-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathPeano.tex
4036 lines (3756 loc) · 160 KB
/
Peano.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{book}
% TODO LIST:
% * Many theorems and proofs need to be translated.
% * Many proofs need to change from translateSixCol environment
% to a translateFourCol environment with \hfill (or \strut\hfill)
% before proof step numbers. (This is already done in lines 1826
% to 1911.) This will make it match the original and make more
% space available for proofs.
% * Change \s and \s* to use \LAT and \ENG where possible.
% * Many long equations have a line break at a bad location.
% * The symbol $\text{M}\such\D$ has too much space in it.
% * Most of the symbols used in Latin math have very hacked spacing
% with \thinspace and such. This means equations have lots of $s.
% It'd be nice to define these with \mathrel or \mathbin to clean
% it all up.
% Set paper and layout
%
\usepackage[landscape, top=1cm, left=1cm, right=1cm, bottom=1cm]{geometry}
\setlength\parskip{-0.05cm} % no extra vertical space between paragraphs
\setlength\parindent{0cm} % no indent on first lines of paragraphs
\linespread{1.75} % vertical line-spacing and vertical paragraph spacing
% Use Paracol package to do two-column format
%
\usepackage[english]{babel} % English as "system" language, paracol demands a specification
\usepackage{paracol} % \begin{paracol}{...} ... \switchcolumn[...] ... \end{paracol}
\setlength\columnsep{1.5cm} % separation between columns
\newcommand{\s}{\switchcolumn} % a shorter command to replace \switchcolumn[...] from the paracol-package
% Use Endnotes packages, so ``footnotes'' go at end of document rather than the foot of each page
%
\usepackage{endnotes} % \endnote{...}
\addtoendnotes{\vspace*{-1em}} % no extra vertical space between the endnotes-header and the endnotes
\input{hyperendnotes.sty} % enables links between endnotes and citing locations
\def\enoteheading{} % to have endnotes without the usual heading
% Calc package is necessary. Does some math on lengths?
%
\usepackage{calc}
% Use Graphicx package to rotate or flip text
% (e.g. \reflectbox{C} --- \rotatebox[origin=c]{180}{V} --- \reflectbox{D})
%
\usepackage{graphicx}
% Use math packages for fonts, symbols, etc.
%
\usepackage{upgreek} % certain upright greek characters
\usepackage{amsmath} % for $\text{cl.}^{\text{mus}}$
\usepackage{amssymb} % to have standard symbols for special sets --- to have $\nless$
\newcommand{\dittoMarkLatin}{\guillemotright}
\newcommand{\dittoMarkEnglish}{''}
% Peano's reverse C, that is used for implication.
\newcommand{\C}{\mathop{\sbox0{$\displaystyle$$\reflectbox{C}$} % reflect box mirrors upside-down and left-to-right
\raisebox{-\height+\ht0-0.05cm}[\ht0][\dp0]{\scalebox{0.8}[0.8]{\copy0}}}\displaylimits} %
% Peano's one dot, used to indicate precidence in equations
\newcommand{\p}{\mathop{\sbox0{$\displaystyle$$.$}
\raisebox{-\height+\ht0}[\ht0][\dp0]{\scalebox{1}[1]{\copy0}}}\displaylimits} % creates a "math"-point to have equal spacing
% Peano's 2 dots is just a colon :, and is used to indicate precidence in equations
% Peano's 3 dots, used to indicate precidence in equations
% I tried using \therefore but the dots were too far separated
\newcommand{\pppNoSpace}{\leavevmode\lower0ex\hbox{.}\kern-0.1em\raise0.7ex\hbox{.}\kern-0.1em\lower0ex\hbox{.}} % arranging three points in a triangle
\newcommand{\ppp}{\thinspace \pppNoSpace\thinspace} % arranging three points in a triangle
%TODO: Some of these might be better off with mathrel or mathbin instead of mathop
\newcommand{\no}{\mathop{\thinspace \scalebox{1.5}{-}}}
\newcommand{\abs}{\mathop{\rotatebox[origin=c]{180}{V}}}
\newcommand{\mini}{\mathop{\rotatebox[origin=c]{180}{M}}}
\newcommand{\larger}{\mathop{\thinspace > \thinspace}}
\newcommand{\smaller}{\mathop{\thinspace < \thinspace}}
\newcommand{\such}{\thinspace \rotatebox[origin=c]{180}{$\epsilon$}}
\newcommand{\mult}{\mathop{\reflectbox{D}}}
\newcommand{\smallIn}{\ensuremath{\mathrel{\epsilon}}}
\newcommand{\primeWith}{\ensuremath{\mathbin{\uppi}}}
\newcommand{\I}{\mathop{\thinspace \textbf{I} \thinspace}}
\newcommand{\E}{\mathop{\thinspace \textbf{E} \thinspace}}
\newcommand{\Lfat}{\mathop{\thinspace \textbf{L} \thinspace}}
\newcommand{\D}{\mathop{\thinspace \text{D} \thinspace}}
\newcommand{\K}{\mathop{\thinspace \text{K} \thinspace}}
\newcommand{\R}{\mathop{\thinspace \text{R} \thinspace}}
\newcommand{\M}{\mathop{\thinspace \text{M} \thinspace}}
\newcommand{\N}{\mathop{\thinspace \text{N} \thinspace}}
\newcommand{\Np}{\mathop{\thinspace \text{Np} \thinspace}}
\newcommand{\Q}{\mathop{\thinspace \text{Q} \thinspace}}
\newcommand{\T}{\mathop{\thinspace \text{T} \thinspace}}
\newcommand{\II}{\mathop{\thinspace \textbf{I\hspace{0.02cm}I} \thinspace}}
\newcommand{\EE}{\mathop{\thinspace \textbf{E\hspace{0.02cm}E} \thinspace}}
\newcommand{\LfatLfat}{\mathop{\thinspace \textbf{L\hspace{0.02cm}L} \thinspace}}
\newcommand{\setOfSets}{\mathord{\text{{\footnotesize \textbf{SET}}}}}
\newcommand{\prop}{\mathord{\text{{\footnotesize \textbf{PROP}}}}}
\newcommand{\func}{\mathord{\text{{\footnotesize \textbf{FUNC}}}}}
\DeclareMathOperator{\interior}{int}
\DeclareMathOperator{\exterior}{ext}
\DeclareMathOperator{\boundary}{bd}
% Use Dashrule package for dashed lines (using \hdashrule)
%
\usepackage{dashrule}
% Use Xcolor package to grey out unimportant text, etc.
%
\usepackage{xcolor}
% na for not applicable
% (these pieces of text are not important for mathematical
% understand when reading the english text)
\newcommand\irrelevant[1]{\textcolor{gray}{#1}}
\newcommand\commentary[1]{\textcolor{red}{COMMENTARY: #1}}
\newcommand\todo{\textcolor{brown}{To do.}}
\newcommand\notPossible{\textcolor{brown}{N/A}}
% Use Hyperref package for URLs
% ShareLaTeX.com said ``Usually [hyperref] has to be the last package to be imported''
%
\usepackage[colorlinks=true,linkcolor=red, urlcolor=red]{hyperref} % color links and url's --- hyperref for hyperlinks in endnotes
\urlstyle{same} % standard font for url's
% Heading commands
% - assumes it is already in a centered format.
