sK/7qxL/ed35nxd5Q94ui4qGbNo1s24naviSzzsfNZ+tj5xbY3\nM67sGzomH1eqAAAKnElEQVRj757EcJfiqrRD1cxuBm4GaN++fVU+dbkMPKYVY+ZtKNfvJPIVsjp4\n7sqeNK1fmxe/XlZs3YKH+1O3VjqDe7eLnIkCdDusMQvW7Shz30sfO59O94+NKTu3a8uYs7orerVl\nw459zIgaldSxeQOWe7dke+uXoQ/I049qwdysbZGvxv/7/enlfKVV66u7zmDDjn1x10248/QSTzJO\nOaI5zRvW5Y0b+tDtsMaRjrzhF4aaF8LH7e7+nUt9/kuPLzyr7nV4s5imolG3nETX1o1ZvGEHl/1f\nYQfwezefyM1vzaRfp8IPkXBYn35Ui5j9PzCo+DeKz39/WswH4PjfF34Y1Eov+bxx0LGtOf3o/jSs\nq/EclSmRo7uW2H6Gtl5ZuTnnXgZeBujdu3fK5mss68zmqcE9+O2Zuxj0XPm/8r590wkY8MTYxcxb\nu73M7StbepqRH3ULnYtKuXt9A+/N1rP9wXz5h9NZv30frZrUo1HdWpGbAn/2u34xx+U3ZxzBrNVb\nuez4ttQu5Q0d9qTXvtrFGyGx4OH+fLs0m1v+PZOe7QvPAv91Y99yvMrUy2jegIzmDeKuO/LQki+o\nOrhBHWY8cE6l1Klvh2a8+6sTI00ovQ5vxrNDenD7yFBb+QkdD4l0GJck3PcQ77qC8jSRFaVgr3yJ\nNMtMBzqZWQczqwMMAUZXbrWSJ94J06zhpf9B16udTrfDmsS9CvK4qBkkp8XpiT/lyOacfGRzPrmt\nH2N+V7wdsHG9Wtzd/+hi5dEe+1l3Lu5RGMJ/vfzYmPULHu7PpGFnRZY/Gdov7n6e+XkPFj0yoNTn\nOqvzoQAxTQAAHVs05JQjm3NEi4Yc2rgeU/94NneddxRdWzdmvteW/PcrjuPeAZ0ZefNJXNG7fE05\nBd5/TJoZA7q3YuWIQfzn1lPKtY8g+PIPp/PlH8r3reWhC7sy8JhWvHlj35i2cQiFNYRGuIi/lRnu\nzrk8YCgwHlgEvO+cW2Bmj5jZRQBm1sfMsoArgJfMbEFlVro8ik4/0KxB4pOEhUMn7KNbT6Z1k9Cb\n4+7+R5c54VjXw2JHdjx8UTfm/ql/THn4W0SzBnUY0qcdCx7uz9UnHM6zQ3pGthncux0LHyn8Gtug\nbi3aNK3Ppce34Zwuh3JM2ya8fG0vHrowdqRAeppRp1Yaz1/Vk6LC+/rH1cfzv9+fxsvXlX45f8vG\n9Rh6VifMjIZ1a7FyxKCYDrZobaLGlZck/AFXNwVDxGqSji0a0rFFyWf+zw7pwYQ7Y8O/XbOD+MfV\nvUodUx09jrs0hzYOjTZK5FuZVC8JfTdyzo0BxhQpGx71eDqh5ppqr2MJX50TcXz7gxncpy3jFmzg\nkp5tqFMrjdFDT6FDgvu87qTDAeiT0YyDD6pN7fQ0vrnnzBLfhH0zmjFt5RYgNEJi4l1nsGnn/sj6\npwb3iDw+r1srZq7aEvP7vQ4PjbW94NjDGPrOrJh1X919Bj/t2Ee92ukJXZiRqB8ePJe6tdLo9tD4\nmPJ+Rzbnu8zsyPJNp3aMe8GRlM/FPSp3bMMr1/Xmmx830bJx2Z3LUr34vuErullmxKXHxAxFq4iz\nOreMOZs/tm3pX2/f//VJDH5pCu//+qTI2VLDurXKbBoCeP+Wk2KWWzSqW2zcdrRehzfj09v6cfgh\nB5FmFmlDj6d5w7o0b1jyvioq/M1oxRMDY479Gzf0Ia9At8VKtfCJRIsE/++bN6wb01krNYfvw/3k\nIwrbkgd0b1Whudu/vefMCt+ur2+HZlU6kibeWOywG6OuwqxsZkb0N/9a6WnosoLU696mCX+74jjO\n61b8ik/xF9+He/RQLaP8lxJDqA2zpqspQzWl8l1eQl+J+EugekksUK9WRIIsUHFXsfN2EZGaJ1jh\nnuDwLxGRmi5Q4V7KNB8iIr4SqHCvaIeqiEhNE6xwV7aLSEAo3EVEfChQ4Z6mdBeRgAhUuCvaRSQo\nAhXuOnMXkaAIVLgr20UkKAIW7kp3EQmGQIW7iEhQKNxFRHxI4S4i4kMKdxERH1K4i4j4kMJdRMSH\nFO4iIj6kcBcR8SHf3yAb4NPb+jFz1dZUV0NEpMoEIty7t2lC9zZNUl0NEZEqo2YZEREfUriLiPiQ\nwl1ExIcU7iIiPqRwFxHxIYW7iIgPKdxFRHxI4S4i4kPmnEvNE5ttAlZV8NebA9lJrE5Np+MRS8ej\nkI5FLD8cj8Odcy3K2ihl4X4gzGyGc653qutRXeh4xNLxKKRjEStIx0PNMiIiPqRwFxHxoZoa7i+n\nugLVjI5HLB2PQjoWsQJzPGpkm7uIiJSupp65i4hIKRTuIiI+VOPC3cwGmNkSM8s0s2Gprk+ymNk/\nzWyjmc2PKmtmZp+b2VLv34O9cjOz57xjMNfMjo/6nV942y81s19Elfcys3ne7zxnZla1r7B8zKyd\nmU00s4VmtsDMbvfKA3dMzKyemU0zsznesXjYK+9gZlO9+r9nZnW88rrecqa3PiNqX/d55UvMrH9U\neY17X5lZupnNMrNPveVAH49inHM15gdIB5YBHYE6wByga6rrlaTXdhpwPDA/quyvwDDv8TDgL97j\ngcBYwIATgaleeTNguffvwd7jg71107xtzfvd81P9mss4Hq2B473HjYAfga5BPCZe/Rp6j2sDU716\nvw8M8cpfBH7jPb4VeNF7PAR4z3vc1XvP1AU6eO+l9Jr6vgLuBN4BPvWWA308iv7UtDP3vkCmc265\ncy4HGAlcnOI6JYVz7htgS5Hii4F/eY//BVwSVf6mC/keaGpmrYH+wOfOuS3Oua3A58AAb11j59z3\nLvRX/WbUvqol59x659wP3uOdwCKgDQE8Jt5r2uUt1vZ+HHAW8IFXXvRYhI/RB8DZ3reSi4GRzrn9\nzrkVQCah91SNe1+ZWVtgEPCqt2wE+HjEU9PCvQ2wJmo5yyvzq5bOufXe4w1AS+9xScehtPKsOOU1\ngvc1uiehM9ZAHhOvCWI2sJHQB9QyYJtzLs/bJLr+kdfsrd8OHEL5j1F19gxwD1DgLR9CsI9HMTUt\n3APLO7sM3LhVM2sIfAjc4ZzbEb0uSMfEOZfvnOsBtCV0Ztk5xVVKGTO7ANjonJuZ6rpUZzUt3NcC\n7aKW23plfvWT13yA9+9Gr7yk41Baeds45dWamdUmFOxvO+c+8ooDfUycc9uAicBJhJqeanmrousf\nec3e+ibAZsp/jKqrU4CLzGwloSaTs4BnCe7xiC/Vjf7l+QFqEeoQ60BhR0e3VNcria8vg9gO1SeJ\n7Tz8q/d4ELGdh9O88mbACkIdhwd7j5t564p2Hg5M9est41gYoXbwZ4qUB+6YAC2Apt7j+sC3wAXA\nKGI7EG/1Hv+W2A7E973H3YjtQFxOqPOwxr6vgDMo7FAN/PGIOTaprkAF/jMHEho5sQy4P9X1SeLr\nehdYD+QSauP7JaF2wS+ApcCEqFAy4AXvGMwDekft50ZCHUOZwA1R5b2B+d7vPI93dXJ1/QH6EWpy\nmQvM9n4GBvGYAMcCs7xjMR8Y7pV3JPQBlekFW12vvJ63nOmt7xi1r/u917uEqNFBNfV9VSTcA388\non80/YCIiA/VtDZ3ERFJgMJdRMSHFO4iIj6kcBcR8SGFu4iIDyncRUR8SOEuIuJD/x+MnRcnq6d7\nTwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FfW9//HXm7AbtoCiIAoIqIitSARbt0RRY7Vgq1XQ\nUlq1tP6ky7W992q1LlTv7Wo3tUrVilqJiF5Fi1LQpC6tyiKiQFldABeWsAXZ8/n9MRM8HLKcJCeZ\nyTmf5+NxHpyZ+c7MOzlhPme278jMcM45l31aRB3AOedcNLwAOOdclvIC4JxzWcoLgHPOZSkvAM45\nl6W8ADjnXJbyAuAahaR7JP00Tcs6QlK5pJxwuFTSVelYdri85ySNTdfy6rDe2yStl/RxE65zoKQ5\nkpRC2yckndcUuVw0vAC4OpP0nqTtkrZK2iTpn5K+K2nf35OZfdfMfpbisobX1MbMPjCzXDPbm4bs\nt0h6JGn555nZpIYuu445jgB+BAw0s0OrmF4gqSIsfFslLZH0rTSs+mfAry21G4B+AdyWhnW6mPIC\n4Orry2bWATgS+Dnw38D96V6JpJbpXmZMHAFsMLO1NbT50MxygY4Ev98/SxpY3xVKOgwoBJ5Kpb2Z\nvQF0lJRf33W6ePMC4BrEzDab2TTgUmCspEEAkh6UdFv4vpukZ8O9hTJJL0tqIelhgg3hM+E33f+S\n1FuSSbpS0gfAiwnjEovBUZLekLRF0tOS8sJ1FUhanZixci9DUhHwE+DScH1vhdP3HVIKc90o6X1J\nayU9JKlTOK0yx1hJH4SHb26o7ncjqVM4/7pweTeGyx8OzAR6hDkerOV3bGb2FLARqLEASPpGuK4N\nkn6atId1NjDPzHaEbY8KP48Tw+EeYdaChEWWAufXtE7XfHkBcGkRfltcDZxWxeQfhdMOBroTbITN\nzMYAHxDsTeSa2S8T5jkDOBY4t5pVfgO4AjgM2AP8IYWMzwP/AzwWru/zVTT7ZvgqBPoCucCdSW1O\nBY4GzgJuknRsNav8I9ApXM4ZYeZvmdks4DzCb/hm9s2acodF4ytAZ+DtGtoNBO4GLif4vXQCeiY0\nOR5YUjlgZisI9iwekdQe+AswycxKE+ZZDFT1e3IZwAuAS6cPgbwqxu8m2CAdaWa7zezlFI5B32Jm\n28xsezXTHzazd8xsG/BT4JLKk8QNdDlwh5mtNLNy4HpgVNLex61mtt3M3gLeoooNZJhlFHC9mW01\ns/eA3wBj6pClh6RNwHrgZmCMmS2pof3FwDNm9oqZ7QJuAhJ/z52BrYkzmNmfgeXA6wSfUfIezdZw\nPpeBvAC4dOoJlFUx/lcEG5m/S1op6boUlrWqDtPfB1oB3VJKWbMe4fISl92SYM+lUuJVO58S7CUk\n6xZmSl5WzyraVudDM+tsZnlmdoKZFdfSvgcJvxcz+xTYkDB9I9Chivn+DAwC/mhmO5OmdQA21SGz\na0a8ALi0kHQSwcbtleRp4TfgH5lZX2AEcK2ksyonV7PI2vYQeiW8P4JgL2M9sA1on5Arh+DQU6rL\n/ZDgxHbisvcAn9QyX7L1YabkZa2p43Lq4iPg8MoBSe2ArgnTFwADEmeQlAv8juAE/i2V51ISHEuw\nl+MykBcA1yCSOkq6ACgGHjGzA45RS7pAUr/w2vPNwF6gIpz8CcEx8rr6enhNe3tgAjA1vEx0KdBW\n0vmSWgE3Am0S5vsE6J14yWqSycB/SOoTbhwrzxnsqUu4MMsU4HZJHSQdCVwLPFLznA0yFfiypC9K\nag3cAiRe7z8TOFFS24RxvwfmmNlVwN+Ae5KWeQbwXONFdlHyAuDq6xlJWwkOOdwA3AFUd516f2AW\nUA78C7jbzErCaf8L3BheIfTjOqz/YeBBgsMxbYHvQ3BVEvD/gPsIvm1vIzgBXenx8N8NkuZVsdwH\nwmW/BLwL7AC+V4dcib4Xrn8lwZ7Ro+HyG4WZLQzXWUywN1AOrAV2htM/AV4ERgJIGgkUAVeHi7iW\noEBcHk4/CSgPT/C7DCR/IIxzmSncg9kE9Dezd8NxA4FJwNDaTsRLegK438ymN3pYFwkvAM5lEElf\nBl4gOPTzG2AYcGKKd/66LJPSISBJReGt6MtruoJD0kXhjTL54XBvBV0GzA9fyccXnXN1IOny8Oax\n5NfCsMlIghPZHxIcehvlG39XnVr3AMKrKJYS3EW4GpgNjDazRUntOhCcRGoNjDezOZJ6A8+a2aD0\nR3fOOdcQqewBDAWWhzfG7CI4wTSyinY/I+g8akca8znnnGskqXS01ZP9b7pZTXBccZ+wL5FeZvY3\nSf+ZNH8fSW8CW4Abzezl5BVIGgeMA2jXrt2QXr16JTept4qKClq0iO/FTnHO59nqL875PFv9xTnf\n0qVL15vZwbW3TGBmNb4Ibi+/L2F4DHBnwnALgg6jeofDpUB++L4N0DV8P4SgkHSsaX1DhgyxdCop\nKUnr8tItzvk8W/3FOZ9nq7845yO4n6PWbXriK5VStob977o8nP3vZuxAcBt5qaT3gJOBaZLyzWyn\nmW0IC81cYAVJdyI655yLRioFYDbQP7wzsjVBB1fTKida0B1wNzPrbWa9gdeAERacBD5Ynz3FqS/B\nVQkr0/5TOOecq7NazwGY2R5J44EZQA7wgJktlDSBYJdjWg2znw5MkLSb4Nb/75pZVZ2FOeeca2Ip\nPW3JgjsBpyeNu6matgUJ758AnmhAPuecc40knqeznXPONTovAM45l6W8ADjnXJbyAuCcc1nKC4Bz\nzmUpLwDOOZelvAA451yW8gLgnHNZyguAc85lKS8AzjmXpbwAOOdclvIC4JxzWcoLgHPOZSkvAM45\nl6W8ADjnXJZKqQBIKpK0RNJySdfV0O4iSSYpP2Hc9eF8SySdm47QzjnnGq7WB8KEj3S8CzgbWA3M\nljTNzBYltesA/AB4PWHcQIJHSB4H9ABmSRpgZnvT9yM455yrj1T2AIYCy81spZntAoqBkVW0+xnw\nC2BHwriRQHH4cPh3geXh8pxzzkUslQLQE1iVMLw6HLePpBOBXmb2t7rO65xzLhopPRO4JpJaAHcA\n32zAMsYB4wC6d+9OaWlpQ2PtU15entblpVuc83m2+otzPs9Wf3HPV2dmVuML+AIwI2H4euD6hOFO\nwHrgvfC1A/gQyK+i7QzgCzWtb8iQIZZOJSUlaV1eusU5n2ervzjn82z1F+d8wByrZXue/ErlENBs\noL+kPpJaE5zUnZZQQDabWTcz621mvYHXgBFmNidsN0pSG0l9gP7AGw2oV84559Kk1kNAZrZH0niC\nb+85wANmtlDSBIKKM62GeRdKmgIsAvYA15hfAeScc7GQ0jkAM5sOTE8ad1M1bQuShm8Hbq9nPuec\nc43E7wR2zrks5QXAOeeylBcA55zLUl4AnHMuS3kBcM65LOUFwDnnspQXAOecy1JeAJxzLkt5AXDO\nuSzlBcC5LFc4qZDCSYVRx3AR8ALgnHNZyguAc85lKS8AzjmXpbwAOOdclvIC4JxzWcoLgHPOZamU\nCoCkIklLJC2XdF0V078r6W1J8yW9ImlgOL63pO3h+PmS7kn3D+Ccq5ulG5b6ZZ8OSOGJYJJygLuA\ns4HVwGxJ08xsUUKzR83snrD9COAOoCictsLMTkhvbOeccw2Vyh7AUGC5ma00s11AMTAysYGZbUkY\nPAiw9EV0zjnXGGRW87Za0sVAkZldFQ6PAYaZ2fikdtcA1wKtgTPNbJmk3sBCYCmwBbjRzF6uYh3j\ngHEA3bt3H1JcXNzAH+sz5eXl5Obmpm156RbnfJ6t/uKcb/2m9ZTtLWNA1wFAcEgI2DccpTj/3iDe\n+QoLC+eaWX6dZjKzGl/AxcB9CcNjgDtraH8ZMCl83wboGr4fAqwCOta0viFDhlg6lZSUpHV56Rbn\nfJ6t/uKc796p91rBgwX7hgseLNhvOEpx/r2ZxTsfMMdq2Z4nv1I5BLQG6JUwfHg4rjrFwIVhcdlp\nZhvC93OBFUD0XzOccwfwPoGyTyoFYDbQX1IfSa2BUcC0xAaS+icMng8sC8cfHJ5ERlJfoD+wMh3B\nnXPONUytVwGZ2R5J44EZQA7wgJktlDSBYJdjGjBe0nBgN7ARGBvOfjowQdJuoAL4rpmVNcYP4pxz\nrm5qLQAAZjYdmJ407qaE9z+oZr4ngCcaEtA5lx6Vh3dG546OOImLC78T2Dm3Hz8XkD1S2gNwzjUP\niRvukrElB4xzLpEXAOcylG/4XW38EJBzzmUp3wNwLkv5HoLzPQDnnMtSXgCccy5LeQFwzrks5QXA\nuSxwyIYddCzfDUDXd1fxw0lLydu0M+JULmpeAJzLcMeu2MK9t8zlqA/KAdjRMZcdbVpw94R59Ht/\na8TpXJS8ADiXwfqsKue237/NL648hjcHdgFgW9cu3DOqH3ePPopf/XoBp81ZF3FKFxW/DNS5DNXj\nk0/5xW8WcOdl/XjthK4HTH/ppEP4+OB2/OwP71DevuW+AuGyhxcA5zKQKoyb717EQxf2puTk7tW2\nW9q7A+NuGcLW3FZNmM7FhRcA5zKQtRD/+ePPsaVD61rbbu4YtMnbtJOyTq1Baux4Lib8HIBzzUgq\nPXV23LoLVVhKG/99zLjt9+9w6rz1DUzompOUCoCkIklLJC2XdF0V078r6W1J8yW9ImlgwrTrw/mW\nSDo3neGdc4F9hcGMCX9cWPcNucR9X+vL1cUraLVrb+OEdLFTawEIH+l4F3AeMBAYnbiBDz1qZseb\n2QnAL4E7wnkHEjxC8jigCLi78hGRzrn0y1+4kS5bdvHq4ANP+tZm3sAuLD8il6/9fXUjJHNxlMoe\nwFBguZmtNLNdBA99H5nYwMy2JAweBFj4fiRQHD4c/l1gebg851y6mXHFE+/yl6/2oSKnfkd377n0\nKC55fhXdNvpNYtlAZlZzA+lioMjMrgqHxwDDzGx8UrtrgGuB1sCZZrZM0p3Aa2b2SNjmfuA5M5ua\nNO84YBxA9+7dhxQXF6flhwMoLy8nNzc3bctLtzjn82z111j5lm5YCsCArgMOGH/kG/PJf+wZnvjV\nDdCi+gKQl5NH2d7qH82dP/kpPu3ciT1f/056QtdBtn6u6VBYWDjXzPLrMk/argIys7uAuyRdBtzI\nZw+GT2XeicBEgPz8fCsoKEhXLEpLS0nn8tItzvk8W/01NF/lid7Kp3pVunXSrcH4iw582tev/vYW\nd1zYk39++liNyx6dO5rJ5ZOrnT75AgNtpySC32+mf65xk0oBWAP0Shg+PBxXnWLgT/Wc1zmXgqqu\nBLrx+4PY2ToNF/ZVXga6cye0adPw5bnYSuWvZTbQX1IfSa0JTupOS2wgqX/C4PnAsvD9NGCUpDaS\n+gD9gTcaHts5tx8zdrbJSds1/Eev3AKnnZaWZbn4qrUAmNkeYDwwA1gMTDGzhZImSBoRNhsvaaGk\n+QTnAcaG8y4EpgCLgOeBa8zMrzFzLo3yNu3knlvnQi3n8+piWe8OsHYtzJ2btmW6+EnpHICZTQem\nJ427KeH9D2qY93bg9voGdM7VbPi/PmFFr9y03sFb0UJw1VUwcSLce2/aluvixe8Edi7Gar3z14yi\nVz5mxqmHpn/lV1wBU6bAVu8yOlN5AXCuGRvwfjmtd1Xwdv9O6V94jx5QUABpvCzbxYt3BudcM3bu\nyx/z91MPxVo0Ugdu//u/0K5d4yzbRc4LgHPN2PxjO/PvPh0aZdnV3YvgMocfAnKuGXs5/2DWdW3b\nuCtZsAD++tfGXYeLhBcA55qp02evo932PY2/or174eab03qZqYsHLwDONUOdt+ziPx/4N9YUz245\n4YSgCCxY0AQrc03JC4BzzdAX31zPnEF57GjbBKfxJPjqV+HJJxt/Xa5JeQFwrhk6Zd4GXh3crelW\n6AUgI3kBcK6ZabtzL59fsonXPp/XdCv9wheCjuE2bGi6dbpG55eBOtfMDFy+mX/37UD5Qa2abqUt\nWsCcOU23PtckvAA418zMOy6vce78TYVZWvscctHyQ0DONUO7W0fwaG2z4IqgVauaft2uUXgBcK4Z\nGbh8M995bEU0K5fgxBPhqaeiWb9LOy8AzjUDlb2Cnj5nXXqe+lWPdQN+NVCGSekvSVKRpCWSlku6\nrorp10paJGmBpBckHZkwba+k+eFrWvK8zrkUmXHKm018+Weys8+GN9+Edeuiy+DSptYCICkHuAs4\nDxgIjJY0MKnZm0C+mX0OmAr8MmHadjM7IXyNwDlXL0d++Cmtdlew7Mjc6EK0bQtnngkzZkSXwaVN\nKnsAQ4HlZrbSzHYRPPR9ZGIDMysxs0/DwdcIHv7unEujU95czz8Hd43+KpzvfQ/69Ik2g0sLWS0d\nPEm6GCgys6vC4THAMDMbX037O4GPzey2cHgPMB/YA/zczA44gyRpHDAOoHv37kOK0/gAivLycnJz\nI/zGVIs45/Ns9dfQfEs3LD1g3HF/e5H1Rx3BJ8f0a0g08nLyKNtbVuf5BnQd0KD1piLTP9fGVFhY\nONfM8usyT1rvA5D0dSAfOCNh9JFmtkZSX+BFSW+b2X6XMZjZRGAiQH5+vhUUFKQtU2lpKelcXrrF\nOZ9nq7+G5rt10q0HjjwD4BMon13v5QKMzh3N5PLJdZ6v5KKE5wKsWBE8KKZHjwZlSZbpn2vcpHII\naA3QK2H48HDcfiQNB24ARpjZzsrxZrYm/HclUAoMbkBe57JS7rbdtKiIUXfMd98N998fdQrXQKkU\ngNlAf0l9JLUGRgH7Xc0jaTBwL8HGf23C+C6S2oTvuwGnAIvSFd65bHHNo8s5v/TDqGN8pqgInn8+\n6hSugWotAGa2BxgPzAAWA1PMbKGkCZIqr+r5FZALPJ50ueexwBxJbwElBOcAvAA4Vxdm5C/cyNzj\nukSd5DOnnQZvvw1ldT+X4OIjpXMAZjYdmJ407qaE98Orme+fwPENCehctuu7ehs7W7Xgw+7to47y\nmbZt4fTTYdYsuOSSqNO4evI7gZ2LuZPeLmPO8U3Y9XOqiorgueeiTuEawHsDdS7m8hdu5KmzekYd\n40CXXw5f+UrUKVwDeAFwLuaeHN6T+cd0jjrGgbp0CV6u2fJDQM7F3L8Gd2N7u5h+V3vlFe8crhnz\nAuBcjJ24sIxuG3fW3jAqW7bAH/4QdQpXT14AnIux7z+ynLzNu6KOUb2CguBRkVu3Rp3E1YMXAOdi\n6pANO+hYvptlR8Sz7xkA2reHoUPhpZeiTuLqwQuAczF10ttlzD2uC9Yi5s/gHT48uB/ANTteAJyL\nqZPeKWPOoBhe/59s+HBYtizqFK4evAA4F0OqMD6/ZDNz4tT9Q3VOOgmefTbqFK4eYnptmXPZzVqI\nMT8fSvlBraKOUqXKZwSXjC2J/gE1rt58D8C5mIrrxr9KM2bAD38YdQpXR14AnIuRwkmFFE4q5Kqp\nK+mxdnvUcVLXty9MnQq1PGHQxYsXAOdiptWuvXxl1ho25zajPYB+/SAnB5YsiTqJqwMvAM7FzKDl\nW3i350Fsa9+MTtFJwdVAM2dGncTVQUoFQFKRpCWSlku6rorp10paJGmBpBckHZkwbaykZeFrbDrD\nO5eJhizayNyBzeDqn2R+P0CzU2sBkJQD3AWcBwwERksamNTsTSDfzD4HTAV+Gc6bB9wMDAOGAjdL\naoZ/2c41nRMXbmRec7j8M9lZZ0H//lGncHWQyj7mUGB5+FB3JBUDI0l4tq+ZlSS0fw34evj+XGCm\nmZWF884EioDJDY/uXObJ2VPBnpZi0VEdo45ygMpLP6t1yCHw6183TRiXFrJaztpLuhgoMrOrwuEx\nwDAzG19N+zuBj83sNkk/Btqa2W3htJ8C283s10nzjAPGAXTv3n1IcXFxA3+sz5SXl5ObG9++VOKc\nz7PVX33zLd2wtBHS7C8vJ4+yvel5lu+ArgP2H1FRQastW9jduX7PL8jUz7UpFBYWzjWz/LrMk9az\nTJK+DuQDZ9RlPjObCEwEyM/Pt4KCgrRlKi0tJZ3LS7c45/Ns9VfffLc+eEuj31g1Onc0k8vTsxNe\nclHJ/iP+/ne44456dw6XqZ9rXKVyEngN0Cth+PBw3H4kDQduAEaY2c66zOucC9x7y1wOa07X/yc7\n5RSYNw/Ky6NO4lKQSgGYDfSX1EdSa2AUMC2xgaTBwL0EG/+1CZNmAOdI6hKe/D0nHOecS7ZqFYeU\n7eTjbm2jTpKyyhvX9jnoIMjPh5dfji6US1mtBcDM9gDjCTbci4EpZrZQ0gRJI8JmvwJygcclzZc0\nLZy3DPgZQRGZDUyoPCHsnEvywgvMO7Zz/Lt/rs1ZZ/nloM1ESucAzGw6MD1p3E0J74fXMO8DwAP1\nDehc1pg1i3nN8fr/ZMOHw9VXR53CpcDvBHYuDsxg1qzm0f1zbU46Ca6/3vsFaga8ADgXB9u3w9VX\n88nB7aJO0nAtW8Kll3o30c2AFwDn4qB9e7j55qhTpM/atd4vUDPgBcC5OFi8GPbsiTpFvR1wNdD6\n9fDtb/thoJjzAuBc1HbtgpNPhs2bo06SPsceG/xcK1dGncTVwAuAc1F7/fWgE7WuXaNOkj5ScDno\nCy9EncTVwAuAc1GbNSu4dDLTePfQsecFwLmoZWoBOOssKCmBioqok7hqeAFwLkqbN8NbbwV96GSa\nww+HhQuhhW9m4so/Geei1LYtzJgB7TLg+v+qHHJI1AlcDbwAOBelNm0y89t/pffeg5tuqrWZi4YX\nAOeidNdd8OmnUadoPHl58NvfZvbP2Ix5AXAuKmvWBN+O27SJOknj6dgRBg+u9wNiXOPyAuBcVGbN\norRvDoWPZM4VQAfcEQxw7rnBeQ4XO14AnIvK888z+/gM6P2zNuecEzwq0sVOSgVAUpGkJZKWS7qu\niumnS5onaU/4EPnEaXvDh8Tse1CMc1lv716YOZPZg/KiTtL4TjwROnf2x0TGUK0PhJGUA9wFnA2s\nBmZLmmZmixKafQB8E/hxFYvYbmYnpCGrc5nj3/+Gnj1Z1zV4/OMBh00ySU4OvPpq1ClcFVLZAxgK\nLDezlWa2CygGRiY2MLP3zGwB4Lf8OZeK446DOXOiTtG0vGfQ2JHV8qGEh3SKzOyqcHgMMMzMxlfR\n9kHgWTObmjBuDzAf2AP83MyeqmK+ccA4gO7duw8pLi6u9w+UrLy8nNzc3LQtL93inM+z1V+q+ZZu\nWNoEafaXl5NH2d7GfTT3gK4D9htuWV7OkO98h9cfeijYI6hGpnyuUSgsLJxrZvl1mSelZwI30JFm\ntkZSX+BFSW+b2YrEBmY2EZgIkJ+fbwUFBWlbeWlpKelcXrrFOZ9nq78a823cCGPHwtNPc+tDtzZp\nLoDRuaOZXD65UddRclHJgSM7d6agY8fgkZHVaNafazOUyiGgNUCvhOHDw3EpMbM14b8rgVJgcB3y\nOZd5XngBdu/Ovkcm+tVAsZNKAZgN9JfUR1JrYBSQ0tU8krpIahO+7wacAiyqeS7nMtyMGVBUFHWK\npuf3A8ROrQXAzPYA44EZwGJgipktlDRB0ggASSdJWg18DbhX0sJw9mOBOZLeAkoIzgF4AXDZywye\nfz7YGGawKm8IO/10mDcPtmyJJpQ7QErnAMxsOjA9adxNCe9nExwaSp7vn8DxDczoXOZYvDg4CXr0\n0VEnaRKVRaBkbEnw4Pvbbgv6BerYMeJkDprmJLBzrtLGjXD11dl3/L/SD38YdQKXwAuAc03plFMo\nXH4jTHo+6iTRMAsOAw0e7A+KiQH/BJxrKrt3w44dUaeIlgSXXQZvvhl1EocXAOeazvPPw4UXRp0i\nel/+Mjz7bNQpHF4AnGs606Zl5+WfyS64gH9P+k1m93/UTHgBcK4pVFTAM88E336z3Smn0POT7eRt\n2hl1kqznBcC5pvDGG9CtGxx1VNRJoteqFbMHdeHktxq3PyJXOy8AzjWFadNgxIioU8TGxEuO4h/5\n3aKOkfX8MlDnmsKIEcEegAPgk25to47g8D0A55rGySdDv35Rp4iVgjfWwuuvRx0jq/kegHON7ZVX\n4OCDs6b7h6pUdcXPoet2wMMPw7BhESRy4HsAzjW6eeO+zA1/urj2hlnmtRO6BvcD+JPCIuMFwLnG\ntHEjR7+7lbkDu0SdJHbe69E+6A7irbeijpK1vAA415iee475x3RmZ5vqH4OYtSS4+GJ4/PGok2Qt\nLwDONaZp0/jn4K5Rp4ivSy6BZcuiTpG1UioAkookLZG0XNJ1VUw/XdI8SXvCh8gnThsraVn4Gpuu\n4M7F3p498NJL/OvzXgCqlZ8PU6ZEnSJr1XoVkKQc4C7gbGA1MFvStKQne30AfBP4cdK8ecDNQD5g\nwNxw3o3pie9cjLVsCStWsHHKl4Cqr4TJdvseGDPmBe8eOgKp/MaHAsvNbKWZ7QKKgZGJDczsPTNb\nAFQkzXsuMNPMysKN/kzAe8Ny2aNdu6gTxF6PtduD5wP41UBNLpX7AHoCqxKGVwOpXrhb1bw9kxtJ\nGgeMA+jevTulpaUpLr525eXlaV1eusU5n2erv+1r17Lm+GOY/tMfMjp3dNRx9pOXkxevTAcZ29fe\nwjv330/5oYfu+1yXblgKwICuAyIMt7+4/93VVSxuBDOzicBEgPz8fCsoKEjbsktLS0nn8tItzvk8\nW/0tuuEGPshZx6PbH4s6ygFG545mcvnkqGPsZ9yYMZz03nuU9uu373O9ddKtAJRcVBJhsv3F/e+u\nrlI5BLQG6JUwfHg4LhUNmde5Zqv7iy/y4rBDoo7RbHyn/Qusuu8Olq5fQuGkQj9f0kRSKQCzgf6S\n+khqDYwCpqW4/BnAOZK6SOoCnBOOcy5zlZXR6e23eXWwd/6WqqW9O9Byr5H3/uqoo2SVWguAme0B\nxhNsuBcDU8xsoaQJkkYASDpJ0mrga8C9khaG85YBPyMoIrOBCeE45zLXk09Slp/P9naxOMLaPEj8\n8fJ+7G53YC+hvkfQeFL6CzWz6cD0pHE3JbyfTXB4p6p5HwAeaEBG55qXvDw+HDmS1HeUHcC/Bnej\nd+7BUB51kuzhF946l25f/SqbBg+OOkWz1G3F+xy5ZluNbXyPIH28ADiXTkuWwNatUadotg5btJTR\n0z+IOkbJfOUuAAANIklEQVTW8ALgXDpdfjm8+mrUKZqtZaefzCnz1nPQp3uijpIVvAA4ly5z5sCG\nDXDOOVEnabZ2dOrA3OO6cObra6OOkhX8MgXn0uXee+Hb3/Y+bRpo+umH8c3/e49nCnvsN96P+6ef\n/6U6lw5btsDUqXDFFVEnafbmDMqj/Y695G3aGXWUjOcFwLl0eOopOOssOPRQCicV7uvHxtVdRQvx\nrdtPoqxzm6ijZDw/BORcOowZwwXb/sw2P0yRFtZCYIYsfO8ahe8BOJcOEtva+/epdLp20lLOmLMu\n6hgZzf9inaunfQ8zeWswfOlLEafJPPOP6cyIFz+kdKh3qtdYfA/AuQY4aNtutt77R76y+Oaoo2Sc\nf+QfTI+12zl65Zaoo2QsLwDONcB5r3zM7EFd2NSxddRRMs7eli14/NzDGTV9Ve2NXb14AXCunlrt\n2sslz6+i+EtHRB0lY/3tjMM4YckmenzyadRRMpIXAOfqqeiVj1nRK5dlvTtEHSVj7Wjbkht+MIiy\nTr6H1Rj8JLBz9bSsdwfe6d8p6hgZb1E//x03lpQKgKQi4PdADnCfmf08aXob4CFgCLABuNTM3pPU\nm+AhMkvCpq+Z2XfTE925aOzrkqBvx2iDZJHjlm2m3wflPH1Wz6ijZJRaDwFJygHuAs4DBgKjJQ1M\nanYlsNHM+gG/BX6RMG2FmZ0Qvnzj75q9FnsruHLqSlrtrog6StYo69Sab/3fu7Tb7r2EplMqewBD\ngeVmthJAUjEwEliU0GYkcEv4fipwpyS/fc81W4kdj5WMLdlv3PDX1/G5pZvZ3dL/xJvKR4e0Y+7A\nLnzlhTU8esGRUcfJGKmcBO4JJF6HtTocV2Wb8BnCm4Gu4bQ+kt6U9A9JpzUwr3ORUoVx+bPv8/CI\nI8G/4zSpB77ah0ueX0WXzbuijpIxZGY1N5AuBorM7KpweAwwzMzGJ7R5J2yzOhxeAQwDtgK5ZrZB\n0hDgKeA4M9uStI5xwDiA7t27DykuLk7Xz0d5eTm5ublpW166xTlfNmdL7MxtQNcB+8YNKPknx858\niadv/+8aC0BeTh5le8saLV9DNOdswyZNpfWn23n56jH7PpemFOf/E4WFhXPNLL8u86RyCGgN0Cth\n+PBwXFVtVktqCXQCNlhQXXYCmNncsDAMAOYkzmxmE4GJAPn5+VZQUFCXn6FGpaWlpHN56RbnfNmc\n7dZJt+57X3JRcAjoN3ffyKSH3+D6/ziepdtq/pIyOnc0k8snN1q+hmjO2aYV7ebUeeuZUT553+fS\nlOL8f6I+UikAs4H+kvoQbOhHAZcltZkGjAX+BVwMvGhmJulgoMzM9krqC/QHVqYtvXNNoPLYf7dd\nFTx4YW+W9vGrf6Ky7aBWzDjtsKhjZIxazwGEx/THAzMILumcYmYLJU2QNCJsdj/QVdJy4FrgunD8\n6cACSfMJTg5/18ziue/pXC3Wd2nDM2f6ZYhxcMYba+HZZ6OO0eyldB+AmU0HpieNuynh/Q7ga1XM\n9wTwRAMzOhcpVRjjHl/JI18+0rt8jomtua3g+9+H4cOhbduo4zRb3hWEc7U4/6WPGLRsM5+2zYk6\nigvNG9gFhgyBn/wk6ijNmhcA52pwyIYdXPHEu/zuGwP8yVRxc++9wXOYp0+vva2rkhcA56rRancF\nt9y1kMfO68WKI+J56V9Wy8uDRx6BK6+ETZuiTtMseQFwrhpjn3qPdV3a8Nh5vWpv7KJx+ukwcyZ0\n7hx1kmbJz2g5V40nz+7JztY5fsdv3A0aFPy7cSN06RJtlmbG9wCcS7ZmDS0qjLLObfyqn+Zi5044\n8UR4+umokzQrXgCcS/Tee3DqqQxZuDHqJK4u2rSBxx+Hb387OCTkUuIFwLlKK1bAGWfAj3/M7OPz\nok7j6io/H558Ei67DF5+Oeo0zYIXAOcAliyBggK44Qa45pqo07j6OvVUePRRuOgiWLSo9vZZzg9w\nOrdzJ3zpSzBhAnzrW1GncQ119tnwzDPQr1/USWLP9wBc9qrsCr1NG3j1Vd/4Z5Jhw6B1a1i/Hm6/\nHfb4k8Sq4gXAZaeNG+HSS4NjxgCHHhptHtc4JPjHP+Ccc+CTT6JOEzteAFx2MQsuFTzhBDjssODQ\nj8tcXbvCc88F5wYGDYI77ggO+TnAC4DLJi+9BCefDD/9KUycCL//vfckmQ1ycoLzOy+/DC++6Cf5\nE/hJYJfZtm8PvvW3bw9lZXDttfC1r0EL/+6TdY45JniGwPbtwfDSpUFHcmPGBHsKWcj/F7jMs317\ncDPQFVdAjx6f3Rh04YXBcX/f+Ge3du0+ez9nDhx1FFx+OUyZAhs2RJcrAin9T5BUJGmJpOWSrqti\nehtJj4XTX5fUO2Ha9eH4JZLOTV9054CKCti6NXi/dSucdhocfDDcdFNwzHfhQhg5MtqMLp4GDAh6\nE125Er74RXjoIejfH8rLg+kLFsDixRl9BVGth4Ak5QB3AWcDq4HZkqaZWeJdFlcCG82sn6RRwC+A\nSyUNJHiG8HFAD2CWpAFmtjfdP4jLIGawa1fwH3HTpuAYbu/ewbTf/Q7ef5+Bb74ZbPCXLIFvfAPu\nvhtyc+HWW2Ho0OC9c6nIywvOC1xzTbCxbxluFp95Bv7yF/joo6AwHHEEfQ86KLhhEGDePNi9Ozh8\n1LFj8DfXrl2z6jwwlXMAQ4HlZrYSQFIxMBJILAAjgVvC91OBOyUpHF9sZjuBd8NnBg8leHi8y0bn\nnw/r1gX/0fbuDf4DnXEG/OlPwfS+feGDD4KNfvv2QTe/I0cGG34ILt/s2ZP1ubkccv75cOyx0KlT\nME2CM8+M5udymaFlwibxhhuCV3l58EVj1Sq2vf76Z9Mfeyw4qbxhQ/BlpLw8OOS4YkUw/bLL4PXX\ngyuPYroXKqu8Gaa6BtLFQJGZXRUOjwGGmdn4hDbvhG1Wh8MrgGEEReE1M3skHH8/8JyZTU1axzhg\nXDh4NLCk4T/aPt2A9WlcXrrFOZ9nq7845/Ns9RfnfEebWYe6zBCLq4DMbCIwsTGWLWmOmeU3xrLT\nIc75PFv9xTmfZ6u/OOeTNKeu86RyEngNkPhIpMPDcVW2kdQS6ARsSHFe55xzEUilAMwG+kvqI6k1\nwUndaUltpgFjw/cXAy9acGxpGjAqvEqoD9AfeCM90Z1zzjVErYeAzGyPpPHADCAHeMDMFkqaAMwx\ns2nA/cDD4UneMoIiQdhuCsEJ4z3ANRFcAdQoh5bSKM75PFv9xTmfZ6u/OOerc7ZaTwI755zLTH5L\npHPOZSkvAM45l6WyqgBI+pEkk9Qt6iyVJP1K0r8lLZD0f5I6xyBTjV1/RElSL0klkhZJWijpB1Fn\nSiYpR9Kbkp6NOksySZ0lTQ3/5hZL+kLUmSpJ+o/wM31H0mRJkXbVKukBSWvD+5wqx+VJmilpWfhv\nlxhlq/O2JGsKgKRewDnAB1FnSTITGGRmnwOWAtdHGSah64/zgIHA6LBLj7jYA/zIzAYCJwPXxCwf\nwA+AxVGHqMbvgefN7Bjg88Qkp6SewPeBfDMbRHDByahoU/EgUJQ07jrgBTPrD7wQDkfhQQ7MVudt\nSdYUAOC3wH8BsTrrbWZ/N7PK3qZeI7hXIkr7uv4ws11AZdcfsWBmH5nZvPD9VoINWM9oU31G0uHA\n+cB9UWdJJqkTcDrBVXuY2S4z2xRtqv20BNqF9xK1Bz6MMoyZvURwVWOikcCk8P0k4MImDRWqKlt9\ntiVZUQAkjQTWmNlbUWepxRXAcxFn6AmsShheTYw2sInCXmcHA6/X3LJJ/Y7gi0ZF1EGq0AdYB/wl\nPER1n6SDog4FYGZrgF8T7KF/BGw2s79Hm6pK3c3so/D9x0D3KMPUIKVtScYUAEmzwmOHya+RwE+A\nm2KarbLNDQSHN/4aVc7mRFIu8ATwQzPbEnUeAEkXAGvNbG7UWarREjgR+JOZDQa2Ed0hjP2Ex9JH\nEhSpHsBBkr4ebaqahTe7xuqIAtRtWxKLvoDSwcyGVzVe0vEEf1RvBR2UcjgwT9JQM/s4ymyVJH0T\nuAA4y6K/MSP23XdIakWw8f+rmT0ZdZ4EpwAjJH0JaAt0lPSImcVlQ7YaWG1mlXtMU4lJAQCGA++a\n2ToASU8CXwQeiTTVgT6RdJiZfSTpMGBt1IES1XVbkjF7ANUxs7fN7BAz621mvQn+E5zYVBv/2kgq\nIjhkMMLMPo06D6l1/RGZsJvx+4HFZnZH1HkSmdn1ZnZ4+Hc2iqBLlLhs/An/5ldJOjocdRb7d+se\npQ+AkyW1Dz/js4jJCeokid3ejAWejjDLfuqzLcn4AtAM3Al0AGZKmi/pnijDhCeRKrv+WAxMMbOF\nUWZKcgowBjgz/H3ND79xu9R8D/irpAXACcD/RJwHgHCvZCowD3ibYNsUabcLkiYTPLvkaEmrJV0J\n/Bw4W9Iygr2Wn8coW523Jd4VhHPOZSnfA3DOuSzlBcA557KUFwDnnMtSXgCccy5LeQFwzrks5QXA\nOeeylBcA55zLUv8fo+QHfj6Y5PIAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 7.12918377]\n", + " [ 6.34670162]\n", + " [ 7.1849947 ]\n", + " [ 4.80329943]\n", + " [ 6.08930492]\n", + " [ 6.52564669]\n", + " [ 5.71299791]\n", + " [ 4.34062815]\n", + " [ 5.82264519]\n", + " [ 5.33823776]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEICAYAAAC9E5gJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FlXax/HvDSEJvSgqChoVLKgoRcGOogIW9FVXxYas\nimXtyi7oqixid+3Y24qia18EFRFREEVBEZQmVZpA6DV52v3+MZPkSfKkgAkR+X2uK1dmzpyZOXPm\nPHNPH3N3RERk+1atqgsgIiJVT8FAREQUDERERMFARERQMBARERQMREQEBYOUzOwZM7u9gqd5gZl9\nuoXjHm1mMyqyPNsSM3vFzAaE3VtcF5WxXv8szOwSM/uqEqY7wMyWm9mSip52RTKzN8zsjDLy7Gxm\n08wsY2uVa2va7oKBmc0zs01mts7MVpvZ12Z2pZnl14W7X+nud1XkfN39dXc/aQvHHePu+1ZEOczs\nCzO7rCKmVRXKWxepNm6VsV7DefUzs9cqerrbOjPbHbgZaOnuu1RRGeqa2cPh736Dmc03s3fMrH1S\nnlbAwcD/SpuWuy8FRgG9KrfUVWO7Cwah09y9LrAHcB/wD+DFypqZmaVV1rS3Jgv8rjbzZ6kLKZfd\ngRXuvizVwMpuC+Ee/OfAQcCpQD1gf+BNoGtS1iuA1718T+C+Hub/83H37eoPmAecUCTtMCABHBj2\nvwIMCLt3BIYCq4GVwBigWjisGfAekA2sAJ4M0y8BxgKPhOkDwrSvkubpwNXATGAdcBewN/A1sBZ4\nC0gP83YEFhZZhluAycAa4L9AZjisYVjebGBV2N00HHY3EAdygPVJ5T0CGB9OazxwRNK8vgjHGwts\nApqXUKd9ganhPF9OKk9HYCFBwF0CDArTTwV+DOv1a6BV0vRaAz+E9fJfgh/vgBLqotg6IPjB54TL\nuh5YXXS9hv2XA7PC9ToE2LXI+rkyXD+rgYGApVj2LkAEiIbzmhSm7xpOc2U4j8tLaZMnh3W3DlgE\n3FLWukxaNwPC+lsPfAjsQLDBWhuuy6wiy3QdMAdYDjxIQVu+hMLtcz9gRFj+GcA5ZZW3yDKdELaX\nRFi2V4CssAyXAvOB0WHebsCUsJ6/APYv0rZ6E7T1DQQ7bTsDH4fz/wxoWEK9Xgb8BtQuY5swBzgq\nqX9SWOa8Pwc6hsPSgI3AHlW9LavovyovwFZf4BTBIEyfD1wVdr9CwcbnXuAZoEb4dzRgQPWw0TwC\n1AYy8xpU+MOKAdeGjadmih+bExyW1gMOAHKBkcBeQP3wx9YjzNuR4sHgO4INTiNgGnBlOGwH4Cyg\nFlAXeBv4IGncL4DLkvobEWxoLgrL2j3s3yEp//ywjGlAjRLq9GeCDXMjgsCRvPGOAfcDGWFdtAaW\nAe3DeuwRTiMDSAd+BW4M6/tsgg1tsWBQjnXwVZFyJq/X4wk2iG3C+T5BuHFKWj9DgQYEe7jZQJcS\n2lQ/4LUiaaOBp8IyHRKOf3wJ4/8GHB12NwTabMa6nEWwE5HXZn4h2BCnAa8CLxdZplHhOto9zHtZ\n0foK63IB0DOcTuuwrlqWVt4Uy5W/rsL+rLAMr4bzqAnsQ7CRPzFc338PlylvR2geMI4gAOxG0G5+\nCMuUSbDnf2cJ838TeKWM7UHtsEyNSxjeC5gO1EtKmwx0q+ptWUX/ba+niVJZTPAjKSoKNCHYE4h6\ncM7aCY4mdgV6u/sGd89x9+Rz1Ivd/Ql3j7n7phLm+YC7r3X3KQQb00/dfY67ryHY82ldSnkfd/fF\n7r6SYI/wEAB3X+Hu77r7RndfR7BXf2wp0zkFmOnug8KyvkHQ+E9LyvOKu08Jh0dLmM6T7r4gLM/d\nBEElT4LgB5sb1kUv4Fl3/9bd4+7+H4Jg2CH8qwE8Gtb3OwR7uKmUtQ5KcwHwkrv/4O65BEc2h5tZ\nVlKe+9x9tbvPJ9iIHlKeCZtZM+BI4B9hmX4EXgAuLmGUKNDSzOq5+yp3/wHKvS5fdvfZSW1mtrt/\n5u4xguBRtA3d7+4rw2V6lMLrKc+pwDx3fzlc5xOBd4G/lFbezdAvXF+bgHOBYe4+ImxbDxEEiSOS\n8j/h7kvdfRHBkfm37j7R3XOA91MsY54dCY5GATCzQ8LrhGuTbkJoEP5fV3RkMzuK4Mirm7uvTRq0\nLmm8Pw0FgwK7ERwSF/UgwZ7Kp2Y2x8z6hOnNgF/DH10qC8oxz6VJ3ZtS9NcpZdzkuzM25uU1s1pm\n9qyZ/Wpmawn2UBuYWfUSprMrwZ54sl8J6iNPeZYlOc+v4XTzZIc/3Dx7ADeHP8zVZraaoD53Df8W\nhQE3eXqplLUOSlNoud19PcFppuTlTlnH5Zz2ynADnqdonSY7i+DUy69m9qWZHQ7lXpeb24ZKW095\n9gDaF1k/FwB5F4FTlnczJJeh6HpIhMOT62pLfycrCHbk8qb9o7s3AM4kOBqE4NQUBEde+cKA/hbB\n0fkvRaZbN2m8Pw0FA8DMDiVofMX2Kt19nbvf7O57EZzbvMnMOhE02N1LuQhWVa+DvRnYF2jv7vWA\nY8J0C/8XLddigh9/st0JzgXnKc+yNCsy/uJSxl8A3O3uDZL+aoVHJb8Bu5mZJeXfvYR5lrYOyipz\noeU2s9oEp2UWlThGyVLVaSMzS97AFK3TgpHdx7v76cBOwAcEGyEoe11uidLWU54FwJdF1k8dd7+q\njPKWV3J9FV0PFpZxS9ZDUSOBk8J1m7og7huA2QSnq/LKUJNguR5194+T84dtrTnB6ck/le06GJhZ\nPTM7leDc4mvu/lOKPKeaWfOwka4huCiZIDhn/xtwn5nVNrNMMztya5a/BHUJ9pZWm1kj4M4iw5cS\nXJfI8xGwj5mdb2ZpZnYu0JLgfPnm+JuZNQ3neRvBhd+SPA9caWbtwzuUapvZKeHG8xuCawzXmVkN\nMzuT4HRQKqWtg6VAUzNLL2HcN4Ce4amDDOAegtMP8zZnoZPmlZV3p5W7LyC4qHtvWKZWBBdNi91+\nambpFjyDUj88TbKWoH1B2etyS/Q2s4bhnu/1pF5PQwnaxEXhOqhhZoea2f5llHdLvAWcYmadzKwG\nQQDMJai/3+tVgvbxvpkdaGbVzSwTaFck30cUPv32EjDd3R9IMc3DCE6hlXS0us3aXoPBh2a2jmAP\n6DbgYYKLZam0ILhjYT3Bhuopdx/l7nGC8+rNCS6wLiQ4/1nVHiU457qc4MLbJ0WGPwacbWarzOxx\nd19BcI74ZoLD6r8Dp7r78s2c72DgU4I7M2YTnGtNyd0nENzJ8yTBxepZBBcwcfcIwWH8JQSn7c4l\nuFso1XRKWwefE9yhssTMii2Lu38G3E5wLvw3gouw55V7aQt7O/y/wszyzp93J7hgupjgvPad4TxT\nuQiYF54KupLglAyUvS63xP+A7wnu5BpGiluqw9NbJxHUx2KC02V5NwCUVt7N5u4zgAsJLuAvJ1if\np4Xt4HcJT00eR3BhfRhB4JoBHAqck5T1OeCCpKPR84D/M7P1SX9Hh8MuILih5E/HCp+aFdl8ZjaP\n4K6UkjZ28gdgZg60cPdZVV2WPxozGwy85e4flJJnJ+BLoHWRa2B/CnoASES2e+5+fjnyLCN4huVP\nqczTRGb2kpktM7OfSxhuZva4mc0ys8lm1qbiiykiIpWpPNcMXiF4yrIkXQnOq7cguH/86d9fLNmW\nuHuWThH98bm76RSRlKTMYODuo0l9/32e04FXPTCO4D7oJqXkFxGRP5iKuGawG4UfIlkYpv1WNKOZ\n9SJ841/t2rXb7rfffhUwexGR7cf333+/3N0bV/R0t+oFZHd/juA2Ltq1a+cTJkzYmrMXEdnmmVml\nPONQEc8ZLKLwU41NqZinB0VEZCupiGAwBLg4vKuoA7DG3YudIhIRkT+uMk8TmdkbBK+i3dHMFhI8\nEl8DwN2fIXiU+2SCp0g3UvKTvCIi8gdVZjBw91SvuE0e7sDfKqxEIiKy1W2v7yYSEZEkCgYiIqJg\nICIiCgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBgICIiKBiIiAgKBiIigoKBiIigYCAiIigY\niIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBgICIiKBiIiAgKBiIigoKBiIigYCAiIigY\niIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBgICIiKBiIiAjlDAZm1sXMZpjZLDPrk2L4\n7mY2yswmmtlkMzu54osqIiKVpcxgYGbVgYFAV6Al0N3MWhbJ9k/gLXdvDZwHPFXRBRURkcpTniOD\nw4BZ7j7H3SPAm8DpRfI4UC/srg8srrgiiohIZStPMNgNWJDUvzBMS9YPuNDMFgIfAdemmpCZ9TKz\nCWY2ITs7ewuKKyIilaGiLiB3B15x96bAycAgMys2bXd/zt3buXu7xo0bV9CsRUTk9ypPMFgENEvq\nbxqmJbsUeAvA3b8BMoEdK6KAIiJS+coTDMYDLcxsTzNLJ7hAPKRInvlAJwAz258gGOg8kIjINqLM\nYODuMeAaYDgwjeCuoSlm1t/MuoXZbgYuN7NJwBvAJe7ulVVoERGpWGnlyeTuHxFcGE5OuyOpeypw\nZMUWTUREthY9gSwiIgoGIiKiYCAiIigYiIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBg\nICIiKBiIiAgKBiIigoKBiIigYCAiIigYiIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBg\nICIiKBiIiAgKBiIigoKBiIigYCAiIigYiIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiFDO\nYGBmXcxshpnNMrM+JeQ5x8ymmtkUMxtcscUUEZHKlFZWBjOrDgwETgQWAuPNbIi7T03K0wLoCxzp\n7qvMbKfKKrCIiFS88hwZHAbMcvc57h4B3gROL5LncmCgu68CcPdlFVtMERGpTOUJBrsBC5L6F4Zp\nyfYB9jGzsWY2zsy6pJqQmfUyswlmNiE7O3vLSiwiIhWuoi4gpwEtgI5Ad+B5M2tQNJO7P+fu7dy9\nXePGjSto1iIi8nuVJxgsApol9TcN05ItBIa4e9Td5wK/EAQHERHZBpQnGIwHWpjZnmaWDpwHDCmS\n5wOCowLMbEeC00ZzKrCcIiJSicoMBu4eA64BhgPTgLfcfYqZ9TezbmG24cAKM5sKjAJ6u/uKyiq0\niIhULHP3Kplxu3btfMKECVUybxGRbZWZfe/u7Sp6unoCWUREFAxERETBQERE2EaDQSSWIJ6onGsd\nkxasJicaB2Dq4rWs2Rgtc5z5KzayKRKvlPL8Ubk7vyxdV9XFqHCxeIIZSyp/udZsjDJl8ZpKn09l\n2hSJk70ut1x5Ewln0oLVzF+xsZJLteVG/5JNNJ6o6mJUmW0yGOzzz4/p+cr4Cp/usrU5nD5wLP94\ndzIAJz8+hjOfHlvmeMc8OIq/FimPu3P3sKnMWrblG5ZYPEHnR0bz+fSl5R5nyuI1ZPUZlr9Bm7t8\nAy+MKfsu37uGTuXr2cuBoOxzl28oNf+7PyzipEdGM2r6lr15ZOnaHLo8Oprf1mzaovErw6xl6xgw\nbBqdHx3N7Oz1lTqvc5/7hlMe/4qSbuBYvTFS5o7IC2PmMGZm8CT/FYMmsP/tn5SaP55wrn9zIj8v\nKhyEnvx8JiOmLsXd+Wrm8hLLVNTZz3zNoXd/xoF3Di8z7+Ofz+T0gWM55sFRZeZ987v5vPjV3HKV\nAYL2umxtDgDTl6wlq88wvp0T3Mw4ZNJier78XZnTmDBvJRe/9B0PDZ9RKH3+io0sWZOTcpwuj47m\npEe+ZFMkTm4s+MuzYOVGFqwsOfCtWJ9L/w+nMnnh6hLrO2+nFGDZuhwe/eyXcq+bLVGlwWBdTtl7\nR1cO+p6sPsPo/fYkhkxanJ8++peKf53FutwYAD8uWM2/PpwCwOzs0jeKeb6ZU/hO2pnL1vP8mLlc\n9GLZDTGV39ZsovltHzNj6Tr6vPtTfnrPl78jq8+wEsf76KffABgxdQkAf3nmGwYMm8bGSKzU+b34\n1VzOf/5bAN77YRHHPfQFX80MgkMi4cXW07Tf1gLw+fRlHHX/5yX+YFI57qEvaH/PSKYvWcfgb+cX\nG/7hpMWc/fTXfPzTb0yYtzLlNBIJZ+na8s+zJF/NXM4vS9cRjSc44eHRvPL1PACWl7LHG4klyOoz\njGe/nM2UxWvKLIe78+GkxcSS9jqnh8F6wLBp+RuN6UvW5h/xHtJ/BAf3/5RZy9YzdtbylNMdMGwa\nF734HXOXb2D4lKVsipZ8dNr9uXF0uHck//txMVe9/n2hYQ99+guXvzqBDyf/xoUvfsvg7+YzZNJi\nVqwvXAc/L1qDu/P4yJm8NX4BUxYHbWB9+LuJxBJc+8ZE5qXYkRhfwnpMpc97P3HX0Kkph/3jncnF\n2v9r387nsHtGMnXx2vw2+9QXs1m+Ppfr3pjIqBnZbMgtvf0vXx8BKLYTdMyDo+hw78iU40xfso5f\nlq6n40OjOKjfp7TuPyJ/2NEPjOLoB0oOfP2HTuWlsXPp9uRYXv3m12LDx8zMZr/bP2HCvJXEE85h\nd4/k0c9m8sP81aUux+9R5ltLK83iidS9b0euy32QkcfNh6+f4JtqbTg88UMw/NofYIe9mTJ1Ehk0\n5Ivvf+a97+tyWqvTAHiyxmPQ73y4dAS8eGIwTusLYeJr5J42kNhP71N73mcF8+v5MUx8HX58Leiv\ntQPcOBVqZML3/4EGzfC6hwHw64qNDB37I/Myr6ZP9DKYuAoOuQBWzYPHDym8HKc+wrzMG4PuH5+B\nWZ/Bz+9wcc4T1CODBvGNsGI2VKsODbNgwM4QS9p4HHIBnPEU/PoNjLob2l4CB51Nzse3My/zeQ7J\neZa/JEZBv7Og1XncNHccL2fOg35Ah79Bq7/AyjlQrynU3pH02HrmZZ4Po2Hij8czIfY5F1f7B9Xn\n1YYWx0I8CjM/hXFPwa9jYZdWcMVojqk2icOrTYVn7uOsJZPpy3/Y7bOr4O1veKXte4z58lNuuvgv\nHDTuZljyE9fH07g9czl7jxvEidW+5+fh09nlnKsLluvn92DfrvBRb5g4CPqFwWTaUEatv4Arq93A\nIdVms5HbwR1+fhcy68PenbjpjfHUIMbcRU9zf/xYvhjQg8tem8T8lRt45qw9afjVXYzNOJqR30/l\n+hv6krVTfVizEGaNJLZfN9IezAIgcdC53LLq/7gh+jy7Lx3JwiYnUufMx2nQqDGs+hWebMv6+KHM\n9zrskzaKM6pdzeVpw7gueg3Vohug314AfNXmEY46tUewHp85kvR4hHmZMH1UFid/PIC06mn80qMa\n/Pg6TP0fdLgajv07zPgE1i/BPuvHaQDvAy1Ph7/8hxvT3uH6tPfoPPY+bp9wOCv3v5AuE09mds2L\noHknoAdgdH74c/a3Xxm61wfQ40O4pwkc3B1y1zEvc2hQp0/CidVu4vn0h4N2ce5rsP9pMP0jiG2C\nnLW8sfgGzsq9kwS7cGH0I1i1F3z9JIx/nnEZDemcez/7jb2JLDuBU0dcy60bL+Bl34H3M+7MX6UH\nhv8fzgneUF+PDTS3RXSoNhX6nc/a3buyw+zG3LauO693WAjvXR6Upd6uvL6wM+fa7bSuNhOyW8Ab\n50HHvvDeZcFEb/gJGuwOwE6sYhV1SSyfQ7UnW8MF78LrZwFwP3B/JsFyApz7Ot/N2pHDbBrNX7qC\nlrF1XJYJL8/pTPf7uwI78XSNR7D7e8F130D9ZhBZDxl1iX58G49/tYRx9bpw6SlHc3q1r3hszlNw\ndy048npo06OgPc8eBYPOCLov+xy+e5Z5mf9lpdehUWQ9x8QfYX5s52B4v/rMy4SrI9fBkj1g0hvQ\n/gpYOgW+ew7WLWGXzBuB2szLPJ9p3xwBO/+dhel7k5PRiOY71eGnqVOZl3k+Q75/gti4xczLvBeA\n8ZFpVJaqe85g1+o+oVed0jOd/zYM/kuhpBnHPMm+o6/Z/Bl2+BuMG1g8/cJ34bWgoc26ehHdHh5O\nlDQuqj6CO2oMKsh33hvBBuvndzZ/3nn6rYF+9ctMv7vVCG6bfOIWzeKFgwZx2U8XpR5YawdovD/8\n+lXh9APOhCnvlTjN9dSiDqkPeS+L3MwL6f8Oeo6+Gcb8O2W+6B4dqdHzf/D0UbC04EjnuXYf0mvC\naSUvEMChl7HXmI4A/KfGfRxd/ef8QQv2v5xm5z4EDzaHDcWPFld4XXawzT9Vt+jg69lt0mMFCTVq\nQbR4HeR6GvvmvhoE4PK6dTHcs2ux5KHxDpxafRwAt0X/yrB4e37MvKIgQ8+P4eWu5ZvHlWPhmSPL\nXaSFviNNLfURSFH75rzCmdXHcG+NF1MOH9joH/wt96WU66NUTQ+FzAYwawQfxI9gl3070GHWw2WO\nNrzheXRe9WbKYafk3s2wjNsKElp0hpnFT2t92fUzjv34hNTTj7ejc/Wyn4lqnvMqv9zTjWr9i72W\nLaXP44dwfPUfC6V1y72LIXUfYC01qRdZxrxGR7LTumnUigZHVm8c/Snnn9ChUp4z+GMHgwq0cJcT\nabpkRKl5VmTuwQ45v/JtYj/aV5u+lUoGw8/4kc4fHFJ2xnLonHsfwzNSfn+oUqzxWtS38l0U/LH9\nwxzy7U0VO/8ajRm42/3cOu+vFTrdzZGVM3izgsFHp/3AyR+2KTXP0Hh7Po63Z2D64/lp4459jQ5f\nXliueWza4UBqrvi57Ix/YK/UOI9Loqk38smWVd+ZneLlv662LftntCd33/OYgoHIH9HmBoOOuf/m\ni4ybS82zydOpaZFCaX/JvYO3M/pvURm3RS/EunJZ2sdVXYw/HPvXWj2BLPJHtFmniKDMQAAUCwQA\nbav9slnz2dYpEGxdCgYi24g+Nco+ZSKypRQMREREwUBERBQMREQEBQMREUHBQEREUDAQEREUDERE\nBAUDERFBwUBERFAwEBERFAxERIQqDAYLvXF+91WR6+kbvbTQ8IejZ3NbtPTXEo+IB68Bzvb6fBlv\nxWuxToWGfxNvmd89umYnsnIGc0Pkas6P3Mrpuf15JHoWd0UvyM8zNn5Ayvm0z3mSf0Z7cnbuHXwV\n5mmX8zR9opcxPF7w8sAR8Ta0znmGnpHehcafldiViyP/4JnYaYyIt2GpN+DyyE30jvZiuddj0+7H\nhXWyY/44PySaF5pGVs5g/i/3X/n990a7k5XzOs1zXuWAnBd5PHZGqXXVMuclLor04Zzc2zkq9zEu\niPTlxVhXZiea0CLn1fx890S7s9ZrAdAvejEzEk3zh10VuZ47oj04JveRYtMfn9iHW6JXFEp7PHYG\nuV7w/aThu1xRaF7JPox34OnYaZyce0+xYRdE+hZLm5ZoBsAs3y0/7dVY4W9AvF6kPeTJ9RrcGLmK\ncYn989O+TmoreaYm9sjv7pZ7F8fnPsR+OS9zcM5zxfK+GesIwM2RK+kd7UX3yG38kGjORZGC14nP\nTOxGl9z7iB10XspylSW7+TncEAk+IHRl5IaUedrmPE37nCe5M9qDEfE2jIy3plfkxpR5D80ZyAE5\nxb9JsNIL3ibcL3pxucrWJfc+BiT9ls7M7Uen3Ac5IOdF9s95iS/jrfKHXRjpywPRc7gmci1XRm5g\nbmJnDsh5kYsiffhntGexaU9N7MHo+EEph/07ejbZnuIbISn8M9qTw3IG8nKsc4l51nsmh+Y8RYuc\nV+mae29++um5/Tkm9xHeiB3HT4msEsdPbu95NnpGmWW7P1rQJvbLeZmnYt3KHKeiVVkwWEXd/O5P\nEocyIbFvoeGPx88k8/DLi403uEXBhujy6C1k5Qzm0Nyn6RHtwz9jhQNK9+htdI/cxoE5LzD6gAEA\nfJA4iq8TBzLJm/NY/Cx26XwLrXKep1XO8xx53Sspy7qURhx4+k3k7tqeC6O3kZUzmOXU58348VwR\nLXg//+XRW1hFPUYlWhca/6/R3oxOHMyVA17j8ugttM99ihGJdrwd70i73Geo+dcPuCJyA91yB9Az\n0ptI7SY8Fzs1f/xFvgMAM7xZftqz8dMAI0YaG6jJw7Hgx7XywMJ1sMnTAUhgjEm0YnLaASz0xoxN\nHMRdsYvoFPk3++7WKD//c/HTeC9+VH7/hUkbYsN5Nd6Z+b4zz8ZOKTSfT+PtGFunM+1zngTgjNz+\nPBw7h31zX+VvkevolnsXna98gB3rF35t+eKDr+OQnGe5Nnod98e6M9WzitV/eovji6Vle/ABkc92\nvwHuXM2eOa9xR6wnY+LB97jejR/NwNjpxcYDaJn7Eu8njua8yO35aT2ihb8B8VTWE5wcKdgYTPa9\nmeO7kkMGRvDa99VeO394n1gvsnIG827iGN6Od+SbxAGcGenPmESr/A3q2MQBTPfdiZyW4iNLSfLq\nMNlxuf9m7pH380HiKLJyBvNJ4rD8Yes9M797BfVZSiO6Xnonl0dv4dJobz5NHFpoWgsSjcnKGUw2\nDdlAzfz0vIA2OlGw4X4l3qXQuINiqT8AM913Z5oHXypbskN7ZmcewGzfjQ3UZBOZ+XUG8FXiIJ6K\nn8HQxOF8kjiM4yKPsIGajEm04rV4QUCfuPslADwWO5OLo30LDTsx9wEOzHmBJ+Jn8lv9wr+3VKYl\nmvFa/EQ2ZTbmX7EezErsWmgH4PNWwUeZxiYOJJsGREljmhfsDEzy5sz3nekbu5wekT4Mjh2Xcj4Z\n/1xULFBfFOnDXjmvsWfOa/SPXkTn3Pv4X/yI/OGDY8fxdLxg459DBgkMgEG1LuLpagWBYkO7v5W5\nrFuqSk8T5e0JH7hrA5Z4wQbpmsi1vH/1Edx+avG9te7nFv64x6PnFnwUJq2akZUzmAcPGhrukRnf\nJA5gPbVos0dDMtIKL+4Xt3Tk8mP2oku7fbn+1MI/mGRXHLsXZ7dtyr1nHlRs2Pntd8/vPrVVk2LD\nIzV34oHLT+e9q48oNgygZZN6AHQ841JWUo/Wnc4lvfd0mu1YLz9P3fSg3HXqFt4DOrhpfZ7o3pq/\nHbc39591EBdddiOZtQuC7CJ2yu++5ri9mTGgC+NvO4HenQsH3reuODxl2Wqmp5FNQ1a3Cj5NeO3J\nbWlYqwZOMvRIAAAP2ElEQVRA2FQLdNizId/07cTX91zIpltX0rFTVybefiLNGtVkWKIDQ+69DoAr\nj9270Hi71s/kuwHncHXHvbny2L0ZfsMxxcrxxPltoF5wBLCo23/5G32p3TQ4Qutx0mFgxrDrjuWs\nNk3Z4+r3OCX3bm6OXkUkI2hTwxOHMSLelqdi3Zh01mi+vvUkXuxR+HXwyRsrgL+0C46Irotcw5j6\n3ZjWvwuDLj2sUB5PqoW+XfejerWg/5h9GjP02qPouG9jTjmoCbkEdbaJDMwgI616sWW8teFDQHB0\ns5RGxYbP9Sa02CkIpAc3LdwOqhUp+zntmtJhrx245aR9uOLYvQq1UYDM9OoMuvQwOuxVeD6LqjUp\ntlxF5QXh0jSum0GvY4JPhl53fHMuO2rPQsNf/WtQjxd1KNjYfnrjMcy77xTm3Vewk5HW6VZ6R3vR\n5qTiH/SZ6U1ZTy16d96X/cPfUP/oRXyfaJGyTGuow+DL2/PjHSfx8iWH0ugfk/h3vX/kDz9+/50L\n5W+/ZyM+vv7o/P5bT94vv/uu8zvyeK1rUy98jcxCgXrYmdNZ3qg1L/Zsz/Un7MtL8a7M8N1pu3vB\nOsxMq8Z1xzdn3unvw8VDmHffKZx/aND+Dm7WiH2bFNS57Vs4OFekKvu4TZu2bf3j/73FzmunQMtu\nrM+NkV69GutyotTJTCv4wTx5KCz/BWo3Dr4XfOK/8j8RuenWldRMr87anCgZadVIr16N7HW57FSv\nYE8pGk8wf+VG9m5cB3dn5YYIDWulk3AnrXqRWLh8JjzZDuo2Cb7Hmx1+7axfwcfgc6Jx1m6KklGj\nOrnROI3rZmD/alAsH7M+Cz6nWXdXuLngu6WRWIJIPEGtGtWJxBNUr2bUKFoOgOwZMDBoVF5nF1Zd\n9RONaqfDo61g9a+F55VsZH8Y82+8zSVEOz9AjYeysOjG4FOL6QV7su7OwlWb2LFOBjXTq+fXafyO\n1URGP0bNL+4kcuZL5OzTjXrV4zB9KBx4FhujceIJp9aoO6j+7VPBN32n/i/4zOIuBxYrTiSWYENu\njIa10/Pnm19fAMf0huP/WXikUffCl/dBpzuD7+IedDbEcsETUCPck41FYNEE2KN4kN0UibNqY4Rd\nG9TML8OmSJz6YSDLs2pDhPrT3oCGexBv1oEa9yRtEC75CLKKfzZyYyRGdNNG6j/SDG/7V6zFicG3\nrXcOdlzW5kTJTKtOetKOx8q1G2gw4THWtr2aBvXz2kq4MdjrONZ26E3GXh3I+GUo65odR3rN2mQM\nCDfUPT8O2mXb4Hu8azZGyahRjcwaBeuMS4bBK+FGtKR2cfeuEA0/9t5gD7hhMtF4gpxonLr3hacn\nT3kYht0Ene4I6rfVObDD3rBpNYlq6ayZ+B7prc6i9n/Phh1bwPcv509+Q98V1E6sg4f2gQveIZF1\nDOtyYgV1/p9uMPfLYmV0d5avj9C4btKplLzl6reGjZEYtdLTcHc2RePUePVUaiz8hk23riTuTp2M\nNBh1D3x5P/T8hMSi76n26W3B513P+U/+b2j9NVOos2PBKc+kAgT/pw+F/16I73sK1n1wyrIkSyQ8\n9ect88p8zw6lr4+3esDUDwCIHd2btE5FfgOT34b3LsPPG0xiz45Uvzf8TGrPT7CsIyrl4za4e5X8\ntW3b1ssld4P7hhWF0+6s5/7oweUbf3OsnBdM++VTCuYzoEnZ46UqTyzi/kQ79xmfbHl5Vi8Ipv31\nwIK03PXu67NLHmfWyGCcuWOC/rlj3N/q4Z5IlD6vR1u5j3s26I7H3Kd/VPo4Yx8P5jPpv+ValEJy\n1rrP/y4Yf/GPmz9+ZZnxifugs8pXrg0r3GPRLZ/Xvc2C+cQiqYdn/+K+fFbp0xh0pvtXjwXdj7UO\npleSaI77ptXud+3s/vN7hYe92Nn987uD5Rn3rHs0t3zLcE+4DKXNN8+HN5Q/7/tXu79xfuphkU3u\n65YVTotF3ed+FXTPHRPM4+f3g/6Rd5VvnjNHBPnev7pw+q/fuC+elHqcvOVZszj4W/tbwbAF493n\nf1vy/JZOc3/qCPfxL6ZuA4mE+5IpBf1Lpri/drZ7NMeBCV4J2+Sq++xlu3Y+YULZH5lOafX8YM89\ns3wXjjbL5LeheSeo1QimD4OdDwj2/EozdzQ03g/q7FR6vq0lsqHQUUClSMRh2ofBkYGVfFphmxPZ\nALNGQstKvoC36ldYMhn2P61iphfdBPFI5fwmSrJuKaxdFPxG0sq4SBrNgYmDYKeWKY+4KrxcdXcu\nO18yd/j2GWh9IWTULTs/BG0Fg/Ram13E38PM/mTfQP49wUBEZDtVWcFAzxmIiIiCgYiIKBiIiAgK\nBiIigoKBiIhQzmBgZl3MbIaZzTKzPqXkO8vM3Mwq/oEIERGpNGUGAzOrDgwEugItge5mVuw9EWZW\nF7ge+LaiCykiIpWrPEcGhwGz3H2Ou0eAN4FUbwC7C7gfyKnA8omIyFZQnmCwG7AgqX9hmJbPzNoA\nzdx9WGkTMrNeZjbBzCZkZ2dvdmFFRKRy/O4LyGZWDXgYuLmsvO7+nLu3c/d2jRs3Liu7iIhsJeUJ\nBouAZkn9TcO0PHWBA4EvzGwe0AEYoovIIiLbjvIEg/FACzPb08zSgfOAIXkD3X2Nu+/o7lnungWM\nA7q5u148JCKyjSgzGLh7DLgGGA5MA95y9ylm1t/Mtv632UREpMIV/2BnCu7+EfBRkbQ7Ssjb8fcX\nS0REtiY9gSwiIgoGIiKiYCAiIigYiIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBgICIi\nKBiIiAgKBiIigoKBiIigYCAiIigYiIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiKBgICIi\nKBiIiAgKBiIigoKBiIigYCAiIigYiIgICgYiIoKCgYiIoGAgIiIoGIiICAoGIiKCgoGIiFDOYGBm\nXcxshpnNMrM+KYbfZGZTzWyymY00sz0qvqgiIlJZygwGZlYdGAh0BVoC3c2sZZFsE4F27t4KeAd4\noKILKiIilac8RwaHAbPcfY67R4A3gdOTM7j7KHffGPaOA5pWbDFFRKQylScY7AYsSOpfGKaV5FLg\n41QDzKyXmU0wswnZ2dnlL6WIiFSqCr2AbGYXAu2AB1MNd/fn3L2du7dr3LhxRc5aRER+h7Ry5FkE\nNEvqbxqmFWJmJwC3Ace6e27FFE9ERLaG8hwZjAdamNmeZpYOnAcMSc5gZq2BZ4Fu7r6s4ospIiKV\nqcxg4O4x4BpgODANeMvdp5hZfzPrFmZ7EKgDvG1mP5rZkBImJyIif0DlOU2Eu38EfFQk7Y6k7hMq\nuFwiIrIV6QlkERFRMBAREQUDERFBwUBERFAwEBERFAxERAQFAxERQcFARERQMBARERQMREQEBQMR\nEUHBQEREUDAQEREUDEREBAUDERFBwUBERFAwEBERFAxERAQFAxERQcFARERQMBARERQMREQEBQMR\nEUHBQEREUDAQEREUDEREBAUDERFBwUBERFAwEBERFAxERAQFAxERQcFARERQMBARERQMREQEBQMR\nEaGcwcDMupjZDDObZWZ9UgzPMLP/hsO/NbOsii6oiIhUnjKDgZlVBwYCXYGWQHcza1kk26XAKndv\nDjwC3F/RBRURkcpTniODw4BZ7j7H3SPAm8DpRfKcDvwn7H4H6GRmVnHFFBGRypRWjjy7AQuS+hcC\n7UvK4+4xM1sD7AAsT85kZr2AXmFvrpn9vCWF/hPakSJ1tR1TXRRQXRRQXRTYtzImWp5gUGHc/Tng\nOQAzm+Du7bbm/P+oVBcFVBcFVBcFVBcFzGxCZUy3PKeJFgHNkvqbhmkp85hZGlAfWFERBRQRkcpX\nnmAwHmhhZnuaWTpwHjCkSJ4hQI+w+2zgc3f3iiumiIhUpjJPE4XXAK4BhgPVgZfcfYqZ9QcmuPsQ\n4EVgkJnNAlYSBIyyPPc7yv1no7oooLoooLoooLooUCl1YdqBFxERPYEsIiIKBiIiUkXBoKzXW2zr\nzKyZmY0ys6lmNsXMrg/TG5nZCDObGf5vGKabmT0e1sdkM2uTNK0eYf6ZZtajpHn+0ZlZdTObaGZD\nw/49w1eXzApfZZIeppf4ahMz6xumzzCzzlWzJL+PmTUws3fMbLqZTTOzw7fXdmFmN4a/j5/N7A0z\ny9xe2oWZvWRmy5KftarIdmBmbc3sp3Ccx8v1ELC7b9U/govQs4G9gHRgEtBya5ejkpexCdAm7K4L\n/ELwKo8HgD5heh/g/rD7ZOBjwIAOwLdheiNgTvi/YdjdsKqXbwvr5CZgMDA07H8LOC/sfga4Kuy+\nGngm7D4P+G/Y3TJsKxnAnmEbql7Vy7UF9fAf4LKwOx1osD22C4IHVecCNZPawyXbS7sAjgHaAD8n\npVVYOwC+C/NaOG7XMstUBZVwODA8qb8v0LeqV04lL/P/gBOBGUCTMK0JMCPsfhbonpR/Rji8O/Bs\nUnqhfNvKH8GzKSOB44GhYQNdDqQVbRMEd60dHnanhfmsaDtJzret/BE8fzOX8MaNout7e2oXFLy1\noFG4nocCnbendgFkFQkGFdIOwmHTk9IL5SvprypOE6V6vcVuVVCOrSI8nG0NfAvs7O6/hYOWADuH\n3SXVyZ+lrh4F/g4kwv4dgNXuHgv7k5er0KtNgLxXm/wZ6mJPIBt4OTxl9oKZ1WY7bBfuvgh4CJgP\n/Eawnr9n+2wXeSqqHewWdhdNL5UuIFciM6sDvAvc4O5rk4d5ELL/9Pf1mtmpwDJ3/76qy/IHkEZw\nauBpd28NbCA4HZBvO2oXDQlecLknsCtQG+hSpYX6A6mKdlAVwaA8r7fY5plZDYJA8Lq7vxcmLzWz\nJuHwJsCyML2kOvkz1NWRQDczm0fwxtvjgceABha8ugQKL1dJrzb5M9TFQmChu38b9r9DEBy2x3Zx\nAjDX3bPdPQq8R9BWtsd2kaei2sGisLtoeqmqIhiU5/UW27Twyv2LwDR3fzhpUPJrO3oQXEvIS784\nvGugA7AmPFwcDpxkZg3DPamTwrRthrv3dfem7p5FsK4/d/cLgFEEry6B4nWR6tUmQ4DzwrtK9gRa\nEFwk22a4+xJggZnlvXWyEzCV7bBdEJwe6mBmtcLfS15dbHftIkmFtINw2Foz6xDW7cVJ0ypZFV04\nOZngDpvZwG1VfSGnEpbvKIJDvMnAj+HfyQTnOEcCM4HPgEZhfiP4gNBs4CegXdK0/grMCv96VvWy\n/c566UjB3UR7EfxoZwFvAxlhembYPyscvlfS+LeFdTSDctwd8Uf8Aw4BJoRt4wOCu0C2y3YB/AuY\nDvwMDCK4I2i7aBfAGwTXSqIER4yXVmQ7ANqF9TobeJIiNy2k+tPrKERERBeQRUREwUBERFAwEBER\nFAxERAQFAxERQcFARERQMBAREeD/AW5BI3VHxWj5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0.47562054 0.52437949]\n", + " [ 0.49904591 0.50095403]\n", + " [ 0.47395247 0.52604753]\n", + " [ 0.51996464 0.48003539]\n", + " [ 0.50675774 0.49324229]\n", + " [ 0.49368471 0.50631535]\n", + " [ 0.51802534 0.48197469]\n", + " [ 0.50877184 0.49122813]\n", + " [ 0.51474357 0.48525646]\n", + " [ 0.52922851 0.47077155]]\n" + ] + } + ], + "source": [ + "################################################################\n", + "# 본학습\n", + "################################################################\n", + "print(\"*----------------------------------------------------------------\")\n", + "print(\"* 본 학습 시작\")\n", + "print(\"*----------------------------------------------------------------\")\n", + "\n", + "# the histogram of the data\n", + "plt.title('Distribution of P_data(x)') \n", + "n, bins1, patches = plt.hist(get_distribution_sampler(mu, sigma, 10000)[:,0], 50, normed=1, facecolor='blue', alpha=0.75)\n", + "y = mlab.normpdf(bins1, mu, sigma)\n", + "l = plt.plot(bins1, y, 'r--', linewidth=1)\n", + "plt.axis([-5, 12, 0, 0.45])\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "nb_epoch = 45000\n", + "D_losses = []\n", + "GAN_losses = []\n", + "\n", + "for epoch in range(nb_epoch) :\n", + " #train D\n", + " for k in range(3):\n", + " #진짜 데이터를 받아온다.\n", + " real_mb = get_distribution_sampler(mu, sigma, batch_size)\n", + " #가짜 데이터를 받아온다.\n", + " fake_mb = np.hstack(\n", + " ( G.predict( np.random.uniform(0,1,batch_size) ) , \n", + " np.zeros(batch_size).reshape(batch_size,1) \n", + " )\n", + " )\n", + " #진짜 가짜를 섞어서\n", + " train_D = np.vstack((real_mb, fake_mb))\n", + " train_D = train_D[np.random.permutation(train_D.shape[0]), :]\n", + " train_Dx = train_D[:,0]\n", + " train_DY = np_utils.to_categorical(train_D[:,1], 2)\n", + " #학습을 한다.\n", + " d_loss = D.train_on_batch(train_Dx, train_DY)\n", + " D_losses.append(d_loss)\n", + " \n", + " #train GAN for G 균등분포 난수와 , 라벨 1을 입력으로 학습힌다.\n", + " g_loss = GAN.train_on_batch( np.random.uniform(0,1,batch_size) , np_utils.to_categorical(np.ones(batch_size),2) )\n", + " GAN_losses.append(g_loss)\n", + " \n", + " if epoch % print_interval == 0:\n", + " print( \"Epoch : {}, D:{}, G loss:{}\".format(epoch, d_loss, g_loss) )\n", + "\n", + " if epoch % 5000 == 0 :\n", + " fake = G.predict(Z1)\n", + " plt.title('Epoch {} Distribution of P_g(x)'.format(epoch))\n", + " plt.hist(fake, 50, normed=1, facecolor='green', alpha=0.75)\n", + " l = plt.plot(bins1, y, 'r--', linewidth=1)\n", + " plt.axis([-5, 12, 0, 0.45])\n", + " plt.grid(True)\n", + " plt.show()\n", + " \n", + "#################################################################\n", + "# 그림 그리는 보조 코드들\n", + "#################################################################\n", + "plt.title('Discriminator loss and accuracy') \n", + "plt.plot(D_losses)\n", + "plt.show()\n", + "\n", + "plt.title('GAN loss') \n", + "plt.plot(GAN_losses)\n", + "plt.show()\n", + "\n", + "fake = G.predict(Z1)\n", + "plt.title('Distribution of P_g(x)')\n", + "plt.hist(fake, 50, normed=1, facecolor='green', alpha=0.75)\n", + "l = plt.plot(bins1, y, 'r--', linewidth=1)\n", + "plt.axis([-5, 12, 0, 0.45])\n", + "plt.grid(True)\n", + "plt.show()\n", + "print(fake[:10])\n", + "\n", + "plt.title('Discriminator prediction to samples from G(z)')\n", + "detec = D.predict(fake)\n", + "plt.plot(detec)\n", + "plt.axis([0, 10000, 0, 1])\n", + "plt.show()\n", + "print(detec[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "결과를 다시 한번 찍어보면 아래처럼 모양이 그럭저럭 잘 나오는 것을 확인할 수 