-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathFriTransform.sol
648 lines (595 loc) · 21.5 KB
/
FriTransform.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*
Copyright 2019-2022 StarkWare Industries Ltd.
Licensed under the Apache License, Version 2.0 (the "License").
You may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.starkware.co/open-source-license/
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions
and limitations under the License.
*/
// SPDX-License-Identifier: Apache-2.0.
pragma solidity ^0.6.12;
import "./PrimeFieldElement0.sol";
/*
The FRI transform for a coset of size 2 (x, -x) takes the inputs
x, f(x), f(-x) and evalPoint
and returns
(f(x) + f(-x) + evalPoint*(f(x) - f(-x))/x) / 2.
The implementation here modifies this transformation slightly:
1. Since dividing by 2 does not affect the degree, it is omitted here (and in the prover).
2. The division by x is replaced by multiplication by x^-1, x^-1 is passed as input to the
transform and (x^-1)^2 is returned as it will be needed in the next layer.
To apply the transformation on a larger coset the transformation above is used multiple times
with the evaluation points: evalPoint, evalPoint^2, evalPoint^4, ...
*/
contract FriTransform is PrimeFieldElement0 {
// The supported step sizes are 2, 3 and 4.
uint256 internal constant FRI_MIN_STEP_SIZE = 2;
uint256 internal constant FRI_MAX_STEP_SIZE = 4;
// The largest power of 2 multiple of K_MODULUS that fits in a uint256.
// The value is given as a constant because "Only direct number constants and references to such
// constants are supported by inline assembly."
// This constant is used in places where we delay the module operation to reduce gas usage.
uint256 internal constant K_MODULUS_TIMES_16 = (
0x8000000000000110000000000000000000000000000000000000000000000010
);
/*
Performs a FRI transform for the coset of size friFoldedCosetSize that begins at index.
Assumes the evaluations on the coset are stored at 'evaluationsOnCosetPtr'.
See gatherCosetInputs for more detail.
*/
function transformCoset(
uint256 friHalfInvGroupPtr,
uint256 evaluationsOnCosetPtr,
uint256 cosetOffset,
uint256 friEvalPoint,
uint256 friCosetSize
) internal pure returns (uint256 nextLayerValue, uint256 nextXInv) {
// Compare to expected FRI step sizes in order of likelihood, step size 3 being most common.
if (friCosetSize == 8) {
return
transformCosetOfSize8(
friHalfInvGroupPtr,
evaluationsOnCosetPtr,
cosetOffset,
friEvalPoint
);
} else if (friCosetSize == 4) {
return
transformCosetOfSize4(
friHalfInvGroupPtr,
evaluationsOnCosetPtr,
cosetOffset,
friEvalPoint
);
} else if (friCosetSize == 16) {
return
transformCosetOfSize16(
friHalfInvGroupPtr,
evaluationsOnCosetPtr,
cosetOffset,
friEvalPoint
);
} else {
require(false, "Only step sizes of 2, 3 or 4 are supported.");
}
}
/*
Applies 2 + 1 FRI transformations to a coset of size 2^2.
evaluations on coset: f0 f1 f2 f3
---------------------------------------- \ / -- \ / -----------
f0 f2
------------------------------------------- \ -- / -------------
nextLayerValue: f0
For more detail, see description of the FRI transformations at the top of this file.
*/
function transformCosetOfSize4(
uint256 friHalfInvGroupPtr,
uint256 evaluationsOnCosetPtr,
uint256 cosetOffset_,
uint256 friEvalPoint
) private pure returns (uint256 nextLayerValue, uint256 nextXInv) {
assembly {
let friEvalPointDivByX := mulmod(friEvalPoint, cosetOffset_, K_MODULUS)
let f0 := mload(evaluationsOnCosetPtr)
{
let f1 := mload(add(evaluationsOnCosetPtr, 0x20))
// f0 < 3P ( = 1 + 1 + 1).
f0 := add(
add(f0, f1),
mulmod(
friEvalPointDivByX,
add(
f0,
// -fMinusX
sub(K_MODULUS, f1)
),
K_MODULUS
)
)
}
let f2 := mload(add(evaluationsOnCosetPtr, 0x40))
{
let f3 := mload(add(evaluationsOnCosetPtr, 0x60))
f2 := addmod(
add(f2, f3),
mulmod(
add(
f2,
// -fMinusX
sub(K_MODULUS, f3)
),
mulmod(mload(add(friHalfInvGroupPtr, 0x20)), friEvalPointDivByX, K_MODULUS),
K_MODULUS
),
K_MODULUS
)
}
{
let newXInv := mulmod(cosetOffset_, cosetOffset_, K_MODULUS)
nextXInv := mulmod(newXInv, newXInv, K_MODULUS)
}
// f0 + f2 < 4P ( = 3 + 1).