%
\newcommand\peanoHeadingSmall[1]{ \vspace{0.75cm} \textit{#1} \nopagebreak[4]
\vspace{0.25cm} \nopagebreak[1]}
\newcommand\peanoHeadingMedium[1]{ \vspace{1cm} {\Large #1} \nopagebreak[4]
\noindent\rule{1cm}{0.4pt} \nopagebreak[1]}
\newcommand\peanoHeadingLarge[1]{ \vspace{2cm} {\Large \textbf{\uppercase{#1}} \nopagebreak[4]}
\noindent\rule{2cm}{0.4pt} \nopagebreak[1]}
\newcommand\eendnoteHeading[1]{ {\Large #1} \nopagebreak[1]}
% Define commands for document structure
%
% Command for the end of each page of Peano's original book
\newcommand{\peanoPage}[1]{\vspace{1ex}
\columnratio{0.475, 0.05, 0.475} \begin{paracol}{3} \centering \hdashrule{\columnwidth}{0.1mm}{0.1mm 1mm} \s #1 \s \hdashrule{\columnwidth}{0.1mm}{0.1mm 1mm} \end{paracol}
\vspace{1ex}}
%
% FANCY LaTeX! Create translation environment and commands \LAT and \ENG that only work inside it.
\newenvironment{translateTwoCol}
{ % when beginning the environment
\columnratio{0.5, 0.5}
\begin{paracol}{2}
\newcommand{\LAT}{\switchcolumn[0]*}
\newcommand{\ENG}{\switchcolumn[1]}
}
{ % when ending the environment
\let\ENG\undefined
\let\LAT\undefined
\end{paracol}
}
\newenvironment{translateFourCol}[4]
{ % when beginning the environment
% This complex line is need if you don't want \columnsep
% space between each column.
\setcolumnwidth{#1\fill/1em, #2\fill/\columnsep, #3\fill/1em, #4\fill}
\begin{paracol}{4}
\newcommand{\LAT}{\switchcolumn[0]*}
\newcommand{\ENG}{\switchcolumn[2]}
}
{ % when ending the environment
\let\ENG\undefined
\let\LAT\undefined
\end{paracol}
}
\newenvironment{translateSixCol}[6]
{ % when beginning the environment
% This complex line is need if you don't want \columnsep
% space between each column.
\setcolumnwidth{#1\fill/1em, #2\fill/1em, #3\fill/\columnsep, #4\fill/1em, #5\fill/1em, #6\fill}
\begin{paracol}{6}
\newcommand{\LAT}{\switchcolumn[0]*}
\newcommand{\ENG}{\switchcolumn[3]}
}
{ % when ending the environment
\let\ENG\undefined
\let\LAT\undefined
\end{paracol}
}
\newenvironment{translateEightCol}[8]
{ % when beginning the environment
% This complex line is need if you don't want \columnsep
% space between each column.
\setcolumnwidth{#1\fill/1em, #2\fill/1em, #3\fill/1em, #4\fill/\columnsep, #5\fill/1em, #6\fill/1em, #7\fill/1em, #8\fill}
\begin{paracol}{8}
\newcommand{\LAT}{\switchcolumn[0]*}
\newcommand{\ENG}{\switchcolumn[4]}
}
{ % when ending the environment
\let\ENG\undefined
\let\LAT\undefined
\end{paracol}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Disable page numbering.
% With tight margins, the numbers were in weird locations.
% Probably want to re-enable this later, if we can.
\pagenumbering{gobble}
% Title Page
%
{ \centering
\vspace*{1cm}
{\Large Giuseppe Peano's}
{\normalsize Classic Mathematical Text}
\vspace{1cm}
{\Huge Arithmetices Principia, Nova Methodo Exposita}
\vspace{0.5cm}
{\Large OR}
\vspace{0.5cm}
{\Huge The Principles of Arithmetic, Presented by a New Method}
\vspace{1cm}
BOTH % is there a better word? I originally had ``presented'' but then saw that repeated the English translated title.
{\Large in the original Latin}
AND
{\Large in parallel English Translation}
WITH
{\Large Modern Mathematical Notation}
\vspace{1cm}
Original Translation By:
{\Large Vincent Verheyen}
\vspace{1cm}
Refactoring and Additional Math By:
Michael Nahas
% ADD YOUR CREDIT HERE
\vfill
% I also wanted to include the git revision, but it either required a Makefile
% or it required enabling LaTeX to run shell commands, which requires an extra
% flag on the command-line. I thought that would be too confusing.
\normalsize This document was compiled \today.
\normalsize This document is licensed under \href{http://creativecommons.org/licenses/by-sa/4.0/}{Creative Commons Attribution-ShareAlike 4.0}
\normalsize This document is hosted at \url{https://github.com/mdnahas/Peano_Book}
} % end of centering, textsize changes
\newpage
% About the translation/book page
%
% Center text
\columnratio{0.15, 0.7, 0.15}
\begin{paracol}{3}
\switchcolumn[1] % use center column
{ \Large Note from Original Translation}
\vspace{0.25cm}
% \everypar{\hangindent0.5cm}
Below is Giuseppe Peano's \emph{Arithmetices principia} as first published\footnote{H. Kennedy, \emph{Peano. Life and Works of Giuseppe Peano}, San Francisco: Peremptory Publications, 2002, p. 41.}, i.e. as ``\emph{Arithmetices principia, nova methodo exposita}"\footnote{G. Peano, \emph{Arithmetices principia, nova methodo exposita}, Bocca, Torino, 1889.} , which appeared translated to English\footnote{These English translations listed are the only ones (to my knowledge) and all the English translations listed in: \\
I. Grattan-Guiness (ed.), \emph{Landmark Writings in Western Mathematics 1640-1940}, Amsterdam: Elsevier, 2005, p. 614.} in 1967 as ``\emph{The principles of arithmetic, presented by a new method}"\footnote{G. Peano, (1889), ``The principles of arithmetic presented by a new method" in: J. van Heijenoort (ed.), \emph{From Frege to G\"odel. A source book in mathematical logic. 1879-1931}, Cambridge: Harvard University Press, 1967, p. 83-97.}, as well as in 1973\footnote{G. Peano, \emph{Selected works of Giuseppe Peano}, H. Kennedy (ed.), London: George Allen \& Unwin, 1973, p. 101-134.}.
This present document\footnote{Written by Vincent Verheyen. Last updated on 17/8/2015. I encourage you to use your reason for good. If you want my support, please contact me via \url{http://vincentverheyen.com/contact}. It is possible to contribute to the flourishing of knowledge, even when you have an intelligence like mine. Thank you and good luck studying. \\
I would like to thank Mauro Allegranzo and acknowledge his support of this work and his various comments during its creation.} is the only (to my knowledge) side-by-side Latin-English translation of the Latin original.