있습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8FfW9//HXm7ATtoBSWRRQUCPWhQjeuiWKGquFtlqF\nWoq1lrY/6XJt761eWxeq97bXXm+9rbal1Uq1JSpaixZF0aRqW5GAuARLCLgALqwCQbaQz++PmcDh\nNMtJcpKZk/N5Ph7nwZmZ78y8TxLmc2b7jswM55xz2adT1AGcc85FwwuAc85lKS8AzjmXpbwAOOdc\nlvIC4JxzWcoLgHPOZSkvAK5NSPqlpB+kaVmHS6qWlBMOl0m6Kh3LDpf3hKRp6VpeM9Z7i6SNkt5v\nx3XmSyqXpBTaPizpgvbI5aLhBcA1m6S3JO2UtF3Sh5L+Julrkvb/PZnZ18zshykua0JjbczsHTPL\nNbN9ach+k6T7k5Z/gZnNbu2ym5njcOA7QL6Zfaye6YWSasPCt13SCklfSsOqfwj8xFK7AejHwC1p\nWKeLKS8ArqU+ZWa9gSOAHwHfA+5O90okdU73MmPicGCTma1vpM27ZpYL9CH4+f5aUn5LVyjpMKAI\neDSV9mb2EtBHUkFL1+nizQuAaxUz22pm84DLgGmSxgBIulfSLeH7gZIeD/cWNkt6XlInSfcRbAgf\nC7/p/ruk4ZJM0pclvQM8mzAusRgcKeklSdsk/UlSXriuQklrEzPW7WVIKgb+A7gsXN8r4fT9h5TC\nXN+X9Lak9ZJ+J6lvOK0uxzRJ74SHb65v6GcjqW84/4Zwed8Plz8BeBoYHOa4t4mfsZnZo8AWoNEC\nIOmL4bo2SfpB0h7WucBSM9sVtj0y/H2cHA4PDrMWJiyyDLiwsXW6zOUFwKVF+G1xLXBGPZO/E047\nBBhEsBE2M5sKvEOwN5FrZv+dMM9ZwLHA+Q2s8ovAlcBhQA3wfylkfBL4T+CBcH0n1NPsivBVBIwE\ncoGfJ7U5HTgaOAe4QdKxDazyZ0DfcDlnhZm/ZGYLgQsIv+Gb2RWN5Q6LxmeAfsBrjbTLB+4CLif4\nufQFhiQ0OR5YUTdgZqsI9izul9QT+C0w28zKEuZ5A6jv5+Q6AC8ALp3eBfLqGb+XYIN0hJntNbPn\nUzgGfZOZ7TCznQ1Mv8/MXjezHcAPgEvrThK30uXA7Wa22syqgeuAyUl7Hzeb2U4zewV4hXo2kGGW\nycB1ZrbdzN4C/geY2owsgyV9CGwEbgSmmtmKRtpfAjxmZi+Y2R7gBiDx59wP2J44g5n9GqgCFhH8\njpL3aLaH87kOyAuAS6chwOZ6xt9GsJF5StJqSdemsKw1zZj+NtAFGJhSysYNDpeXuOzOBHsudRKv\n2vmIYC8h2cAwU/KyhtTTtiHvmlk/M8szsxPNrKSJ9oNJ+LmY2UfApoTpW4De9cz3a2AM8DMz2500\nrTfwYTMyuwziBcClhaRTCDZuLyRPC78Bf8fMRgITgWsknVM3uYFFNrWHMCzh/eEEexkbgR1Az4Rc\nOQSHnlJd7rsEJ7YTl10DfNDEfMk2hpmSl7WumctpjveAoXUDknoAAxKmvwqMTpxBUi7wU4IT+DfV\nnUtJcCzBXo7rgLwAuFaR1EfSRUAJcL+Z/dMxakkXSToqvPZ8K7APqA0nf0BwjLy5vhBe094TmAnM\nDS8TrQS6S7pQUhfg+0C3hPk+AIYnXrKaZA7wr5JGhBvHunMGNc0JF2Z5ELhVUm9JRwDXAPc3Pmer\nzAU+JekTkroCNwGJ1/s/DZwsqXvCuDuAcjO7Cvgz8MukZZ4FPNF2kV2UvAC4lnpM0naCQw7XA7cD\nDV2nPgpYCFQDfwfuMrPScNp/Ad8PrxD6bjPWfx9wL8HhmO7ANyG4Kgn4f8BvCL5t7yA4AV3nofDf\nTZKW1rPce8JlPwe8CewCvtGMXIm+Ea5/NcGe0R/C5bcJM6sI11lCsDdQDawHdofTPwCeBSYBSJoE\nFANfDxdxDUGBuDycfgpQHZ7gdx2Q/IEwznVM4R7Mh8AoM3szHJcPzAbGNXUiXtLDwN1mNr/Nw7pI\neAFwrgOR9CngGYJDP/8DjAdOTvHOX5dlUjoEJKk4vBW9qrErOCRdHN4oUxAOD1fQZcCy8JV8fNE5\n1wySLg9vHkt+VYRNJhGcyH6X4NDbZN/4u4Y0uQcQXkVRSXAX4VpgMTDFzJYntetNcBKpKzDDzMol\nDQceN7Mx6Y/unHOuNVLZAxgHVIU3xuwhOME0qZ52PyToPGpXGvM555xrI6l0tDWEg2+6WUtwXHG/\nsC+RYWb2Z0n/ljT/CEkvA9uA75vZ88krkDQdmA7Qo0ePscOGDUtu0mK1tbV06hTfi53inM+ztVyc\n83m2lotzvsrKyo1mdkjTLROYWaMvgtvLf5MwPBX4ecJwJ4IOo4aHw2VAQfi+GzAgfD+WoJD0aWx9\nY8eOtXQqLS1N6/LSLc75PFvLxTmfZ2u5OOcjuJ+jyW164iuVUraOg++6HMrBdzP2JriNvEzSW8Cp\nwDxJBWa228w2hYVmCbCKpDsRnXPORSOVArAYGBXeGdmVoIOreXUTLegOeKCZDTez4cCLwEQLTgIf\nogNPcRpJcFXC6rR/Cuecc83W5DkAM6uRNANYAOQA95hZhaSZBLsc8xqZ/UxgpqS9BLf+f83M6uss\nzDnnXDtL6WlLFtwJOD9p3A0NtC1MeP8w8HAr8jnnnGsj8Tyd7Zxzrs15AXDOuSzlBcA557KUFwDn\nnMtSXgCccy5LeQFwzrks5QXAOeeylBcA55zLUl4AnHMuS3kBcM65LOUFwDnnspQXAOecy1JeAJxz\nLkt5AXDOuSzlBcA557JUSgVAUrGkFZKqJF3bSLuLJZmkgoRx14XzrZB0fjpCO+eca70mHwgTPtLx\nTuBcYC2wWNI8M1ue1K438C1gUcK4fIJHSB4HDAYWShptZvvS9xGcc861RCp7AOOAKjNbbWZ7gBJg\nUj3tfgj8GNiVMG4SUBI+HP5NoCpcnnPOuYilUgCGAGsShteG4/aTdDIwzMz+3Nx5nXPORSOlZwI3\nRlIn4HbgilYsYzowHWDQoEGUlZW1NtZ+1dXVaV1eusU5n2druTjn82wtF/d8zWZmjb6AfwEWJAxf\nB1yXMNwX2Ai8Fb52Ae8CBfW0XQD8S2PrGzt2rKVTaWlpWpeXbnHO59laLs75PFvLxTkfUG5NbM+T\nX6kcAloMjJI0QlJXgpO68xIKyFYzG2hmw81sOPAiMNHMysN2kyV1kzQCGAW81Ip65ZxzLk2aPARk\nZjWSZhB8e88B7jGzCkkzCSrOvEbmrZD0ILAcqAGuNr8CyDnnYiGlcwBmNh+YnzTuhgbaFiYN3wrc\n2sJ8zjnn2ojfCeycc1nKC4BzzmUpLwDOOZelvAA451yW8gLgnHNZyguAc85lKS8AzmW5otlFFM0u\nijqGi4AXAOecy1JeAJxzLku1ujdQ51xm8sM+zvcAnHMuS3kBcM65LOUFwDnnspQXAOecy1JeAJxz\nLkt5AXDOuSyVUgGQVCxphaQqSdfWM/1rkl6TtEzSC5Lyw/HDJe0Mxy+T9Mt0fwDnnHMt0+R9AJJy\ngDuBc4G1wGJJ88xseUKzP5jZL8P2E4HbgeJw2iozOzG9sZ1zzrVWKnsA44AqM1ttZnuAEmBSYgMz\n25Yw2Auw9EV0zrUH7xMo+8is8W21pEuAYjO7KhyeCow3sxlJ7a4GrgG6Ameb2UpJw4EKoBLYBnzf\nzJ6vZx3TgekAgwYNGltSUtLKj3VAdXU1ubm5aVteusU5n2druTjnq8tWuamy3umjB4xu50QHxPnn\nBvHOV1RUtMTMCpozT9oKQEL7zwPnm9k0Sd2AXDPbJGks8ChwXNIew0EKCgqsvLy8OZ+hUWVlZRQW\nFqZteekW53yereXinK8uW0Pf9kunlbZzogPi/HODeOeT1OwCkMohoHXAsIThoeG4hpQAnwYws91m\ntil8vwRYBUT39cK5LFZ3iKdyU6Uf6nFAagVgMTBK0ghJXYHJwLzEBpJGJQxeCKwMxx8SnkRG0khg\nFLA6HcGdc861TpNXAZlZjaQZwAIgB7jHzCokzQTKzWweMEPSBGAvsAWYFs5+JjBT0l6gFviamW1u\niw/inHOueVLqDtrM5gPzk8bdkPD+Ww3M9zDwcGsCOuecaxt+J7BzzmUpLwDOOZelvAA451yW8gLg\nnHNZyguAcx2Id+fgmsMLgHPOZSkvAM45l6W8ADjnXJbyAuBcNnjnHfpU7wVgwJtr+PbsSvI+3B1x\nKBc1LwDOdXSLFsHYsRz5TjUAu/rksqtbJ+6auZSj3t4ecTgXJS8AznVkr70GEyfCvffycn5/AHYM\n6M8vJx/FXVOO5LafvMoZ5RsOmsWvJMoeXgCc66iqqqC4GO64Ay688J8mP3fKoXzvOx9nxh+qOGn5\nlggCuqil1Bmccy7D1NbCpZfCjTfC5MkNNqsc3pvpN41le26Xdgzn4sILgHMdUadO8NRTMHBgk023\n9ukKQN6Hu9nctytIbZ3OxYQfAnKug+mzfU+wB5DCxn8/M26543VOX7qx7YK52EmpAEgqlrRCUpWk\na+uZ/jVJr0laJukFSfkJ064L51sh6fx0hnfOJTFj5s8q4NFHmzefxG8+N5Kvl6yiy559bZPNxU6T\nBSB8pOOdwAVAPjAlcQMf+oOZHW9mJwL/DdwezptP8AjJ44Bi4K66R0Q659KvoGIL/bft4ZwP72j2\n1TxL8/tTdXgun3tqbRsmdHGSyh7AOKDKzFab2R6Ch75PSmxgZtsSBnsBFr6fBJSED4d/E6gKl+ec\nSzczrnz4TX772RHU5rTs6O4vLzuSS59cw8AtfpNYNpCZNd5AugQoNrOrwuGpwHgzm5HU7mrgGqAr\ncLaZrZT0c+BFM7s/bHM38ISZzU2adzowHWDQoEFjS0pK0vLhAKqrq8nNzU3b8tItzvk8W8tFkW/A\nCy8w+De/4uHbrg9OAodGDxgNQOWmSgDycvLYvK/hR3MXzHmUj/r1peYLX23bwPXw32vLFRUVLTGz\ngubMk7argMzsTuBOSZ8Hvs+BB8OnMu8sYBZAQUGBFRYWpisWZWVlpHN56RbnfJ6t5doqX90hndJp\npf888dZbuf7T/fjbRw8cNLr04qDtzbNvBmBK7hTmVM9pcB1zLjLQTkoj+Plm6+81KqkUgHXAsITh\noeG4hpQAv2jhvM65FNRbCP70J/724CcbbJuyustAd++Gbt1aGtFlgFQOFC4GRkkaIakrwUndeYkN\nJI1KGLwQWBm+nwdMltRN0ghgFPBS62M75w5iBj17pu0a/qNXb4MzzgC8a4iOrMkCYGY1wAxgAfAG\n8KCZVUiaKWli2GyGpApJywjOA0wL560AHgSWA08CV5uZX2PmXDq99x6cckpQBNJk5fDesH49LFmS\ntmW6+EnpHICZzQfmJ427IeH9txqZ91bg1pYGdM414fe/hxNOSOsdvLWdBFddBbNmwSfStlgXM34n\nsHOZzAzuvRempXzNRequvBIefJAeO2vSv2wXC14AnMtkS5fCzp1w+unpX/bgwVBYyNmL1qd/2S4W\nvAA4l8Ee+d4kfntC7UHX/afVf/0X5WPy2mbZLnJeAJzLYMuO7ccTp3+s7VZwzDF8MLB72y3fRcq7\ng3Yugz1fcEibr2PkmmpGrtnRjFs7XabwPQDnMtSZize06Qnauuv/O9UaVzz6ZlovM3Xx4AXAuQzU\nb9se/u2ef2Dt8OyWqsNz6VQLvPpq26/MtSsvAM5loE+8vJHyMXns6t4OR3Elnh87EB55pO3X5dqV\nFwDnMtBpSzfx15MOPPGrrbtreL7gEC8AHZAXAOcyTPfd+zhhxYe8eEL7XZ5ZcWSfoGO4TZvabZ2u\n7flVQM5lmPyqrfxjZG+qe3Vpt3VaJ0F5ebutz7UPLwDOxVh9h3WWHpfHa6P6RpCG4EqgNPY55KLl\nh4Ccy0B7u0bwaG0zOPFEWLOm/dft2oQXAOcySH7VVr76wKpoVi7BySfDo49Gs36Xdl4AnMsgZ5Zv\nYHfXCP/bfvazfjVQB5LSX5KkYkkrJFVJurae6ddIWi7pVUnPSDoiYdo+ScvC17zkeZ1zKTLjtJcP\nvvyz3Z17Lrz8MmzYEF0GlzZNFgBJOcCdwAVAPjBFUn5Ss5eBAjP7ODAX+O+EaTvN7MTwNRHnXIsc\n8e5HdNlby8ojcqML0b07nH02LFgQXQaXNqnsAYwDqsxstZntIXjo+6TEBmZWamYfhYMvEjz83TmX\nRqe9vJG/nTQg+qtwvvENGDEi2gwuLWRNdPAk6RKg2MyuCoenAuPNbEYD7X8OvG9mt4TDNcAyoAb4\nkZn90xkkSdOB6QCDBg0aW1JS0vJPlKS6uprc3Ai/MTUhzvk8W8ulK1/lpsr974/787NsPPJwPjjm\nqFYtMy8nj837Njd7vtEDRrdqvanIlt9rWygqKlpiZgXNmSet9wFI+gJQAJyVMPoIM1snaSTwrKTX\nzOygyxjMbBYwC6CgoMAKCwvTlqmsrIx0Li/d4pzPs7VcuvLdPPvmAwNnAXwA1YtbtcwpuVOYUz2n\n2fOVXlx6YGDVKujRI3hqWBply+81LlI5BLQOGJYwPDQcdxBJE4DrgYlmtrtuvJmtC/9dDZQBJ7Ui\nr3NZKXfHXjrVxqg75rvugrvvjjqFa6VUCsBiYJSkEZK6ApOBg67mkXQS8CuCjf/6hPH9JXUL3w8E\nTgOWpyu8c9ni6j9UcWHZu1HHOKC4GJ58MuoUrpWaLABmVgPMABYAbwAPmlmFpJmS6q7quQ3IBR5K\nutzzWKBc0itAKcE5AC8AzjWHGQUVW1hyXP+okxxwxhnw2muwufnnElx8pHQOwMzmA/OTxt2Q8H5C\nA/P9DTi+NQGdy3Yj1+5gd5dOvDuoZ9RRDujeHc48ExYuhEsvjTqNayG/E9i5mDvltc2UH99+XT+n\nrLgYnngi6hSuFbw3UOdirqBiC4+eMyTqGP/s8svhM5+JOoVrBS8AzsVQYjfQj0wYwrJj+kWYpgH9\n+wcvl7G8ADgXI/X1///3KPv+SVCXrXRawv0AL7wA69cHncS5jOPnAJyLsZMrNjNwy+6mG0Zl2zb4\nv/+LOoVrIS8AzsXYN++vIm/rnqhjNKywMHhU5PbtUSdxLeAFwLmYOnTTLvpU72Xl4fHsewaAnj1h\n3Dh47rmok7gW8ALgXEyd8tpmlhzXP3gge5xNmBDcD+AyjhcA52LqlNc3Uz4mhtf/J5swAVaujDqF\nawEvAM7FkGqNE1ZspTxO3T805JRT4PHHo07hWsAvA3UuhqyTmPqjcVT36hJ1lKZF/YAa12K+B+Bc\nTGXExr/OggXw7W9HncI1kxcA52LoqrmrGbx+Z9QxUjdyJMydC008YdDFixcA52Kmy559fGbhOrbm\nZtAewFFHQU4OrFgRdRLXDF4AnIuZMVXbeHNIL3b0zKBTdFJwNdDTT0edxDVDSgVAUrGkFZKqJF1b\nz/RrJC2X9KqkZyQdkTBtmqSV4WtaOsM71xGNXb6FJfkZcPVPMr8fIOM0WQAk5QB3AhcA+cAUSflJ\nzV4GCszs48Bc4L/DefOAG4HxwDjgRkkZ+JftXPs5uWILSzPh8s9k55wDo0ZFncI1Qyp7AOOAKjNb\nbWZ7gBJgUmIDMys1s4/CwRcJHhwPcD7wtJltNrMtwNNAcXqiO9fx5NTUUtNZLD+yT9RRmu/QQ+En\nP4k6hWsGWRNn7SVdAhSb2VXh8FRgvJnNaKD9z4H3zewWSd8FupvZLeG0HwA7zewnSfNMB6YDDBo0\naGxJSUkrP9YB1dXV5ObGty+VOOfzbC3X0nyVmyrbIM3B8nLy2Lyv5c/yHT1g9P73dXn3j6utpcu2\nbezt17LnF3TU32t7KCoqWmJmBc2ZJ61nmSR9ASgAzmrOfGY2C5gFUFBQYIWFhWnLVFZWRjqXl25x\nzufZWq6l+W6+96Y2v7FqSu4U5lTPafH8pRcfeB7AzbNvPnjcU0/B7be3uHO4jvp7jatUDgGtA4Yl\nDA8Nxx1E0gTgemCime1uzrzOucCvblrCYZl0/X+y006DpUuhujrqJC4FqRSAxcAoSSMkdQUmA/MS\nG0g6