-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrag_utils.py
206 lines (173 loc) · 7.08 KB
/
rag_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
from scipy import spatial
def read_file(file_path):
with open(file_path, 'r') as file:
return file.read()
def distances_from_embeddings(
query_embedding,
embeddings,
distance_metric="cosine",
):
"""Return the distances between a query embedding and a list of embeddings."""
distance_metrics = {
"cosine": spatial.distance.cosine,
"L1": spatial.distance.cityblock,
"L2": spatial.distance.euclidean,
"Linf": spatial.distance.chebyshev,
}
distances = [
distance_metrics[distance_metric](query_embedding, embedding)
for embedding in embeddings
]
return distances
def get_openai_embeddings(texts):
from openai import OpenAI
client = OpenAI()
assert len(texts) <= 2048, "The batch size should not be larger than 2048."
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
data = client.embeddings.create(input=texts, model='text-embedding-3-small').data
return [d.embedding for d in data]
def get_codet5_embeddings(texts):
import torch
from transformers import AutoModel, AutoTokenizer
checkpoint = "Salesforce/codet5p-110m-embedding"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).to(device)
embeddings = []
for text in texts:
inputs = tokenizer.encode(text, return_tensors="pt").to(device)
embedding = model(inputs)[0].detach().cpu().numpy()
embeddings.append(embedding)
return embeddings
def get_mxbai_embeddings(texts):
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
embeddings = model.encode(texts)
return embeddings
def get_bert_embeddings(texts):
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True, max_length=512)
outputs = model(**inputs)
# Use the average of the last hidden state as the sentence embedding
embeddings = outputs.last_hidden_state.mean(dim=1).detach().numpy()
return embeddings
def get_nomic_embeddings(texts):
# import torch.nn.functional as F
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True)
texts = [f'search_document: {xs}' for xs in texts]
embeddings = model.encode(texts)
return embeddings
def get_mistral_embeddings(texts):
import torch
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig
def last_token_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
return last_hidden_states[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_states.shape[0]
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
model = AutoModel.from_pretrained(
'intfloat/e5-mistral-7b-instruct',
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
device_map="cuda",
quantization_config=quantization_config,
)
batch_dict = tokenizer(texts, padding=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1).detach().cpu().numpy()
return embeddings
def get_embeddings(codepath, embedding_method="codet5"):
""" Get the embedding of a code snippet.
Args:
codepath (str): The path to the code snippet.
embedding_method (str): The method to use for embedding the code snippet.
Returns:
list: The embedding of the code snippet.
"""
# Read the content of the code snippet
content = read_file(codepath)
# Map embedding methods to their respective functions
embedding_methods = {
"openai": get_openai_embeddings,
"codet5": get_codet5_embeddings,
"mxbai": get_mxbai_embeddings,
"bert": get_bert_embeddings,
"nomic": get_nomic_embeddings,
"mistral": get_mistral_embeddings,
}
# Use the specified embedding method
if embedding_method in embedding_methods:
embeddings = embedding_methods[embedding_method]([content])
else:
raise ValueError(f"Invalid embedding method: {embedding_method}")
return embeddings[0]
def get_similar_codepaths(chosen_codepath, other_codepaths, num_returns=5, embedding_method="codet5"):
# TODO: reembedding the tasks everytime, can save it to a cache or smth
""" Get codepaths that have similar content to that of the chosen codepath.
Args:
chosen_codepath (str): The path to the chosen code snippet.
other_codepaths (list): List of paths to other code snippets.
num_returns (int): Number of code snippets to return.
embedding_method (str): The method to use for embedding the code snippets.
Returns:
list: Paths to the most similar code snippets.
"""
# Read contents of codepaths
chosen_content = read_file(chosen_codepath)
other_contents = [read_file(codepath) for codepath in other_codepaths]
# Map embedding methods to their respective functions
embedding_methods = {
"openai": get_openai_embeddings,
"codet5": get_codet5_embeddings,
"mxbai": get_mxbai_embeddings,
"bert": get_bert_embeddings,
"nomic": get_nomic_embeddings,
"mistral": get_mistral_embeddings,
}
# Use the specified embedding method
if embedding_method in embedding_methods:
embeddings = embedding_methods[embedding_method]([chosen_content] + other_contents)
else:
raise ValueError(f"Invalid embedding method: {embedding_method}")
# Get the chosen vector and other vectors
chosen_vector = embeddings[0]
other_vectors = embeddings[1:]
# Calculate distances between emebddings
similarities = distances_from_embeddings(chosen_vector, other_vectors, distance_metric="cosine")
sorted_indices = np.array(similarities).argsort()
# Return the most similar codepaths
similar_indices = sorted_indices[:num_returns]
return [other_codepaths[i] for i in similar_indices], similar_indices
if __name__ == "__main__":
chosen_codepath = "/workspace/src/omni_epic/envs/ant/cross_bridge.py"
other_codepaths = [
"/workspace/src/omni_epic/envs/ant/cross_bridge.py",
"/workspace/src/omni_epic/envs/ant/go_to_box.py",
"/workspace/src/omni_epic/envs/ant/kick_ball.py",
"/workspace/src/omni_epic/envs/ant/maze.py",
"/workspace/src/omni_epic/envs/ant/go_forward.py",
"/workspace/src/omni_epic/envs/ant/walk_on_cylinder.py",
"/workspace/src/omni_epic/envs/ant/go_down_stairs.py",
"/workspace/src/omni_epic/envs/ant/cross_lava.py",
"/workspace/src/omni_epic/envs/ant/balance_board.py",
]
similar_codepaths, similar_indices = get_similar_codepaths(chosen_codepath, other_codepaths, embedding_method="mistral")
print(similar_codepaths)