The mathematical notation (in the English, right, column) got updated to currently canonically-used or easy-to-decrypt symbols in the international and/or English mathematical community; which is also a feature currently unseen in any reprint.
\vspace{1cm}
\textcolor{red}{Red text} is mathematical commentary.
\irrelevant{Gray text} is irrelevant for modern mathematical notation.
Dashed lines (\hdashrule{2cm}{0.1mm}{0.1mm 1mm}) indicate pages in the original treatise.
\vspace{1cm}
\end{paracol}
\newpage
\peanoPage{I} % page-number I
\vspace{1em}
\begin{translateTwoCol}
\centering
ARITHMETICES PRINCIPIA
\ENG
THE PRINCIPLES OF ARITHMETIC
\LAT
NOVA METHODO EXPOSITA
\ENG
PRESENTED BY A NEW METHOD
\LAT
A
\ENG
By
\LAT
IOSEPH PEANO
\vspace{1em}
\ENG
GIUSEPPE PEANO
\vspace{1em}
\LAT
in R. Academia militari professore
\ENG
\irrelevant{professor at the Royal Military Academy}
\LAT
Analysin infinitorum in R. Taurinensi Athen\ae o docente.
\ENG
\irrelevant{teaching Analysis of the infinite at the Royal Turin Athenaeum.}
\LAT
\vspace{1em}
\emph{ {[}F, B, Labor et honor{]} }
\vspace{1em}
\ENG
\vspace{1em}
\irrelevant{ \emph{ {[} The seal of Fratres Bocca publishing, with an F, a B, and a belt saying ``Work and honor'' {]}} }
\vspace{1em}
\LAT
Augustae Taurinorum
\ENG
\irrelevant{At Turin}
\LAT
Ediderunt Fratres Bocca
\ENG
\irrelevant{Published by Libreria Bocca}
\LAT
Regis bibliopolae
\vspace{1em}
\ENG
\irrelevant{Royal Bookseller}
\vspace{1em}
\end{translateTwoCol}
\begin{translateFourCol}{0.25}{0.25}{0.25}{0.25}
\centering
Romae \s Florentiae
\s
\irrelevant{At Rome} \s \irrelevant{At Florence}
\s*
Via del Corse, 216-217. \s Via Oerretani, 8.
\s
\irrelevant{Via del Corso, 216-217.} \s \irrelevant{Via Oerretani, 8.}
\end{translateFourCol}
\begin{translateTwoCol}
\centering
1889
\ENG
\irrelevant{1889}
\end{translateTwoCol}
\peanoPage{II} % page-number II
\vspace{1em}
\begin{translateTwoCol}
\centering
Iuribus servatis
\ENG
\irrelevant{Respecting rights}
\LAT
\vspace{1em}
Augustae Taurinorum - Typis Vincentii Bona.
\ENG
\vspace{1em}
\irrelevant{At Turin, printed by Vincent Bona}
\end{translateTwoCol}
\pagebreak
\vspace{1em}
\peanoPage{III} % page-number III
\begin{translateTwoCol}
\centering
\phantomsection
\addcontentsline{toc}{chapter}{Preface}
\peanoHeadingLarge{Praefatio}
\ENG
\peanoHeadingLarge{Preface}
\end{translateTwoCol}
\begin{translateTwoCol}
Quaestiones, quae ad mathematicae fundamenta pertinent, etsi hisce temporibus a multis tractatae, satisfacienti solutione et adhuc carent. Hic difficultas maxime ex sermonis ambiguitate oritur.
\ENG Questions pertaining to the foundations of mathematics, although treated by many these days, still lack a satisfactory solution. The difficulty arises principally from the ambiguity of ordinary language.
\LAT
Quare summi interest verba ipsa, quibus utimur attente perpendere. Hoc examen mihi proposui, atque mei studii resultatus, et arithmeticae applicationes in hoc scripto expono.
\ENG For this reason it is of the greatest concern to consider attentively the words we use. I resolved to do this, and am presenting in this paper the results of my study with applications to arithmetic.
\LAT
Ideas omnes quae in arithmeticae principiis occurrunt, signis indicavi, ita ut quaelibet propositio his tantum signis enuncietur.
\ENG I have indicated by symbols all the ideas which occur in the fundamentals of arithmetic, so that every proposition is stated with just these symbols.
\LAT
Signa aut ad logicam pertinent, aut proprie ad arithmeticam. Logicae signa quae hic occurrunt, sunt numero ad decem, quamvis non omnia necessaria. Horum signorum usus et proprietas nonnullae in priore parte communi sermone explicantur. Ipsorum theoriam fusius hic exponere nolui. Arithmeticae signa, ubi occurrunt, explicantur.
\ENG The symbols pertain either to logic or to arithmetic. The symbols of logic that occur here are about ten in number, although not all are necessary. The use of these symbols and several of their properties are explained in ordinary language in the first part. I did not wish to present their theory more fully here. The symbols of arithmetic are explained as they occur.
\LAT
His notationibus quaelibet propositio formam assumit atque praecisionem, qua in algebra aequationes gaudent, et a propositionibus ita scriptis aliea deducuntur, idque processis qui aequationum resolutioni assimilantur. Hoc caput totius scripti.
\ENG With this notation every proposition assumes the form and precision equations enjoy in algebra, and from propositions so written others may be deduced, by a process which resembles the solution of algebraic equations. That is the chief reason for writing this paper.
\LAT
Sique, confectis signis quibus arithmeticae propositiones scribere possim, in earum tractatione usus sum methodo, quam quia et in aliis studiis sequenda foret, breviter exponam.
\ENG Having made up the symbols with which I can write arithmetical propositions, in treating them I have used a method which, because it is to be followed in later studies, I shall present briefly.
\LAT
Ex arithmeticae signis quae caeteris, una cum logicae signis exprimere licet, ideas significant quas definire possumus. Ita omnia definivi signa, si quatuor excipias, quae in explicationibus \S 1 continentur. Si, ut puto, haec ulterius reduci nequeunt, ideas ipsis expressas, ideis quae prius notae supponuntur, definire non licet.
\ENG Those arithmetical symbols which may be expressed by using others along with symbols of logic represent the ideas we can define. Thus I have defined every symbol, if you except the four which are contained in the explanations of \S 1. If, as I believe, these cannot be reduced further, then the ideas expressed by them may not be defined by ideas already supposed to be known.
\end{translateTwoCol}
\peanoPage{IV} % page-number IV
\begin{translateTwoCol}
Propositiones, quae logicae operationibus a caeteris deducuntur, sunt \emph{theoremata}; quae vero non, \emph{axiomata} vocavi. Axiomata hic sunt novem (\S 1), et signorum, quae definitione carent, proprietates fundamentales exprimunt.
\ENG
Propositions that are deduced from others by the operations of logic are \emph{theorems}; those for which this is not true I have called \emph{axioms}. There are nine axioms here (See \S 1), and they express fundamental properties of the undefined symbols.
