-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathsimple_demo.py
149 lines (129 loc) · 4.61 KB
/
simple_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import numpy.random as npr
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
# Fancy plotting
try:
import seaborn as sns
from hips.plotting.colormaps import gradient_cmap
sns.set_style("white")
sns.set_context("paper")
color_names = ["red",
"windows blue",
"medium green",
"dusty purple",
"orange",
"amber",
"clay",
"pink",
"greyish",
"light cyan",
"steel blue",
"forest green",
"pastel purple",
"mint",
"salmon",
"dark brown"]
colors = sns.xkcd_palette(color_names)
cmap = gradient_cmap(colors)
except:
from matplotlib.cm import get_cmap
colors = ['b', 'r', 'y', 'g', 'purple']
cmap = get_cmap("jet")
from pybasicbayes.util.text import progprint_xrange
from pylds.util import random_rotation
from pyslds.models import DefaultSLDS
npr.seed(0)
# Set parameters
K = 5
D_obs = 100
D_latent = 2
D_input = 1
T = 1000
# Make an LDS with known parameters
true_mu_inits = [np.ones(D_latent) for _ in range(K)]
true_sigma_inits = [np.eye(D_latent) for _ in range(K)]
true_As = [.9 * random_rotation(D_latent)
for k in range(K)]
true_Bs = [3 * npr.randn(D_latent, D_input) for k in range(K)]
true_sigma_states = [np.eye(D_latent) for _ in range(K)]
true_C = np.random.randn(D_obs, D_latent)
true_Ds = np.zeros((D_obs, D_input))
true_sigma_obs = np.eye(D_obs)
true_model = DefaultSLDS(
K, D_obs, D_latent, D_input=D_input,
mu_inits=true_mu_inits, sigma_inits=true_sigma_inits,
As=true_As, Bs=true_Bs, sigma_statess=true_sigma_states,
Cs=true_C, Ds=true_Ds, sigma_obss=true_sigma_obs)
# Simulate some data with a given discrete state sequence
inputs = np.ones((T, D_input))
z = np.arange(K).repeat(T // K)
y, x, z = true_model.generate(T, inputs=inputs, stateseq=z)
# Fit with another LDS. Give it twice as many states in
# order to have some flexibility during inference.
test_model = DefaultSLDS(2*K, D_obs, D_latent, D_input,
Cs=npr.randn(D_obs, D_latent),
Ds=npr.randn(D_obs, D_input))
test_model.add_data(y, inputs=inputs)
# Initialize with Gibbs sampler
print("Initializing with Gibbs")
N_gibbs_samples = 1000
def initialize(model):
model.resample_model()
return model.log_likelihood()
gibbs_lls = [initialize(test_model) for _ in progprint_xrange(N_gibbs_samples)]
# Fit with VBEM
print("Fitting with VBEM")
N_vbem_iters = 100
def update(model):
model.VBEM_step()
return model.log_likelihood()
test_model._init_mf_from_gibbs()
vbem_lls = [update(test_model) for _ in progprint_xrange(N_vbem_iters)]
# Plot the log likelihoods
plt.figure(figsize=(5,3))
plt.plot([0, N_gibbs_samples + N_vbem_iters], true_model.log_likelihood() * np.ones(2), '--k', label="true")
plt.plot(np.arange(N_gibbs_samples), gibbs_lls, color=colors[0], label="gibbs")
plt.plot(np.arange(N_gibbs_samples + 1, N_gibbs_samples + N_vbem_iters), vbem_lls[1:], color=colors[1], label="vbem")
plt.xlim(0, N_gibbs_samples + N_vbem_iters)
plt.xlabel('iteration')
plt.ylabel('log likelihood')
plt.legend(loc="lower right")
plt.tight_layout()
plt.savefig("aux/demo_ll.png")
# Smooth the data
smoothed_data = test_model.smooth(y, inputs)
fig = plt.figure(figsize=(5,3))
gs = GridSpec(3, 1, height_ratios=[.1, .1, 1.0])
ax = fig.add_subplot(gs[0,0])
ax.imshow(true_model.states_list[0].stateseq[None,:], vmin=0, vmax=max(len(colors), true_model.num_states)-1,
cmap=cmap, interpolation="nearest", aspect="auto")
ax.set_xticklabels([])
ax.set_yticks([])
ax.set_title("True Discrete States")
ax = fig.add_subplot(gs[1,0])
ax.imshow(test_model.states_list[0].stateseq[None,:], vmin=0, vmax=max(len(colors), test_model.num_states)-1,
cmap=cmap, interpolation="nearest", aspect="auto")
ax.set_xticklabels([])
ax.set_yticks([])
ax.set_title("Inferred Discrete States")
ax = fig.add_subplot(gs[2,0])
plt.plot(y[:,0], color='k', lw=2, label="observed")
plt.plot(smoothed_data[:,0], color=colors[0], lw=1, label="smoothed")
plt.xlabel("Time")
plt.xlim(0, min(T, 500))
plt.ylabel("Observations")
plt.legend(loc="upper center", ncol=2)
plt.tight_layout()
plt.savefig("aux/demo_smooth.png")
plt.figure()
from pyhsmm.util.general import rle
z_rle = rle(z)
offset = 0
for k, dur in zip(*z_rle):
plt.plot(x[offset:offset+dur,0], x[offset:offset+dur,1], color=colors[k])
offset += dur
plt.xlabel("$x_1$")
plt.ylabel("$x_2$")
plt.title("Continuous Latent States")
plt.show()