nextLayerValue := addmod(
add(f0, f2),
mulmod(
mulmod(friEvalPointDivByX, friEvalPointDivByX, K_MODULUS),
add(
f0,
// -fMinusX
sub(K_MODULUS, f2)
),
K_MODULUS
),
K_MODULUS
)
}
}
/*
Applies 4 + 2 + 1 FRI transformations to a coset of size 2^3.
For more detail, see description of the FRI transformations at the top of this file.
*/
function transformCosetOfSize8(
uint256 friHalfInvGroupPtr,
uint256 evaluationsOnCosetPtr,
uint256 cosetOffset_,
uint256 friEvalPoint
) private pure returns (uint256 nextLayerValue, uint256 nextXInv) {
assembly {
let f0 := mload(evaluationsOnCosetPtr)
let friEvalPointDivByX := mulmod(friEvalPoint, cosetOffset_, K_MODULUS)
let friEvalPointDivByXSquared := mulmod(
friEvalPointDivByX,
friEvalPointDivByX,
K_MODULUS
)
let imaginaryUnit := mload(add(friHalfInvGroupPtr, 0x20))
{
let f1 := mload(add(evaluationsOnCosetPtr, 0x20))
// f0 < 3P ( = 1 + 1 + 1).
f0 := add(
add(f0, f1),
mulmod(
friEvalPointDivByX,
add(
f0,
// -fMinusX
sub(K_MODULUS, f1)
),
K_MODULUS
)
)
}
{
let f2 := mload(add(evaluationsOnCosetPtr, 0x40))
{
let f3 := mload(add(evaluationsOnCosetPtr, 0x60))
// f2 < 3P ( = 1 + 1 + 1).
f2 := add(
add(f2, f3),
mulmod(
add(
f2,
// -fMinusX
sub(K_MODULUS, f3)
),
mulmod(friEvalPointDivByX, imaginaryUnit, K_MODULUS),
K_MODULUS
)
)
}
// f0 < 7P ( = 3 + 3 + 1).
f0 := add(
add(f0, f2),
mulmod(
friEvalPointDivByXSquared,
add(
f0,
// -fMinusX
sub(K_MODULUS_TIMES_16, f2)
),
K_MODULUS
)
)
}
{
let f4 := mload(add(evaluationsOnCosetPtr, 0x80))
{
let friEvalPointDivByX2 := mulmod(
friEvalPointDivByX,
mload(add(friHalfInvGroupPtr, 0x40)),
K_MODULUS
)
{
let f5 := mload(add(evaluationsOnCosetPtr, 0xa0))
// f4 < 3P ( = 1 + 1 + 1).
f4 := add(
add(f4, f5),
mulmod(
friEvalPointDivByX2,
add(
f4,
// -fMinusX
sub(K_MODULUS, f5)
),
K_MODULUS
)
)
}
let f6 := mload(add(evaluationsOnCosetPtr, 0xc0))
{
let f7 := mload(add(evaluationsOnCosetPtr, 0xe0))
// f6 < 3P ( = 1 + 1 + 1).
f6 := add(
add(f6, f7),
mulmod(
add(
f6,
// -fMinusX
sub(K_MODULUS, f7)
),
// friEvalPointDivByX2 * imaginaryUnit ==
// friEvalPointDivByX * mload(add(friHalfInvGroupPtr, 0x60)).
mulmod(friEvalPointDivByX2, imaginaryUnit, K_MODULUS),
K_MODULUS
)
)
}
// f4 < 7P ( = 3 + 3 + 1).
f4 := add(
add(f4, f6),
mulmod(
mulmod(friEvalPointDivByX2, friEvalPointDivByX2, K_MODULUS),
add(
f4,
// -fMinusX
sub(K_MODULUS_TIMES_16, f6)
),
K_MODULUS
)
)
}
// f0, f4 < 7P -> f0 + f4 < 14P && 9P < f0 + (K_MODULUS_TIMES_16 - f4) < 23P.
nextLayerValue := addmod(
add(f0, f4),
mulmod(
mulmod(friEvalPointDivByXSquared, friEvalPointDivByXSquared, K_MODULUS),
add(
f0,
// -fMinusX
sub(K_MODULUS_TIMES_16, f4)
),
K_MODULUS
),
K_MODULUS
)
}
{
let xInv2 := mulmod(cosetOffset_, cosetOffset_, K_MODULUS)
let xInv4 := mulmod(xInv2, xInv2, K_MODULUS)
nextXInv := mulmod(xInv4, xInv4, K_MODULUS)
}
}
}
/*
Applies 8 + 4 + 2 + 1 FRI transformations to a coset of size 2^4.
to obtain a single element.