\LAT
In \S 1-6 numerorum proprietates communes demonstravi; brevitatis causa, demonstrationes praecedentibus similes omisi; demonstrationum communem formam immutare oportet ut logicae signis exprimantur; haec transformatio interdum difficilior est, tamen inde demonstrationis natura clarissime patet.
\ENG
In \S 1-6 I have proved the ordinary properties of numbers; for the sake of brevity, I have omitted proofs which are similar to preceding ones. The ordinary form of proofs has had to be altered in order that they may be expressed with the symbols of logic. This transformation is sometimes rather difficult but the nature of the proof then becomes quite clear.
\LAT
In sequentibus \S \ varia tractavi, ut huius methodi potentia magis videatur.
\ENG
In the following sections I have treated various things so that the power of the method is better seen.
\LAT
In \S 7 nonnulla theoremata, quae ad numerorum theoriam pertinent, continentur. In \S 8 et 9 rationalium et irrationalium definitiones inveniuntur.
\ENG
In \S 7 are several theorems pertaining to the theory of numbers. In \S 8 and 9 are found the definitions of rationals and irrationals.
\LAT
Denique, in \S 10, theoremata exposui nonnulla, quae nova esse puto, ad entium theoriam pertinentia, quae $\text{cl.}^{\text{mus}}$ Cantor \emph{Punktmenge (ensemble de points)} vocavit.
\ENG
Finally, in \S 10 I have given several theorems, which I believe to be new, pertaining to the theory of those entities which Professor Cantor has called \emph{Punktmenge (ensemble de points)}.
\LAT
In hoc scripto aliorum studiis usus sum. Logicae notationes et propositiones quae in num. II, III et IV continentur, si nonnullas excipias, ad multorum opera, inter quae Boole praecipue, referenda sunt.\endnote{\textbf{Giuseppe Peano's footnote (original):} \\
Boole: \\
\quad \emph{The mathematical analysis of logic ...}, Cambridge, 1847. \\
\quad \emph{The calculus of logic}, Camb. and Dublin Math. Journal, 1848. \\
\quad \emph{An investigation of the laws of thought ...}, London, 1854. \\
E. Schr\"oder: \\
\quad \emph{Der Operationskreis des Logikkalculus}, Leipzig, 1877.
Ipse iam nonnulla quae ad logicam pertinent tractavit in praecedenti opera. \\
\quad \emph{Lehrbuch der Arithmetik und Algebra ...}, Leipzig, 1873.
Boole e Schr\"oder theorias brevissime exposui in meo libro \emph{Calcolo geometrico ...}, Torino, 1888. \\
Vide: \\
\quad C. S. Pierce, \emph{On the Algebra of logic}; American Journal, III, 15; VII, 180. \\
\quad Jevons, \emph{The principles of science}, London, 1883. \\
\quad Mc.Coll., \emph{The calculus of equivalent statements}, Proceedings of the London Math. Society, 1878, Vol. IX, 9. Vol X, 16.}
\ENG
In this paper I have used the research of others. The notations and propositions of logic which are contained in numbers II, III, and IV, with some exceptions, represent the work of many, among them Boole especially.\endnote{\textbf{Giuseppe Peano's footnote (translated):} \\
Boole: \\
\quad \emph{The mathematical analysis of logic ... (Cambridge, 1847.)} \\
\quad `The calculus of logic,' \emph{Camb. and Dublin Math. J.}, 3 (1848), 193-98. \\
\quad \emph{An investigation of the laws of thought} ... (London, 1854). \\
E. Schr\"oder: \\
\quad \emph{Der Operationskreis des Logikkalculus} (Leipzig, 1877).
He had already treated several matters pertaining to logic in a preceding work. \\
\quad \emph{Lehrbuch der Arithmetik und Algebra} ... (Leipzig, 1873).
I gave a very brief presentation of the theories of Boole and Schr\"oder in my book \emph{Calcolo geometric} etc. (Torino, 1888). \\
Cf: \\
\quad C. S. Pierce, `On the Algebra of logic,' \emph{American J. Math.}, 3 (1880), 15-57; 7 (1885), 180-202. \\
\quad Jevons, \emph{The principles of science} (London, 1883). \\
\quad Mc.Coll., `The calculus of equivalent statements,' \emph{Proc. London Math. Soc.}, 9 (1878), 9-20; 10 (1878), 16-28.}
\end{translateTwoCol}
\peanoPage{V} % page-number V
\begin{translateTwoCol}
Signum $\smallIn$, quod cum signo $\C$ confundere non licet, inversionis in logica applicationes, et paucas alias institui conventiones, ut ad exprimendam quamlibet propositionem pervenirem.
\ENG
The symbol $\in$, which must not be confused with the symbol $\subset$, applications of the inverse in logic, and a few other conventions, I have adopted so that I could express any proposition whatever.
\LAT
In arithmeticae demonstrationibus usus sum libro: H. Grassmann, \emph{Lehrbuch der Arithmetik}, Berlin 1861.
\ENG
In the proofs of arithmetic I used the book H. Grassmann, \emph{Lehrbuch der Arithmetik} (Berlin 1861).
\LAT
Utilius quoque mihi fuit recens scriptum: R. Dedekind, \emph{Was sind und was sollen die Zahlen}; Braunschweig, 1888, in quo quaestiones, quae ad numerorum fundamenta pertinent, acute examinantur.
\ENG
Also quite useful to me was the recent work by R. Dedekind, \emph{Was sind und was sollen die Zahlen} (Braunschweig, 1888), in which questions pertaining to the foundations of numbers are acutely examined.
\LAT
Hic meus libellus ut novae methodi specimen habendus est. Hisce notationibus innumeras alias propositiones, ut quae ad rationales et irrationales pertinent, enunciare et demonstrare possumus. Sed, ut aliae theoriae tractentur, nova signa, quae nova indicant entia, instituere necesse est. Puto vero his tantum logicae signis propositiones cuiuslibet scientiae exprimi posse, dummodo adiungantur signa quae entia huius scientiae representant.
\ENG
My booklet should be taken as a sample of this new method. With these notations we can state and prove innumerable other propositions, such as those which pertain to rationals and irrationals. But in order to treat other theories, it is necessary to adopt new symbols to indicate new entities. I believe, however, that with only these symbols of logic the propositions of any science can be expressed, so long as the symbols which represent the entities of the science are added.
\end{translateTwoCol}
\peanoPage{VI} % page-number VI
\begin{translateTwoCol}
\ENG
\commentary{Peano's mathematics has been translated into modern notation and language. This is a convenience for the casual reader. We caution expert readers that time has passed and that Peano's usage could differ in subtle ways from modern concepts.}
\LAT
\centering
\phantomsection
\addcontentsline{toc}{chapter}{Table of symbols}
\peanoHeadingMedium{Signorum tabula}
\ENG
\peanoHeadingMedium{Table of symbols}
\end{translateTwoCol}
\begin{translateTwoCol}
\centering
\textbf{Logicam signa}
\ENG
\textbf{Symbols of logic}
\end{translateTwoCol}
\begin{translateSixCol}{0.05}{0.35}{0.1}{0.05}{0.35}{0.1}
\raggedright
Signum \s Significatio \s Pag.
