Skip to content

Latest commit

 

History

History
60 lines (53 loc) · 2.24 KB

README.md

File metadata and controls

60 lines (53 loc) · 2.24 KB

PyTorch NYUv2 Dataset Class

PyTorch wrapper for the NYUv2 dataset focused on multi-task learning.
Data sources available: RGB, Semantic Segmentation(13), Surface Normals, Depth Images.

Downloads data from:

Example

from nyuv2 import NYUv2
from torchvision import transforms

t = transforms.Compose([transforms.RandomCrop(400), transforms.ToTensor()])
NYUv2(root="/somepath/NYUv2", download=True, 
      rgb_transform=t, seg_transform=t, sn_transform=t, depth_transform=t)
Dataset NYUv2
    Number of datapoints: 795
    Split: train
    Root Location: /somepath/NYUv2
    RGB Transforms: Compose(
                        RandomCrop(size=(400, 400), padding=None)
                        ToTensor()
                    )
    Seg Transforms: Compose(
                        RandomCrop(size=(400, 400), padding=None)
                        ToTensor()
                    )
    SN Transforms: Compose(
                       RandomCrop(size=(400, 400), padding=None)
                       ToTensor()
                   )
    Depth Transforms: Compose(
                          RandomCrop(size=(400, 400), padding=None)
                          ToTensor()
                      )

NYUv2

Notes

  • Each source has its own transformation pipeline
  • Do not flip surface normals, as the output would be incorrect without further processing
  • Semantic Segmentation Classes: (0) background, (1) bed, (2) books, (3) ceiling, (4) chair, (5) floor, (6) furniture, (7) objects, (8) painting, (9) sofa, (10) table, (11) tv, (12) wall, (13) window

Requirements

h5py: 2.9.0
pillow: 6.2.0
pytorch: 0.4.0
torchvision: 0.4.0