For more detail, see description of the FRI transformations at the top of this file.
*/
function transformCosetOfSize16(
uint256 friHalfInvGroupPtr,
uint256 evaluationsOnCosetPtr,
uint256 cosetOffset_,
uint256 friEvalPoint
) private pure returns (uint256 nextLayerValue, uint256 nextXInv) {
assembly {
let friEvalPointDivByXTessed
let f0 := mload(evaluationsOnCosetPtr)
let friEvalPointDivByX := mulmod(friEvalPoint, cosetOffset_, K_MODULUS)
let imaginaryUnit := mload(add(friHalfInvGroupPtr, 0x20))
{
let f1 := mload(add(evaluationsOnCosetPtr, 0x20))
// f0 < 3P ( = 1 + 1 + 1).
f0 := add(
add(f0, f1),
mulmod(
friEvalPointDivByX,
add(
f0,
// -fMinusX
sub(K_MODULUS, f1)
),
K_MODULUS
)
)
}
{
let f2 := mload(add(evaluationsOnCosetPtr, 0x40))
{
let f3 := mload(add(evaluationsOnCosetPtr, 0x60))
// f2 < 3P ( = 1 + 1 + 1).
f2 := add(
add(f2, f3),
mulmod(
add(
f2,
// -fMinusX
sub(K_MODULUS, f3)
),
mulmod(friEvalPointDivByX, imaginaryUnit, K_MODULUS),
K_MODULUS
)
)
}
{
let friEvalPointDivByXSquared := mulmod(
friEvalPointDivByX,
friEvalPointDivByX,
K_MODULUS
)
friEvalPointDivByXTessed := mulmod(
friEvalPointDivByXSquared,
friEvalPointDivByXSquared,
K_MODULUS
)
// f0 < 7P ( = 3 + 3 + 1).
f0 := add(
add(f0, f2),
mulmod(
friEvalPointDivByXSquared,
add(
f0,
// -fMinusX
sub(K_MODULUS_TIMES_16, f2)
),
K_MODULUS
)
)
}
}
{
let f4 := mload(add(evaluationsOnCosetPtr, 0x80))
{
let friEvalPointDivByX2 := mulmod(
friEvalPointDivByX,
mload(add(friHalfInvGroupPtr, 0x40)),
K_MODULUS
)
{
let f5 := mload(add(evaluationsOnCosetPtr, 0xa0))
// f4 < 3P ( = 1 + 1 + 1).
f4 := add(
add(f4, f5),
mulmod(
friEvalPointDivByX2,
add(
f4,
// -fMinusX
sub(K_MODULUS, f5)
),
K_MODULUS
)
)
}
let f6 := mload(add(evaluationsOnCosetPtr, 0xc0))
{
let f7 := mload(add(evaluationsOnCosetPtr, 0xe0))
// f6 < 3P ( = 1 + 1 + 1).
f6 := add(
add(f6, f7),
mulmod(
add(
f6,
// -fMinusX
sub(K_MODULUS, f7)
),
// friEvalPointDivByX2 * imaginaryUnit ==
// friEvalPointDivByX * mload(add(friHalfInvGroupPtr, 0x60)).
mulmod(friEvalPointDivByX2, imaginaryUnit, K_MODULUS),
K_MODULUS
)
)
}
// f4 < 7P ( = 3 + 3 + 1).
f4 := add(
add(f4, f6),
mulmod(
mulmod(friEvalPointDivByX2, friEvalPointDivByX2, K_MODULUS),
add(
f4,
// -fMinusX
sub(K_MODULUS_TIMES_16, f6)
),
K_MODULUS
)
)
}
// f0 < 15P ( = 7 + 7 + 1).