\s Symbol \s Meaning \s Pages
\end{translateSixCol}
\begin{translateSixCol}{0.06}{0.34}{0.1}{0.06}{0.34}{0.1}
\raggedright
P \s propositio \s VII
\s $\prop$ \emph{or} P\# \s proposition \s VII
\s* $\text{K}$ \s classis \s X
\s $\setOfSets$ \s set \s X
\s* $\cap$ \s et \s VII, X
\s $\wedge$ \s and \s VII, X
\s* $\cup$ \s vel \s VIII, X, XI
\s $\vee$ \s or \s VIII, X, XI
\s* $-$ \s non \s VIII, X
\s $\neg$ \s not \s VIII, X
\s* $\abs$ \s absurdum \emph{aut} nihil \s VIII, XI
\s $\bot$ \\ $\varnothing$ \s false \emph{or} \\ \quad nothing \s VIII, XI
\s* $\C$ \s deducitur \emph{aut} continetur \s VIII, XI
\s $\rightarrow$ \\ $\subset$ \s one deduces \emph{or} \\ \quad is contained in \s VIII, XI
\s* = \s est aequalis \s VIII
\s = \s equals \s VIII
\s* $\smallIn$ \s est \s X
\s $\in$ \s is a \s X %Original translation included ``or, is an element of''
\s* $[ \ ]$ \s inversionis signum \s XI
\s $\{ x | \ldots \}$ \s notation of the inverse \s XI % Chose to translate ``signum'' as ``notation'' rather than ``symbol''
\s* \such \s qui \emph{vel} $[ \smallIn ]$ \s XII
\s $\ni$ \s such that \emph{or} $[ \in ]$ \s XII
\s* Th \s Theorema \s XVI
\s Th \s Theorem \s XVI
\s* Hp \s Hypothesis \s
\s Hp \s Hypothesis \s
\s* Ts \s Thesis \s
\s Ts \s Thesis \s
\s* L \s Logica \s
\s L\# \s Logic \s
\end{translateSixCol}
\vspace{1em}
\begin{translateTwoCol}
\centering
\textbf{Arithmeticae signa}
\ENG
\textbf{Symbols of arithmetic}
\end{translateTwoCol}
\begin{translateSixCol}{0.05}{0.35}{0.1}{0.05}{0.35}{0.1}
\raggedright
Signum \s Significatio \s Pag.
\s Symbol \s Meaning \s Pag.
\end{translateSixCol}
\begin{translateTwoCol}
\raggedright
Signa 1, 2, ..., =, $>$, $<$, +, $-$, $\times$ vulgarem habent significationem. Divisionis signum est /.
\ENG
The symbols 1, 2, ..., =, $>$, $<$, +, $-$, $\times$ have their usual meaning. The symbol of division is /.
\end{translateTwoCol}
\begin{translateSixCol}{0.06}{0.34}{0.1}{0.06}{0.34}{0.1}
\raggedright
$N$ \s numerus integer positivus \s 1
\s $\mathbb{N}$ \s positive integers \s 1
\s* $R$ \s num. rationalis positivus \s 12
\s $\mathbb{Q}^+$ \s positive rational numbers \s 12
\s* $Q$ \s quantitas, \emph{sive} numerus realis positivus \s 16
\s $\mathbb{R}^+$ \s quantity \emph{or} positive real numbers \s 16
\s* $\text{N}p$ \s numerus primus \s 9
\s $\mathbb{P}$ \s prime number \s 9
\s* $\text{M}$ \s maximus \s 6
\s $\max()$ \s maximum \s 6
\s* $\mini$ \s minimus \s 6
\s $\min()$ \s minimum \s 6
\s* $\text{T}$ \s terminus, \emph{vel} limes summus \s 15
\s $\sup()$ \s boundary \emph{or} upper limit \s 15
\s* $\text{D}$ \s dividit \s 9
\s $|$ \s divides \s 9
\s* \reflectbox{D} \s est multiplex \s 9
\s \reflectbox{D} \s is divisible \s 9
\s* $\primeWith$ \s est primus cum \s 6
\s $\primeWith$ \s is prime with \s 6
\end{translateSixCol}
\vspace{1em}
\begin{translateTwoCol}
\centering
\textbf{Signa composita}
\ENG
\textbf{Composite symbols}
\end{translateTwoCol}
\begin{translateSixCol}{0.06}{0.34}{0.1}{0.06}{0.34}{0.1}
\raggedright
$-<$ \s non est minor \s
\s $\nless$ \s is not less than \s
\s* $=\cup>$ \s est aequalis aut maior \s
\s $\geq$ \s is equal to or greater than \s
\s* $\such \D$ \s divisor \s
\s $\such \D$ \s is a divisor \s
\s* $\text{M}\such\D$ \s maximus divisor \s
\s $\text{M}\such\D$ \s is the greatest divisor \s
\end{translateSixCol}
\peanoPage{VII} % page-number VII
\begin{translateTwoCol}
\centering
\phantomsection
\addcontentsline{toc}{chapter}{Notations of logic}
\peanoHeadingMedium{Logicae notationes.}
\ENG
\peanoHeadingMedium{Notations of logic.}
\end{translateTwoCol}
\begin{translateTwoCol}
\centering
\phantomsection
\addcontentsline{toc}{section}{I. Punctuation}
\peanoHeadingSmall{I. De punctuatione.}
\ENG
\peanoHeadingSmall{I. Punctuation.}
\end{translateTwoCol}
\begin{translateTwoCol}
Litteris $a,b,... x,y,... x', y',...$ entia indicamus indeterminata quaecumque. Entia vero determinata signis, sive litteris $\text{P}, \K, \N,...$ indicamus.
\ENG
By the letters $a,b,... A,B,... x,y,... x', y',...$ we indicate any variables. Constants are, however, indicated by the symbols, or rather by the letters, $\mathbb{P}, \setOfSets, \mathbb{N},...$
\LAT
Signa plerumque in eadem linea scribemus. Ut ordo pateat quo ea coniungere oporteat, \emph{parenthesibus} ut in algebra, sive \emph{punctis} $. : \pppNoSpace :\hspace{0.1em}:$ etc. utimur.
\ENG
\irrelevant{Generally we write symbols on the same line. So that it will be clear how they are to be joined, we use \emph{parentheses}, as in algebra, or rather \emph{points} $. : \pppNoSpace :\hspace{0.1em}:$ etc.}
\LAT
Ut formula punctis divisa, intelligatur, primum signa quae nullo puncto seperantur colligenda sunt, postea quae uno puncto, deinde quae duobus punctis, etc.
