-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
130 lines (112 loc) · 3.54 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import sys
import time
import math
import numpy as np
import random
import torch
def reshape_data(input, sws=500):
input = np.array(input).reshape((-1, 1, 6, sws)).transpose((0, 1, 3, 2))
return input
def read_file(fn):
infile = []
f = open(fn, "r")
for line in f:
line = line.split(' ')
line.pop()
line = [float(n) for n in line]
infile.append(line)
infile.pop()
f.close()
return np.array(infile)
def read_UIR_dataset(folder_name):
ori_train_data, ori_test_data = [], []
sub_name = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
for sn in sub_name:
sub_path = folder_name + '/' + sn
for file_name in os.listdir(sub_path):
file_path = sub_path + '/' + file_name
if "train_data" in file_name:
ori_train_data.append(read_file(file_path))
elif "test_data" in file_name:
ori_test_data.append(read_file(file_path))
return np.array(ori_train_data), np.array(ori_test_data)
def produce_data_label(data_t, data_f, down):
new_data_f = []
for i in data_f:
new_data_f.append(i[np.random.randint(i.shape[0], size=int(data_t.shape[0]/down))])
new_data_f = np.array(new_data_f).reshape((-1, data_t.shape[1]))
label_t = np.repeat([1.0], data_t.shape[0], axis=0)
label_f = np.repeat([0.0], new_data_f.shape[0], axis=0)
data = np.concatenate((data_t, new_data_f), axis=0)
label = np.concatenate((label_t, label_f), axis=0)
return np.array(data), np.array(label)
_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
TOTAL_BAR_LENGTH = 65.
last_time = time.time()
begin_time = last_time
def progress_bar(current, total, msg=None):
global last_time, begin_time
if current == 0:
begin_time = time.time()
cur_len = int(TOTAL_BAR_LENGTH*current/total)
rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1
sys.stdout.write(' [')
for i in range(cur_len):
sys.stdout.write('=')
sys.stdout.write('>')
for i in range(rest_len):
sys.stdout.write('.')
sys.stdout.write(']')
cur_time = time.time()
step_time = cur_time - last_time
last_time = cur_time
tot_time = cur_time - begin_time
L = []
L.append(' Step: %s' % format_time(step_time))
L.append(' | Tot: %s' % format_time(tot_time))
if msg:
L.append(' | ' + msg)
msg = ''.join(L)
sys.stdout.write(msg)
for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3):
sys.stdout.write(' ')
for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2):
sys.stdout.write('\b')
sys.stdout.write(' %d/%d ' % (current+1, total))
if current < total-1:
sys.stdout.write('\r')
else:
sys.stdout.write('\n')
sys.stdout.flush()
def format_time(seconds):
days = int(seconds / 3600/24)
seconds = seconds - days*3600*24
hours = int(seconds / 3600)
seconds = seconds - hours*3600
minutes = int(seconds / 60)
seconds = seconds - minutes*60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds*1000)
f = ''
i = 1
if days > 0:
f += str(days) + 'D'
i += 1
if hours > 0 and i <= 2:
f += str(hours) + 'h'
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + 'm'
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + 's'
i += 1
if millis > 0 and i <= 2:
f += str(millis) + 'ms'
i += 1
if f == '':
f = '0ms'
return f