f0 := add(
add(f0, f4),
mulmod(
friEvalPointDivByXTessed,
add(
f0,
// -fMinusX
sub(K_MODULUS_TIMES_16, f4)
),
K_MODULUS
)
)
}
{
let f8 := mload(add(evaluationsOnCosetPtr, 0x100))
{
let friEvalPointDivByX4 := mulmod(
friEvalPointDivByX,
mload(add(friHalfInvGroupPtr, 0x80)),
K_MODULUS
)
{
let f9 := mload(add(evaluationsOnCosetPtr, 0x120))
// f8 < 3P ( = 1 + 1 + 1).
f8 := add(
add(f8, f9),
mulmod(
friEvalPointDivByX4,
add(
f8,
// -fMinusX
sub(K_MODULUS, f9)
),
K_MODULUS
)
)
}
let f10 := mload(add(evaluationsOnCosetPtr, 0x140))
{
let f11 := mload(add(evaluationsOnCosetPtr, 0x160))
// f10 < 3P ( = 1 + 1 + 1).
f10 := add(
add(f10, f11),
mulmod(
add(
f10,
// -fMinusX
sub(K_MODULUS, f11)
),
// friEvalPointDivByX4 * imaginaryUnit ==
// friEvalPointDivByX * mload(add(friHalfInvGroupPtr, 0xa0)).
mulmod(friEvalPointDivByX4, imaginaryUnit, K_MODULUS),
K_MODULUS
)
)
}
// f8 < 7P ( = 3 + 3 + 1).
f8 := add(
add(f8, f10),
mulmod(
mulmod(friEvalPointDivByX4, friEvalPointDivByX4, K_MODULUS),
add(
f8,
// -fMinusX
sub(K_MODULUS_TIMES_16, f10)
),
K_MODULUS
)
)
}
{
let f12 := mload(add(evaluationsOnCosetPtr, 0x180))
{
let friEvalPointDivByX6 := mulmod(
friEvalPointDivByX,
mload(add(friHalfInvGroupPtr, 0xc0)),
K_MODULUS
)
{
let f13 := mload(add(evaluationsOnCosetPtr, 0x1a0))
// f12 < 3P ( = 1 + 1 + 1).
f12 := add(
add(f12, f13),
mulmod(
friEvalPointDivByX6,
add(
f12,
// -fMinusX
sub(K_MODULUS, f13)
),
K_MODULUS
)
)
}
let f14 := mload(add(evaluationsOnCosetPtr, 0x1c0))
{
let f15 := mload(add(evaluationsOnCosetPtr, 0x1e0))
// f14 < 3P ( = 1 + 1 + 1).
f14 := add(
add(f14, f15),
mulmod(
add(
f14,
// -fMinusX
sub(K_MODULUS, f15)
),
// friEvalPointDivByX6 * imaginaryUnit ==
// friEvalPointDivByX * mload(add(friHalfInvGroupPtr, 0xe0)).
mulmod(friEvalPointDivByX6, imaginaryUnit, K_MODULUS),
K_MODULUS
)
)
}
// f12 < 7P ( = 3 + 3 + 1).
f12 := add(
add(f12, f14),
mulmod(
mulmod(friEvalPointDivByX6, friEvalPointDivByX6, K_MODULUS),
add(
f12,
// -fMinusX
sub(K_MODULUS_TIMES_16, f14)
),
K_MODULUS
)
)
}
// f8 < 15P ( = 7 + 7 + 1).
f8 := add(
add(f8, f12),
mulmod(
mulmod(friEvalPointDivByXTessed, imaginaryUnit, K_MODULUS),
add(
f8,
// -fMinusX
sub(K_MODULUS_TIMES_16, f12)
),
K_MODULUS
)
)
}
// f0, f8 < 15P -> f0 + f8 < 30P && 16P < f0 + (K_MODULUS_TIMES_16 - f8) < 31P.
nextLayerValue := addmod(
add(f0, f8),
mulmod(
mulmod(friEvalPointDivByXTessed, friEvalPointDivByXTessed, K_MODULUS),
add(
f0,
// -fMinusX
sub(K_MODULUS_TIMES_16, f8)
),
K_MODULUS
),
K_MODULUS
)
}
{
let xInv2 := mulmod(cosetOffset_, cosetOffset_, K_MODULUS)
let xInv4 := mulmod(xInv2, xInv2, K_MODULUS)
let xInv8 := mulmod(xInv4, xInv4, K_MODULUS)
nextXInv := mulmod(xInv8, xInv8, K_MODULUS)
}
}
}
}