\ENG
\irrelevant{So that a formula divided by points may be understood, first the symbols which are not separated by points are taken together, then those separated by one point, then those by two points, etc.}
\LAT
Ex. g. sint $a,b,c,...$ signa quaecumque. Tunc $ab$ $.$ $cd$ significat $(ab)(cd)$; et $ab$ $.$ $cd:ef$ $.$ $gh$ $\pppNoSpace$ $k$ significat $(((ab)(cd))((ef)(gh)))k$.
\ENG
\irrelevant{For example, let $a,b,c,...$ be any symbols. Then $ab$ $.$ $cd$ means $(ab)(cd)$; and $ab$ $.$ $cd:ef$ $.$ $gh$ $\pppNoSpace$ $k$ means $\{[(ab)(cd)][(ef)(gh)]\}k$.}
\LAT Punctuationis signa omittere licet si formulae quae diversa punctuatione existerent eundem habeant sensum; vel si una tantum formula, et ipsa quam scribere volumus, sensum habeat.
\ENG \irrelevant{The symbols of punctuation may be omitted if formulas having different punctuation have the same meaning, or if just one formula, that being the one we wish to write, has meaning.}
\LAT Ut ambiguitatis periculum absit, aritmeticae operationum signis $. :$ nunquam utimur.
\ENG \irrelevant{To avoid the danger of ambiguity, we never use $. :$ as symbols of arithmetical operations.}
\LAT Parenthesum figura una est $( \ )$; si in eadem formula, parentheses et puncta occurant, primum quae parenthesibus continentur, colligantur.
\ENG \irrelevant{The shape of one parentheses is $( \ )$; if parentheses and points occur in the same formula, whatever is contained in parentheses is to be gathered first.} % Changed translation from original.
\end{translateTwoCol}
\begin{translateTwoCol}
\centering
\phantomsection
\addcontentsline{toc}{section}{II. Propositions}
\peanoHeadingSmall{II. De propositionibus.}
\ENG
\peanoHeadingSmall{II. Propositions.}
\end{translateTwoCol}
\begin{translateTwoCol}
Signo $\text{P}$ significatur \emph{propositio}.
\ENG
The symbol $\prop$ means \emph{proposition}.
\LAT
Signum $\cap$ legitur \emph{et}. Sint $a, b$ propositiones; tunc $a \cap b$ est simultanea affirmatio propositionum $a, b$. Brevitatis causa, loco $a \cap b$ vulgo scribemus $a$ $b$.
\ENG
The symbol $\wedge$ is read \emph{and}. Let $a, b$, be propositions; then $a \wedge b$ is the simultaneous affirmation of the propositions $a, b$. \irrelevant{For the sake of brevity, instead of $a \wedge b$, we ordinarily write $a b$.}
\end{translateTwoCol}
\peanoPage{VIII} % page-number VIII
\begin{translateTwoCol}
Signum $-$ legitur \emph{non}. Sit $a$ quaedam $\text{P}$; tunc $-a$ est negatio propositionis $a$.
\ENG The symbol $\neg$ is read \emph{not}. Let $a$ be a $\prop$; then $\neg a$ is the negation of the proposition $a$.
\LAT Signo $\cup$ legitur \emph{vel}. Sint $a,b$ propositiones; tunc $a \cup b$ idem est ac $-:-a$ $.$ $-b$.
\ENG The symbol $\vee$ is read \emph{or}. Let $a,b$ be propositions; then $a \vee b$ is the same as $\neg[(\neg a) \wedge (\neg b)]$.
\LAT \text{[}Signo V significatur \emph{verum}, sive \emph{identitas}; sed hoc signo numquam utimur\text{]}.
\ENG \irrelevant{The symbol $\top$ means \emph{true}, or \emph{identity}, but we never use this symbol.}
\LAT Signum $\abs$ significat \emph{falsum}, sive \emph{absurdum}.
\ENG The symbol $\bot$ means \emph{false}, or \emph{absurd}.
\LAT \text{[}Signum C significat \emph{est consequentia}; ita $b$ C $a$ legitur $b$ \emph{est consequentia propositionis} $a$. Sed hoc signo nunquam utimur\text{]}.
\ENG \irrelevant{The symbol $\leftarrow$ means \emph{is a consequence of}. Thus $b \leftarrow a$ is read $b$ \emph{is a consequence of the proposition} $a$. But we never use this symbol.}
\LAT Signum $\C$ significat \emph{deducitur}; ita $a$ $\C$ $b$ significat quod $b$ C $a$. Si propositiones $a$, $b$ entia indeterminata continent $x$, $y$,..., scilicet sunt inter ipsa entia conditiones, tunc $a$ $\C_{x,y,...}$ $b$ significat: quaecumque sunt $x,y,...,$ a propositione $a$ deducitur $b$. Si vero ambiguitatis periculum absit, loco $\C_{x,y,...}$, scribemus solum $\C$.
\ENG The symbol $\rightarrow$ means \emph{one deduces}; thus $a \rightarrow b$ means the same as $b \leftarrow a$. If the propositions $a,b$ contain the variables $x,y,...$, that is, express conditions on these objects, then $a \xrightarrow[\forall x,y,...]{} b$ means: whatever the $x$, $y$,..., from propositions $a$ one deduces $b$. If indeed there is no danger of ambiguity, instead of $\xrightarrow[\forall x,y,...]{}$, we write only $\rightarrow$.
\LAT Signum = significat \emph{est aequalis}. Sint $a,b$ propositiones; tunc $a=b$ idem significat quod $a$ $\C$ $b$ $.$ $b$ $\C$ $a$; propositio $a=_{x,y,...} b$ idem significat quod $a$ $ \C_{x,y,...} b$ $.$ $b$ $\C_{x,y,...} a$.
\ENG The symbol = means \emph{equals}. Let $a,b$ be propositions; then $a=b$ means the same as $(a \rightarrow b) \wedge (b \rightarrow a)$; proposition $a\underset{\forall x,y,...}=b$ means the same as ($a \xrightarrow[\forall x,y,...]{} b) \wedge (b \xrightarrow[\forall x,y,...]{} a)$.
\end{translateTwoCol}
\begin{translateTwoCol}
\centering
\phantomsection
\addcontentsline{toc}{section}{III. Propositions of logic}
\peanoHeadingSmall{III. Logicae propositiones.}
\ENG
\peanoHeadingSmall{III. Propositions of logic.}
\end{translateTwoCol}
\begin{translateTwoCol}
Sint $a,b,c,...$ propositiones. Tunc erit:
\ENG
Let $a,b,c,...$ be propositions. We have:
\LAT
1. \hspace{0.6cm} $a$ $\C$ $a$
\ENG
1. \hspace{0.6cm} $a \rightarrow a$
\LAT
2. \hspace{0.6cm} $a$ $\C$ $b$ . $b$ $\C$ $c$ : $\C$ : $a$ $\C$ $c$
\ENG
2. \hspace{0.6cm} $[(a \rightarrow b) \wedge (b \rightarrow c)] \rightarrow (a \rightarrow c)$
\LAT
3. \hspace{0.6cm} $a$ = $b$ . = : $a$ $\C$ $b$ . $b$ $\C$ $a$.