CfgVwcZ/fcKkBcB5kvqHJ3/PC8c555KtWcOhm3fz/sDuUSdpuV69oKAAnn8+6iQuBU0WADOr\nAWYQbLjfAB40swpJMyVNDJvdBuQCD0laJmleOO9m4IcERWQxMDMc55xL9swzLD22X/y7f27KOef4\n5aAZIqVzAGY2H5ifNO6GhPcTGpn3HuCelgZ0LmssXMjSDLj+v77nFh9kwgT4+tfbJ4xrFb8T2Lk4\nMIOFCzOj++emnHIKXHed9wuUAbwAOBcHO3fC17/OB4f0iDpJ63XuDJdd5t1EZwAvAM7FQc+ecOON\nUadIn/XrvV+gDOAFwLk4eOMNqKmJOkX6bNwIX/mKHwaKOS8AzkVtzx449VTYujXqJOlz7LHB51q9\nOuokrhFeAJyL2qJFrMirpejxS6JOkj5ScDnoM89EncQ1wguAc1FbuDAzu39uincPHXsZ9MQJ5zqo\nhQtZclpmF4DkewNKp5UGewDf/S7U1kIn/64ZR/5bcS5KW7fCK6/w+qi+USdJv6FDoaLCN/4x5r8Z\n56LUvTssWMCerjlRJ2kbhx4adQLXCC8AzkWpW7egB82O6q234IYbmmzmouEFwLko3XknfPRR0+0y\nVV4e/O//duzPmMG8ADgXlXXrgm/H3bpFnaTt9OkDJ53U4gfEuLblBcC5qCxcCGefDTkd9Ph/nfPP\nhwX+GJA48stAnYvIM7/4d5bm92N+U90rZ6C6y0JLp5XCeefBFVdEG8jVK6U9AEnFklZIqpJ0bT3T\nz5S0VFJN+BD5xGn7wofE7H9QjHNZb98+Cio2s3hMXtRJ2t7JJ0O/fv6YyBhqcg9AUg5wJ3AusBZY\nLGmemS1PaPYOcAXw3XoWsdPMTkxDVuc6jn/8g439u7FhQAY//jFVOTnw179GncLVI5VDQOOAKjNb\nDSCpBJgE7C8AZvZWOK22DTI61/EcdxxfvXFs1Cnal5k/IyBmZE101xoe0ik2s6vC4anAeDObUU/b\ne4HHzWxuwrgaYBlQA/zIzB6tZ77pwHSAQYMGjS0pKWnxB0pWXV1Nbm5u2paXbnHO59laLpV8lZsq\n2ynNwfJy8ti8r30ezT16wGgAOldXM/arX2XR737X6EnvjvB7jUpRUdESMytozjztcRL4CDNbJ2kk\n8Kyk18xsVWIDM5sFzAIoKCiwwsLCtK28rKyMdC4v3eKcz7O1XKP5tmyBadO4+bPbIvlGPCV3CnOq\n57TLukovLj0w0K8fhX36BI+MbEBG/14zUCongdcBwxKGh4bjUmJm68J/VwNlwEnNyOdcx/PMM7B3\nb/YdDjnvPHjqqahTuASpFIDFwChJIyR1BSYDKV3NI6m/pG7h+4HAaSScO3AuGz3+s2/y87yqqGO0\nP78fIHaaLABmVgPMABYAbwAPmlmFpJmSJgJIOkXSWuBzwK8kVYSzHwuUS3oFKCU4B+AFwGUvM8a9\nvpmXxmR2988tcuaZsHQpbNsWdRIXSukcgJnNB+Ynjbsh4f1igkNDyfP9DTi+lRmd6zjeeINawZrD\nekadpP317Am33BL0C9SnT9RpHH4nsHPta8sW/nT2kOw7/l/n29+OOoFL4H0BOdeeTjuNkgsPjzpF\ndMxgyZLgKWEucl4AnGsve/fCrl1Rp4iWBJ//PLz8ctRJHF4AnGs/Tz4Jn/501Cmi96lPweOPR53C\n4QXAuTZXNLso6B1z3jwoLo46TvQuusgLQEx4AXCuHajW4LHHgm+/2e6009i+fBkX3/GJqJNkPS8A\nzrWDY1Zvg4ED4cgjo47Srvbv/STq0oXFY/pz6ivt0x+Ra5gXAOfawWnLNsHEiVHHiI1Zlx7JXwoG\nRh0j63kBcK4d/PXEAXDllVHHiI0PBnZnR68uUcfIen4jmHPt4I2j+lL0169Alj4X5aBHRIYKX1oP\nxyyC8eOjipX1fA/AuTY2pvJDhr33UdQxYudjG3bBffdFHSOreQFwro196Y9vMex9LwDJXjxxQHA5\naBMPpXJtxwuAc21pyxaOfnM7S/KzsPfPJrw1uCd06gSvvBJ1lKzlBcC5tvTEEyw7ph+7uzX8GMSs\nJcEll8BDD9V/uahrc14AnGtL8+bxt5MGRJ0ivi69FFau3D9YuanSi0E7SqkASCqWtEJSlaRr65l+\npqSlkmrCh8gnTpsmaWX4mpau4M7FXk0NPPccfz/BC0Cdf9q4FxTAgw9GFyjLNVkAJOUAdwIXAPnA\nFEn5Sc3eAa4A/pA0bx5wIzAeGAfcKMkPhrrs0LkzrFrFln7dok4Se6r1E8FRSGUPYBxQZWarzWwP\nUAJMSmxgZm+Z2atAciff5wNPm9lmM9sCPA14b1gue/ToEXWCWCuaXcTlt53Kr28s96uBIpDKjWBD\ngDUJw2sJvtGnor55hyQ3kjQdmA4waNAgysrKUlx806qrq9O6vHSLcz7P1nI7169ny8kn88pttzEl\nd0rUcQ6Sl5MXr0y9jEN2X8/Vm86AfgeyxfH3G/e/u+aKxZ3AZjYLmAVQUFBghYWFaVt2WVkZ6Vxe\nusU5n2drueXXX0//wYMpPOccbp59S9RxDjIldwpzqudEHeMgfcb2ZO9ffsfO4dfvz1Z6cWkTc7W/\nuP/dNVcqh4DWAcMShoeG41LRmnmdy1iDnn0WJk+OOkbGKB13CIUvbfDDQO0slQKwGBglaYSkrsBk\nYF6Ky18AnCepf3jy97xwnHMd1sQ7T6f3q8v4ZPWv/HLGFFUO703nfUbe22v3j2voclC/TDR9mjwE\nZGY1kmYQbLhzgHvMrELSTKDczOZJOgX4I9Af+JSkm83sODPbLOmHBEUEYKaZeSfgrkM7Y8kG1n48\nn509YnGENTNI/Ozyozi+R/cGm/hGP/1S+gs1s/nA/KRxNyS8X0xweKe+ee8B7mlFRucyyvZeXago\nLgSWRh0lo/z9pIEMzz0EqqNOkj38K4pzafZ8wSEMzT0aqr0ANNfAVW9zRM0O3h7Sa/84/+bfdrwr\nCOfSacU/YLnQAAANFUlEQVQKeuysiTpFxjpseSVT5r8TdYys4QXAuXS6/HLGrNwadYqMtfLMUzlt\n6UZ6feRFtD14AXAuXcrLYdMmysfkRZ0kY+3q25slx/Xn7EXro46SFbwAOJcmj39nIr8ZK6yToo6S\n0eafeRgXPPde1DGyghcA59Jh2zbOKt/A/DM+FnWSjFc+Jo+eu/aR9+HuqKN0eH4VkHPp8OijLM3v\n5z1/pkFtJ/GlW0/xPal24AXAuXSYOpXbdvw66hQdhnUSmCHDC0Eb8kNAzqWDxI6e/n0qna6ZXclZ\n5RuijtGheQFwrrWuuQYWLow6RYez7Jh+THz23ahjdGheAJxroaLZRVx01+nw29/Cxz8edZwO5y8F\nhzB4/U6OXr0t6igdlhcA51rhghfe59nRXSh64rKoo3Q4+zp34qHzhzJ5/pqmG7sW8QLgXAt12bOP\nS59cQ8knD486Sof157MO48QVHzL4g4+ijtIh+Vkr55qprnOyT73wPquG5bJyeO+IE3Vcu7p35vpv\njWFz365RR+mQvAA4l4L6eqRcObw3r4/qG0Ga7LL8KP8Zt5WUDgFJKpa0QlKVpGvrmd5N0gPh9EWS\nhofjh0vaKWlZ+PpleuM71zZSeerUP0b24c1hue2UKLsdt3Irk57xp8mmW5MFQFIOcCdwAZAPTJGU\nn9Tsy8AWMzsK+F/gxwnTVpnZieHra2nK7VxkOu2r5ctzV9Nlb23UUbLG5r5d+dIf3/SuttMslT2A\ncUCVma02sz1ACTApqc0kYHb4fi5wjiS/fc91SGcv2sDHK7eyt7P/ibeX9w7twZL8/nzG9wLSKpUC\nMARIvA5rbTiu3jZmVgNsBQaE00ZIelnSXySd0cq8zkVKtcblj7/NfROPAP+O067u+ewILn1yDf23\n7ok6SochM2u8gXQJUGxmV4XDU4HxZjYjoc3rYZu14fAqYDywHcg1s02SxgKPAseZ2bakdUwHpgMM\nGjRobElJSbo+H9XV1eTmxvc4bZzzZXO2yk2VAIweMPrg4dK/cezTz/GnW7/XaAHIy8lj877NbZav\nNTI52/jZc+n60U6e//rU/b+b9hTn/xNFRUVLzKygOfOkchXQOmBYwvDQcFx9bdZK6gz0BTZZUF12\nA5jZkrAwjAbKE2c2s1nALICCggIrLCxszmdoVFlZGelcXrrFOV82Z7t59s0AlF5cun84d8deZt/3\nEtf96/FU7mj8S8qU3CnMqZ7TZvlaI5OzzSvey+lLN7Kges7+3017ivP/iZZI5RDQYmCUpBGSugKT\ngXlJbeYB08L3lwDPmplJOiQ8iYykkcAoYHV6ojvXvrrvqeXeTw+nckSfqKNkrR29urDgjMOijtFh\nNLkHYGY1kmYAC4Ac4B4zq5A0Eyg3s3nA3cB9kqqAzQRFAuBMYKakvUAt8DUzi+e+p3P1SLwUdGP/\nbjx2dvLpLxeFs15aDwMeh4suijpKRkvpRjAzmw/MTxp3Q8L7XcDn6pnvYeDhVmZ0LlKqNaY/tJr7\nP3WEd/kcE9tzu8A3vwkTJkD37lHHyVjeF5BzTbjwufcYs3IrH3XPiTqKCy3N7w9jx8J//EfUUTKa\nFwDnGnHopl1c+fCb/PSLo/3JVHHzq1/B3Lkwf37TbV29vAA414Aue2u56c4KHrhgGKsOj+elf1kt\nLw/uvx++/GX48MOo02QkLwDONWDao2+xoX83HrhgWNONXTTOPBOefhr69Ys6SUbyM1rONeCRc4ew\nu2uO3/Ebd2PGBP9u2QL9+0ebJcP4HoBzydato1OtsblfN7/qJ1Ps3g0nnwx/+lPUSTKKFwDnEr31\nFpx+OmMrtkSdxDVHt27w0EPwla8Eh4RcSrwAOFdn1So46yz47ndZfHxe1GlccxUUwCOPwOc/D88/\nH3WajOAFwDmAFSugsBCuvx6uvjrqNK6lTj8d/vAHuPhiWL486jSx5wc4ndu9Gz75SZg5E770pajT\nuNY691x47DE46qiok8Se7wG47FXXFXq3bvDXv/rGvyMZPx66doWNG+HWW6HGnyRWHy8ALjtt2QKX\nXRYcMwb42MeizePahgR/+Qucdx588EHUaWLHC4DLLmbBpYInngiHHRYc+nEd14AB8MQTwbmBMWPg\n9tuDQ34O8ALgsslzz8Gpp8IPfgCzZsEdd3hPktkgJyc4v/P88/Dss36SP4GfBHYd286dwbf+nj1h\n82a45hr43Oegk3/3yTrHHAOPPx78TQBUVgYdyU2dGuwpZCH/X+A6np07g5uBrrwSBg8+cGPQpz8d\nHPf3jX9269HjwPvycjjySLj8cnjwQdi0KbpcEUjpf4KkYkkrJFVJurae6d0kPRBOXyRpeMK068Lx\nKySdn77ozgG1tbB9e/B++3Y44ww45BC44YbgmG9FBUyaFG1GF0+jRwe9ia5eDZ/4BPzudzBqFFRX\nB9NffRXeeKNDX0HU5CGg8Jm+dwLnAmuBxZLmmVniXRZfBraY2VGSJgM/Bi6TlE/weMjjgMHAQkmj\nzWxfuj+I60DMYM+e4D/ihx8Gx3CHDw+m/fSn8Pbb5L/8crDBX7ECvvhFuOsuyM2Fm2+GceOC986l\nIi8vOC9w9dXBxr5zuFl87DH47W/hvfeCwnD44Yzs1Su4YRBg6VLYuzc4fNSnT/A316NHRnUemMo5\ngHFAlZmtBpBUAkwCEgvAJOCm8P1c4OeSFI4vMbPdwJvhM4PHAX9PT3yXcS68EDZsCP6j7dsX/Ac6\n6yz4xS+C6SNHwjvvBBv9nj2Dbn4nTQo2/BBcvjlkCBtzczn0wgvh2GOhb99gmgRnnx3N53IdQ+eE\nTeL11wev6urgi8aaNexYtOjA9AceCE4qb9oUfBmprg4OOa5aFUz//Odh0aLgyqOY7oXK6m6GaaiB\ndAlQbGZXhcNTgfFmNiOhzethm7Xh8CpgPEFReNHM7g/H3w08YWZzk9YxHZgeDh4NrGj9R9tvILAx\njctLtzjn82wtF+d8nq3l4pzvaDPr3ZwZYnEVkJnNAma1xbIllZtZQVssOx3inM+ztVyc83m2lotz\nPknlzZ0nlZPA64DERyINDcfV20ZSZ6AvsCnFeZ1zzkUglQKwGBglaYSkrgQndecltZkHTAvfXwI8\na8GxpXnA5PAqoRHAKOCl9ER3zjnXGk0eAjKzGkkzgAVADnCPmVVImgmUm9k84G7gvvAk72aCIkHY\n7kGCE8Y1wNURXAHUJoeW0ijO+Txby8U5n2druTjna3a2Jk8CO+ec65j8lkjnnMtSXgCccy5LZVUB\nkPQdSSZpYNRZ6ki6TdI/JL0q6Y+S+sUgU6Ndf0RJ0jBJpZKWS6qQ9K2oMyWTlCPpZUmPR50lmaR+\nkuaGf3NvSPqXqDPVkfSv4e/0dUlzJEXaVaukeyStD+9zqhuXJ+lpSSvDf/vHKFuztyVZUwAkDQPO\nA96JOkuSp4ExZvZxoBK4LsowCV1/XADkA1PCLj3iogb4jpnlA6cCV8csH8C3gDeiDtGAO4AnzewY\n4ARiklPSEOCbQIGZjSG44GRytKm4FyhOGnct8IyZjQKeCYejcC//nK3Z25KsKQDA/wL/DsTqrLeZ\nPWVmdb1NvUhwr0SU9nf9YWZ7gLquP2LBzN4zs6Xh++0EG7Ah0aY6QNJQ4ELgN1FnSSapL3AmwVV7\nmNkeM/sw2lQH6Qz0CO8l6gm8G2UYM3uO4KrGRJOA2eH72cCn2zVUqL5sLdmWZEUBkDQJWGdmr0Sd\npQlXAk9EnGEIsCZheC0x2sAmCnudPQlY1HjLdvVTgi8atVEHqccIYAPw2/AQ1W8k9Yo6FICZrQN+\nQrCH/h6w1cyeijZVvQaZ2Xvh+/eBQVGGaURK25IOUwAkLQyPHSa/JgH/AdwQ02x1ba4nOLzx+6hy\nZhJJucDDwLfNbFvUeQAkXQSsN7MlUWdpQGfgZOAXZnYSsIPoDmEcJDyWPomgSA0Gekn6QrSpGhfe\n7BqrIwrQvG1JLPoCSgczm1DfeEnHE/xRvRJ0UMpQYKmkcWb2fpTZ6ki6ArgIOMeivzEj9t13SOpC\nsPH/vZk9EnWeBKcBEyV9EugO9JF0v5nFZUO2FlhrZnV7THOJSQEAJgBvmtkGAEmPAJ8A7o801T/7\nQNJhZvaepMOA9VEHStTcbUmH2QNoiJm9ZmaHmtlwMxtO8J/g5Pba+DdFUjHBIYOJZvZR1HlIreuP\nyITdjN8NvGFmt0edJ5GZXWdmQ8O/s8kEXaLEZeNP+De/RtLR4ahzOLhb9yi9A5wqqWf4Oz6HmJyg\nTpLY7c004E8RZjlIS7YlHb4AZICfA72BpyUtk/TLKMOEJ5Hquv54A3jQzCqizJTkNGAqcHb481oW\nfuN2qfkG8HtJrwInAv8ZcR4Awr2SucBS4DWCbVOk3S5ImkPw7JKjJa2V9GXgR8C5klYS7LX8KEbZ\nmr0t8a4gnHMuS/kegHPOZSkvAM45l6W8ADjnXJbyAuCcc1nKC4BzzmUpLwDOOZelvAA451yW+v8g\nvZi3Sxct5gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.title('Distribution of P_g(x)')\n", + "plt.hist(G.predict(np.random.uniform(0,1,10000)), 50, normed=1, facecolor='green', alpha=0.75)\n", + "l = plt.plot(bins1, y, 'r--', linewidth=1)\n", + "plt.axis([-5, 12, 0, 0.45])\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "
\n", + "실습을 통해 다음과 같은 사실을 알 수 있습니다. \n", + "\n", + "1. 초록색 분포가 100줄짜리 프로그램(주석과 그림 그리는 부분 빼면 얼추 100줄;;;) 치고는 $p_{data}$ 분포를 꽤 잘 따라가고 있습니다.