\ENG
3. \hspace{0.6cm} $(a=b)=[(a \rightarrow b) \wedge (b \rightarrow a)]$
\LAT
4. \hspace{0.6cm} $a$ = $a$
\ENG
4. \hspace{0.6cm} $a=a$
\LAT
5. \hspace{0.6cm} $a$ = $b$ . = . $b$ = $a$
\ENG
5. \hspace{0.6cm} $(a=b)=(b=a)$
\LAT
6. \hspace{0.6cm} $a$ = $b$ . $b$ $\C$ $c$ : $\C$ . $a$ $\C$ $c$
\ENG
6. \hspace{0.6cm} $[(a=b) \wedge (b \rightarrow c)] \rightarrow (a \rightarrow c)$
\LAT
7. \hspace{0.6cm} $a$ $\C$ $b$ . $b$ = $c$ : $\C$ . $a$ $\C$ $c$
\ENG
7. \hspace{0.6cm} $[(a \rightarrow b) \wedge (b=c)] \rightarrow (a \rightarrow c)$
\LAT
8. \hspace{0.6cm} $a$ = $b$ . $b$ = $c$ : $\C$ . $a$ = $c$
\ENG
8. \hspace{0.6cm} $[(a=b) \wedge (b=c) ] \rightarrow (a=c)$
\LAT
9. \hspace{0.6cm} $a$ = $b$ . $\C$ . $a$ $\C$ $b$
\ENG
9. \hspace{0.6cm} $(a=b) \rightarrow (a \rightarrow b)$
\LAT
10. \hspace{0.67cm} $a$ = $b$ . $\C$ . $b$ $\C$ $a$
\ENG
10. \hspace{0.67cm} $(a=b) \rightarrow (b \rightarrow a)$
\LAT
\hfill
\ENG
\hfill
\LAT
11. \hspace{0.67cm} $ab$ $\C$ $a$
\ENG
11. \hspace{0.67cm} $(a \wedge b) \rightarrow a$
\LAT
12. \hspace{0.67cm} $ab$ = $ba$
\ENG
12. \hspace{0.67cm} $(a \wedge b)=(b \wedge a)$
\LAT
13. \hspace{0.67cm} $a$\thinspace $(bc)$ = $(ab)$\thinspace $c$ = $abc$
\ENG
13. \hspace{0.67cm} $(a \wedge (b \wedge c))=((a \wedge b) \wedge c)=(a \wedge b \wedge c)$
\end{translateTwoCol}
\peanoPage{IX} % page-number IX
\begin{translateTwoCol}
14. \hspace{0.67cm} $aa$ = $a$
\ENG
14. \hspace{0.67cm} $(a \wedge a)=a$
\LAT
15. \hspace{0.67cm} $a$ = $b$ . $\C$ . $ac$ = $bc$
\ENG
15. \hspace{0.67cm} $(a=b) \rightarrow [(a \wedge c)=(b \wedge c)]$
\LAT
16. \hspace{0.67cm} $a$ $\C$ $b$ . $\C$ . $ac$ $\C$ $bc$
\ENG
16. \hspace{0.67cm} $(a \rightarrow b) \rightarrow [(a \wedge c) \rightarrow (b \wedge c)]$
\LAT
17. \hspace{0.67cm} $a$ $\C$ $b$ . $c$ $\C$ $d$ : $\C$ . $ac$ $\C$ $bd$
\ENG
17. \hspace{0.67cm} $[(a \rightarrow b) \wedge (c \rightarrow d)] \rightarrow [(a \wedge c) \rightarrow (b \wedge d)]$
\LAT
18. \hspace{0.67cm} $a$ $\C$ $b$ . $a$ $\C$ $c$ : = . $a$ $\C$ $bc$
\ENG
18. \hspace{0.67cm} $[(a \rightarrow b) \wedge (a \rightarrow c)]=[(a \rightarrow (b \wedge c)]$
\LAT
19. \hspace{0.67cm} $a$ = $b$ . $c$ = $d$ : $\C$ . $ac$ = $bd$
\ENG
19. \hspace{0.67cm} $[(a=b) \wedge (c=d)] \rightarrow [(a \wedge c)=(b \wedge d)]$
\LAT
\hfill
\ENG
\hfill
\LAT
20. \hspace{0.67cm} $-(-a)$ = $a$
\ENG
20. \hspace{0.67cm} $\neg(\neg a) = a$
\LAT
21. \hspace{0.67cm} $a$ = $b$ . = . $-a$ = $-b$.
\ENG
21. \hspace{0.67cm} $(a=b)=[(\neg a)=(\neg b)]$
\LAT
22. \hspace{0.67cm} $a$ $\C$ $b$ . = . $-b$ $\C$ $-a$ =
\ENG
22. \hspace{0.67cm} $(a \rightarrow b)=[(\neg b) \rightarrow (\neg a)]$
\LAT
\hfill
\ENG
\hfill
\LAT
23. \hspace{0.67cm} $a$ $\cup$ $b$ . = $\pppNoSpace$ $-$ : $-a$ . $-b$
\ENG
23. \hspace{0.67cm} $(a \vee b) = \neg[(\neg a) \wedge (\neg b)] $
\LAT
24. \hspace{0.67cm} $-(ab)$ = $(-a)$ $\cup$ $(-b)$
\ENG
24. \hspace{0.67cm} $[\neg(a \wedge b)] = [(\neg a) \vee (\neg b)]$
\LAT
25. \hspace{0.67cm} $-(a$ $\cup$ $b)$ = $(-a)$ $(-b)$
\ENG
25. \hspace{0.67cm} $[\neg(a \vee b)] = [(\neg a) \wedge (\neg b)]$
\LAT
26. \hspace{0.67cm} $a$ $\C$ . $a$ $\cup$ $b$
\ENG
26. \hspace{0.67cm} $a \rightarrow (a \vee b)$
\LAT
27. \hspace{0.67cm} $a$ $\cup$ $b$ = $b$ $\cup$ $a$
\ENG
27. \hspace{0.67cm} $(a \vee b) = (b \vee a)$
\LAT
28. \hspace{0.67cm} $a$ $\cup$ $(b$ $\cup$ $c)$ = $(a$ $\cup$ $b)$ $\cup$ $c$ = $a$ $\cup$ $b$ $\cup$ $c$
\ENG
28. \hspace{0.67cm} $[a \vee (b \vee c)] = [(a \vee b) \vee c] = (a \vee b \vee c)$
\LAT
29. \hspace{0.67cm} $a$ $\cup$ $a$ = $a$
\ENG
29. \hspace{0.67cm} $(a \vee a)=a$
\LAT
30. \hspace{0.67cm} $a$ $(b$ $\cup$ $c)$ = $ab$ $\cup$ $ac$
\ENG
30. \hspace{0.67cm} $[a \wedge (b \vee c)]=[(a \wedge b) \vee (a \wedge c)]$
\LAT
31. \hspace{0.67cm} $a$ = $b$ . $\C$ . $a$ $\cup$ $c$ = $b$ $\cup$ $c$
\ENG
31. \hspace{0.67cm} $(a=b) \rightarrow [(a \vee c) = (b \vee c)]$
\LAT
32. \hspace{0.67cm} $a$ $\C$ $b$ . $\C$ . $a$ $\cup$ $c$ $\C$ $b$ $\cup$ $c$
\ENG
32. \hspace{0.67cm} $(a \rightarrow b) \rightarrow [(a \vee c) \rightarrow (b \vee c)]$
\LAT
\ENG