\n", + "2. D의 정밀도가 처음에는 1.0으로 시작했다가(위 주황색 그래프) 점점 0.5 근처로 수렴하고 있습니다. 마지막 부분에 실제 softmax층에서 나온 출력을 보면 두 값 모두 0.5 근처로 뭐가 뭔지 모르겠다고 결과를 내보내고 있습니다.
\n", + "3. 하지만 G, D가 평형점을 정확히 찾지 못하고 왔다갔다 진동하고 있는 모습을 보입니다. 이에 대해서는 TF-KR의 유재준님 논문 발표[11]에서 확인할 수 있습니다. 계속 학습을 진행하면 결과가 오히려 나빠지는 경우도 많이 나타납니다.
\n", + "4. 학습이 초기조건에 꽤 민감하게 반응합니다. 위 결과는 한 서너번 반복해서 나온 괜찮은 결과입니다.
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 약간의 이론\n", + "
\n", + "\n", + "
\n", + "논문에서 GANs의 이론적 논의는 D를 고정한 상태에서 G에 대한 코스트함수가 전역적 최소를 가지고 그것이 $p_{data}=p_{g}$일 때이며 상기 알고리즘으로 그 전역 최소에 도달할 수 있는지 보이는 것입니다. 크게 3가지 부분으로 이 문제를 설명합니다. 유재준님의 블로그[12]와 TF-KR의 논문 발표를 참고하여 내용을 정리하였습니다.\n", + "
\n", + "\n", + "> Proposition 1. *For G fixed, the optimal discriminator D is*\n", + "$$\n", + "D^{*}_{G}(\\boldsymbol{x}) = \\frac{p_{data}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})}\n", + "$$\n", + "\n", + "
\n", + "Proposition 1은 G가 고정된 상태에서 최적의 D는 위 식으로 주어진다는 것을 이야기 하며 이를 보이기 위해서는 $\\frac{\\partial V(G,D)}{\\partial D(\\boldsymbol{x})}=0$ 또는 ($ V(G,D) = -J^{D}$ 이므로) $\\frac{\\partial J^{D}}{\\partial D(\\boldsymbol{x})}=0$ 인 $D(\\boldsymbol{x})$를 구하면 됩니다.\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "\\frac{\\partial V(G,D)}{\\partial D(\\boldsymbol{x})} \n", + "&= \\frac{\\partial}{\\partial D(\\boldsymbol{x})} \\int_{\\boldsymbol{x}} p_{x \\sim data}(\\boldsymbol{x}) \\log D(\\boldsymbol{x}) + p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) \\log (1-D(\\boldsymbol{x})) d\\boldsymbol{x} \\\\\n", + "&= \\int_{\\boldsymbol{x}} \\frac{\\partial}{\\partial D(\\boldsymbol{x})} \\left[ p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x}) \\log D(\\boldsymbol{x}) + p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) \\log (1-D(\\boldsymbol{x})) \\right] d\\boldsymbol{x} \\\\\n", + "&= \\int_{\\boldsymbol{x}} p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x}) \\frac{1}{D(\\boldsymbol{x})} - p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) \\frac{1}{1-D(\\boldsymbol{x})} d\\boldsymbol{x} \n", + "\\end{align}\n", + "$$\n", + "
\n", + "이므로\n", + "

\n", + "$$\n", + "\\int_{x} \\frac{p_{x \\sim data}(x)\\left( 1-D(x) \\right) - p_{x \\sim g}(x)D(x)}{D(x)\\left(1-D(x) \\right)} dx =0\n", + "$$\n", + "
\n", + "입니다. \n", + "위 적분식이 0이 되기 위해서는 Integrand의 분자가 0 인 경우를 생각해 볼 수 있습니다. 그런데 분자는 0보다 크거나 같다는 것을 알지 못하므로 꼭 분자가 0이 아니더라도 적분식이 0이 될 수 가 있습니다.(적당히 +,- 해서 총합이 0) 따라서 $\\frac{\\partial V(G,D)}{\\partial D(\\boldsymbol{x})}=0$를 만족하는 $D(\\boldsymbol{x})$가 지역 최소(또는 지역 최대)나 안장점이 아니기 위해서는 $V(G,D)$가 볼록함을(또는 오목함을) 보여야 합니다. $ V(G,D) = -J^{D}$ 이므로 $J^{D}$가 볼록함수인지를 보여도 되는데 만약 $J^{D}$가 엄격하게 볼록하다면 전역 최소를 가지며 분자가 0인 경우가 $\\frac{\\partial J^{D}}{\\partial D(\\boldsymbol{x})}=0$ 인 유일한 전역 최소라 할 수 있습니다.\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "J^{D} &= -\\int_{x} p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x}) \\log D(x) + p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) \\log (1-D(x)) dx \\\\\n", + "&= \\int_{x} p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x}) \\left(-\\log D(x)\\right) + p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) \\left(-\\log (1-D(x))\\right) dx\n", + "\\end{align}\n", + "$$\n", + "
\n", + "$J^{D}$는 위 식과 같은데 위 식에서 $p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})$는 우리가 가진 샘플들에 의해 이미 결정된 확률분포 입니다. 그리고 지금 G가 주어진 상태, 즉, G가 고정된 상태에서 D(x)만 변화 시켜 $J^{D}$의 변화를 보고 있으므로 $p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) $ 역시 고정입니다. 결국 $J^{D}$는 독립변수 $D(x)$에 대한 함수 $-\\log D(x)$와 $-\\log \\left(1-D(x)\\right)$의 조합이므로 $-\\log D(x)$와 $-\\log \\left(1-D(x)\\right)$가 볼록함수임을 보이면 $J^{D}$가 볼록함수임을 보일 수 있습니다. 이를 위해 $D(x)$에 대한 이계미분이 음이 아님을 보이면 되므로\n", + "

\n", + "$$\n", + "\\frac{\\partial}{\\partial D(x)}\\left(\\frac{\\partial \\{-\\log D(x)\\}}{\\partial D(x)}\\right) = \\frac{\\partial}{\\partial D(x)}\\left( -\\frac{1}{D(x)} \\right) = \\frac{1}{D^{2}(x)} \n", + "$$\n", + "
\n", + "$$\n", + "\\frac{\\partial}{\\partial D(x)}\\left(\\frac{\\partial \\{-\\log (1-D(x))\\}}{\\partial D(x)}\\right) = \\frac{\\partial}{\\partial D(x)}\\left( \\frac{1}{1-D(x)} \\right) = \\frac{1}{ (1-D(x))^2 } \n", + "$$\n", + "
\n", + "이고, 두 결과 모두 $D(x) = 0$를 제외하면 항상 양수이므로 두 함수 모두 볼록 함수이며 이 함수들이 0보다 큰 $p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})$, $p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}) $와의 곱의 합으로 나타나는 $J^{D}$ 역시 볼록함수임을 알 수 있습니다. \n", + "따라서\n", + "

\n", + "$$ p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x}) \\left( 1-D(\\boldsymbol{x}) \\right) - p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x})D(\\boldsymbol{x}) =0 $$\n", + "
\n", + "이며 최종적으로\n", + "

\n", + "$$ D^{*}(\\boldsymbol{x}) = \\frac{p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})}{p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})+p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x})}$$\n", + "
\n", + "임을 확인할 수 있습니다. \n", + "\n", + "\n", + "마지막으로 $D(\\boldsymbol{x})$는 $p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})$와 $p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x})$가 0이 아닌 집합에 대해서만 정의되면 되므로(어떤 샘플 $\\boldsymbol{x}$가 일어날 확률이 0인 것에 대해서는 참 거짖을 판별할 필요 없음) $Supp(p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})) \\cup Supp(p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}))$ 에서만 정의되면 된다 라고 논문에서 언급합니다. \n", + "논문에서 증명 하기를 $(a,b) \\in \\mathbb{R}^{2} \\backslash \\{0,0\\}$ 인 a, b에 대해서 $a \\log(y) + b \\log(1-y)$라는 함수를 [0,1]에서 y에 대해 미분해서 0인 점을 찾으면 최대값이 $ \\frac{a}{a+b}$에서 나타난다고 하고 이 식에서 a에 해당하는것이 $p_{\\boldsymbol{x} \\sim data}$이고 b에 해당하는 것이 $p_{\\boldsymbol{x} \\sim g}$ 니까 a, b가 0이 아니었듯이 $p_{\\boldsymbol{x} \\sim data}$, $p_{\\boldsymbol{x} \\sim g}$도 0이 아닌 경우에 대해서 생각하기 위해 $Supp(p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})) \\cup Supp(p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x}))$ 에서만 정의되면 된다고 언급하고 증명을 마무리한 것으로 생각됩니다.\n", + "
\n", + "\n", + "
\n", + "\n", + ">Theorem 1. *The global minimum of the virtual training criterion $C(G)$ is achieved if and only if $p_g = p_{data}$. At that point, $C(G)$ achieves the value $−log4$*. \n", + "\n", + "
\n", + "위 결과에 의해 $V(G,D)$를 최대화 하는 D를 찾았다고 하면 G에 대한 코스트 C(G)를 아래와 같이 쓸 수 있습니다.\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "C(G) \n", + "& = \\underset{D}{max}V(G,D) \\\\\n", + "& = \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left[ \\log D^{*}_{G}(x) \\right] + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left[ \\log (1-D^{*}_{G}(x)) \\right] \\\\\n", + "& = \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left[ \\log \\frac{p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})}{p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})+p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x})} \\right] + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left[ \\log \\frac{p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x})}{p_{\\boldsymbol{x} \\sim data}(\\boldsymbol{x})+p_{\\boldsymbol{x} \\sim g}(\\boldsymbol{x})} \\right]\n", + "\\end{align}\n", + "$$\n", + "
\n", + "만약 $p_g = p_{data}$ 라면 C(G)는 아래와 같습니다.\n", + "

\n", + "$$\n", + "\\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left[ - \\log 2 \\right] + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left[ - \\log 2 \\right] = -\\log 4\n", + "$$\n", + "
\n", + "이제 $-\\log 4$가 C(G)의 전역 최소라는 것을 보이기 위해 아래처럼 $C(G)=V(D^{*}_{G}, G)$에서 위 식을 빼면\n", + "

\n", + "$$\n", + "\\begin{matrix} \n", + "& & \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left [ \\log \\frac{p_{data}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right] & + & \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left [ \\log \\frac{p_{g}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right] & = & C(G) & \\\\\n", + "- & ( & \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left[ - \\log 2 \\right] & + & \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left[ - \\log 2 \\right] & = & -\\log 4 & ) \n", + "\\end{matrix}\n", + "$$\n", + "
\n", + "$$\n", + "\\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left [ \\log \\frac{p_{data}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right] - \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left[ - \\log 2 \\right] \n", + "+ \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left [ \\log \\frac{p_{g}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right]-\\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left[ - \\log 2 \\right] = C(G)+\\log 4\n", + "$$\n", + "
\n", + "이 됩니다. 기대값 안에 $-\\log 2$에서 $-$를 끄집어 내고 정리하면\n", + "

\n", + "$$\n", + "\\begin{align}\n", + "C(G) &= -\\log 4 + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left [ \\log \\frac{p_{data}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right] + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left[ \\log 2 \\right] \n", + "+ \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left [ \\log \\frac{p_{g}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right]+\\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left[ \\log 2 \\right] \\\\\n", + "&= -\\log 4 + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left [ \\log \\frac{p_{data}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} + \\log 2\\right] + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left [ \\log \\frac{p_{g}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} + \\log 2\\right] \\\\\n", + "&= -\\log 4 + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left [ \\log \\frac{ 2\\,p_{data}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right] + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left [ \\log \\frac{2\\, p_{g}(\\boldsymbol{x})}{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})} \\right] \\\\\n", + "&= -\\log 4 + \\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{data}}} \\left [ \\log \\frac{ p_{data}(\\boldsymbol{x})}\n", + "{ \\frac{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})}{2} } \\right] + \n", + "\\mathbb{E}_{\\boldsymbol{x} \\sim p_{\\text{g}}} \\left [ \\log \\frac{p_{g}(\\boldsymbol{x})}\n", + "{ \\frac{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})}{2} } \\right] \\\\\n", + "&= -\\log 4 \n", + "+ \\int_{\\boldsymbol{x} \\sim p_{\\text{data}}} p_{data}(\\boldsymbol{x}) \\left [ \\log \\frac{ p_{data}(\\boldsymbol{x})}\n", + "{ \\frac{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})}{2} } \\right] d\\boldsymbol{x}\n", + "+ \n", + "\\int_{\\boldsymbol{x} \\sim p_{\\text{g}}} p_{g}(\\boldsymbol{x}) \\left [ \\log \\frac{p_{g}(\\boldsymbol{x})}\n", + "{ \\frac{p_{data}(\\boldsymbol{x})+p_{g}(\\boldsymbol{x})}{2} } \\right] d\\boldsymbol{x} \\\\\n", + "&= -\\log 4 + KL \\left( p_{data} \\parallel \\frac{p_{data}+p_{g}}{2} \\right) + KL \\left( p_{g} \\parallel \\frac{p_{data}+p_{g}}{2} \\right)\n", + "\\end{align} \n", + "$$\n", + "
\n", + "가 됩니다. 마지막 줄은 앞서 살펴보았던 쿨벡-라이블러 발산의 정의를 그대로 이용한 것입니다. 앞서 쿨벡-라이블러 발산은 항상 0보다 크거나 같으며 볼록하다는 것을 확인했습니다. 따라서 위 식으로 부터 $C(G)$는 볼록함수이며 $p_{data}=p_{g}$일 때 전역적 최솟값 $-\\log 4$를 가진다는 것이 증명되었습니다.\n", + "\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 참고문헌\n", + "
\n", + "
\n", + "[1] 칸아카데미 정보엔트로피 (https://ko.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/information-entropy)
\n", + "[2] Cross entropy, https://en.wikipedia.org/wiki/Cross_entropy
\n", + "[3] CSE 533: Information Theory in Computer Science, https://catalyst.uw.edu/workspace/anuprao/15415/86593
\n", + "[4] GANs in 50 lines of code (PyTorch), Dev Nag, https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
\n", + "[5] tensorflow-GAN-1d-gaussian-ex, 이활석, https://github.com/hwalsuklee/tensorflow-GAN-1d-gaussian-ex
\n", + "[6] 아주 간단한 GAN 구현하기, 홍정모, http://blog.naver.com/atelierjpro/220984758512
\n", + "[7] Generative Adversarial Networks, Ian J. Goodfellow et al, arXiv:1406.2661, 2014
\n", + "[8] KerasGAN, https://github.com/osh/KerasGAN
\n", + "[9] NIPS 2016 Tutorial:Generative Adversarial Networks, Ian J. Goodfellow, arXiv:1701.00160v3, 2017
\n", + "[10] Generative adversarial networks , 김남주, https://www.slideshare.net/ssuser77ee21/generative-adversarial-networks-70896091
\n", + "[11] PR12와 함께하는 GANs, 유재준, https://www.slideshare.net/thinkingfactory/pr12-intro-to-gans-jaejun-yoo
\n", + "[12] 초짜 대학원생 입장에서 이해하는 Generative Adversarial Nets, 유재준, http://jaejunyoo.blogspot.com/2017/01/generative-adversarial-nets-1.html\n", + "
" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.5.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}