%%%%% Useful website for generating truth tables:
%%%%% http://turner.faculty.swau.edu/mathematics/materialslibrary/truth/process.php
\LAT
33. \hspace{0.67cm} $a$ $\C$ $b$ . $c$ $\C$ $d$ : $\C$ : $a$ $\cup$ $c$ . $\C$ . $b$ $\cup$ $d$
\ENG
33. \hspace{0.67cm} $[(a \rightarrow b) \wedge (c \rightarrow d)] \rightarrow [(a \vee c) \rightarrow (b \vee d)]$
\LAT
34. \hspace{0.67cm} $b$ $\C$ $a$ . $c$ $\C$ $a$ : = . $b$ $\cup$ $c$ $\C$ $a$
\ENG
34. \hspace{0.67cm} $[(b \rightarrow a) \wedge (c \rightarrow a)] = [(b \vee c) \rightarrow a]$
\LAT
\hfill
\ENG
\hfill
\LAT
35. \hspace{0.67cm} $a-a$ = $\abs$
\ENG
35. \hspace{0.67cm} $[a \wedge \neg a] = \bot$
\LAT
36. \hspace{0.67cm} $a$ $\abs$ = $\abs$
\ENG
36. \hspace{0.67cm} $(a \wedge \bot) = \bot$
\LAT
37. \hspace{0.67cm} $a$ $\cup$ $\abs$ = a
\ENG
37. \hspace{0.67cm} $(a \vee \bot)=a$
\LAT
38. \hspace{0.67cm} $a$ $\C$ $\abs$ . = . $a$ = $\abs$
\ENG
38. \hspace{0.67cm} $(a \rightarrow \bot) = (a = \bot)$
\LAT
39. \hspace{0.67cm} $a$ $\C$ $b$ . = . $a-b$ = $\abs$
\ENG
39. \hspace{0.67cm} $(a \rightarrow b) = [(a \wedge \neg b) = \bot]$
\LAT
40. \hspace{0.67cm} $\abs$ $\C$ $a$
\ENG
40. \hspace{0.67cm} $\bot \rightarrow a$
\LAT
41. \hspace{0.67cm} $a$ $\cup$ $b$ = $\abs$ . = : $a$ = $\abs$ . $b$ = $\abs$
\ENG
41. \hspace{0.67cm} $[(a \vee b)= \bot]=[(a= \bot) \wedge (b= \bot)]$
\LAT
\hfill
\ENG
\hfill
\LAT
42. \hspace{0.67cm} $a$ $\C$ . $b$ $\C$ $c$ : = : $ab$ $\C$ $c$
\ENG
42. \hspace{0.67cm} $[a \rightarrow (b \rightarrow c)] = [(a \wedge b) \rightarrow c]$
\LAT
43. \hspace{0.67cm} $a$ $\C$ . $b$ = $c$ : = . $ab$ = $ac$
\ENG
43. \hspace{0.67cm} $[a \rightarrow (b=c)]=[(a \wedge b)=(a \wedge c)]$
\end{translateTwoCol}
\peanoPage{X} % page-number X
\begin{translateTwoCol}
\quad Sit $\alpha$ quoddam relationis signum (ex. gr. $=$, $\C$), ita ut $a$ $\alpha$ $b$ sit quaedam propositio. Tunc loco $-$ . $a$ $\alpha$ $b$ scribemus $a$ $-$ $\alpha$ $b$; scilicet:
\ENG
\quad Let $\alpha$ be the symbol of some relation (e.g., $=, \rightarrow$) so that $a$ $\alpha$ $b$ is a proposition. Then instead of $\neg(a$ $\alpha$ $b)$, we write $a$ $\not\mathrel{\,\alpha\!}$ $b$. Thus:
\LAT
\hspace{1.06cm} $a$ $-$ = $b$ . = : $-$ . $a$ = $b$
\ENG
\hspace{1.06cm} $(a \not= b) = \neg (a=b)$
\LAT
\hspace{1.06cm} $a$ $-$ $\C$ $b$ . = : $-$ . $a$ $\C$ $b$
\ENG
\hspace{1.06cm} $ (a \not\rightarrow b) = \neg (a \rightarrow b)$
\LAT
\ENG
\commentary{Peano's $=$\scalebox{0.7}{$x$} operator contains a ``for all $x$'', while the $-=$\scalebox{0.7}{$x$} operator contains an ``exists $x$''.}
\LAT
\quad Ita signum $-$ $=$ significat \emph{non est aequalis}. Si propositio $a$ indeterminatum continet $x$, $a$ $-=$\scalebox{0.7}{$x$}\thinspace $\abs$ significat: sunt $x$ quae conditioni $a$ satisfaciunt. Signum $-$ $\C$ significat \emph{non deducitur}.
\ENG
Thus the symbol $\not=$ means \emph{is not equal to}. If the proposition $a$ contains the variable $x, a\underset{\exists x}\neq \bot$ means: there is an $x$ which satisfies condition $a$. The symbol $\not\rightarrow$ means \emph{one does not deduce}.
\LAT
\quad Similter, si $\alpha$ et $\beta$ sunt relationis signa, loco $a$ $\alpha$ $b$, et $a$ $\alpha$ $b$ . $\cup$ . $a$ $\beta$ $b$ scribere possumus $a$ . $\alpha$ $\beta$ . $b$ et $a$ . $\alpha$ $\cup$ $\beta$ . $b$. Ita, si $a$ et $b$ sunt propositiones, formula $a$ . $\C$ $-$ = . $b$ dicit: ab $a$ \emph{deducitur} $b$, sed non vice versa.
\ENG
\quad \irrelevant{Similarly, if $\alpha$ and $\beta$ are symbols of relations, instead of $(a$ $\alpha$ $b) \wedge (a$ $\beta$ $b)$ and $(a$ $\alpha$ $b) \vee (a$ $\beta$ $b)$, we may write $a$ $(\alpha \wedge \beta)$ $b$ and $a$ $(\alpha \vee \beta)$ $b$. Thus, if $a$ and $b$ are propositions, the formula $a$ $(\rightarrow \wedge \not=)$ $b$ says: from $a$ \emph{one deduces} $b$, but not vice versa.}
\LAT
\hspace{1.06cm} $a$ . $\C$ $-$ = . $b$ : = : $a$ $\C$ $b$ . $b$ $-$ $\C$ $a$
\ENG
\hspace{1.06cm} \irrelevant{ $[a$ $(\rightarrow \wedge \not=)$ $b] = [(a \rightarrow b) \wedge (b \not\rightarrow a)]$ }
\LAT