-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest_ddag.py
250 lines (219 loc) · 10.1 KB
/
test_ddag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
from __future__ import print_function
import argparse
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import torch.utils.data as data
import torchvision
import torchvision.transforms as transforms
from data_loader import SYSUData, RegDBData, TestData
from data_manager import *
from eval_metrics import eval_sysu, eval_regdb
from model_main import embed_net
from utils import *
import time
import scipy.io as scio
parser = argparse.ArgumentParser(description='PyTorch Cross-Modality Training')
parser.add_argument('--dataset', default='sysu', help='dataset name: regdb or sysu]')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--optim', default='sgd', type=str, help='optimizer')
parser.add_argument('--arch', default='resnet50', type=str, help='network baseline')
parser.add_argument('--resume', '-r', default='', type=str, help='resume from checkpoint')
parser.add_argument('--model_path', default='save_model/', type=str, help='model save path')
parser.add_argument('--log_path', default='log/', type=str, help='log save path')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--low-dim', default=512, type=int,
metavar='D', help='feature dimension')
parser.add_argument('--img_w', default=144, type=int,
metavar='imgw', help='img width')
parser.add_argument('--img_h', default=288, type=int,
metavar='imgh', help='img height')
parser.add_argument('--batch-size', default=32, type=int,
metavar='B', help='training batch size')
parser.add_argument('--part', default=3, type=int,
metavar='tb', help=' part number')
parser.add_argument('--test-batch', default=64, type=int,
metavar='tb', help='testing batch size')
parser.add_argument('--method', default='id', type=str,
metavar='m', help='Method type')
parser.add_argument('--drop', default=0.0, type=float,
metavar='drop', help='dropout ratio')
parser.add_argument('--trial', default=1, type=int,
metavar='t', help='trial')
parser.add_argument('--gpu', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('--mode', default='all', type=str, help='all or indoor')
parser.add_argument('--graph', action='store_true', help='either add graph learning')
parser.add_argument('--wpa', action='store_true', help='either add weighted part attention')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
np.random.seed(1)
dataset = args.dataset
if dataset == 'sysu':
# TODO: define your data path for RegDB dataset
data_path = 'YOUR DATA PATH'
n_class = 395
test_mode = [1, 2]
elif dataset =='regdb':
# TODO: define your data path for RegDB dataset
data_path = 'YOUR DATA PATH'
n_class = 206
test_mode = [2, 1]
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0
print('==> Building model..')
net = embed_net(args.low_dim, n_class, drop=args.drop, part=args.part, arch=args.arch, wpa=args.wpa)
net.to(device)
cudnn.benchmark = True
print('==> Resuming from checkpoint..')
checkpoint_path = args.model_path
if len(args.resume)>0:
model_path = checkpoint_path + args.resume
# model_path = checkpoint_path + 'test_best.t'
if os.path.isfile(model_path):
print('==> loading checkpoint {}'.format(args.resume))
checkpoint = torch.load(model_path)
start_epoch = checkpoint['epoch']
# pdb.set_trace()
net.load_state_dict(checkpoint['net'])
print('==> loaded checkpoint {} (epoch {})'
.format(args.resume, checkpoint['epoch']))
else:
print('==> no checkpoint found at {}!!!!!!!!!!'.format(args.resume))
if args.method =='id':
criterion = nn.CrossEntropyLoss()
criterion.to(device)
print('==> Loading data..')
# Data loading code
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
transform_train = transforms.Compose([
transforms.ToPILImage(),
# transforms.Resize((280,150), interpolation=2),
transforms.RandomCrop((args.img_h,args.img_w)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.img_h,args.img_w)),
transforms.ToTensor(),
normalize,
])
end = time.time()
if dataset =='sysu':
# testing set
query_img, query_label, query_cam = process_query_sysu(data_path, mode = args.mode)
gall_img, gall_label, gall_cam = process_gallery_sysu(data_path, mode = args.mode, trial = 0)
nquery = len(query_label)
ngall = len(gall_label)
print("Dataset statistics:")
print(" ------------------------------")
print(" subset | # ids | # images")
print(" ------------------------------")
print(" query | {:5d} | {:8d}".format(len(np.unique(query_label)), nquery))
print(" gallery | {:5d} | {:8d}".format(len(np.unique(gall_label)), ngall))
print(" ------------------------------")
queryset = TestData(query_img, query_label, transform = transform_test, img_size =(args.img_w, args.img_h))
query_loader = data.DataLoader(queryset, batch_size=args.test_batch, shuffle=False, num_workers=4)
elif dataset =='regdb':
# training set
trainset = RegDBData(data_path, args.trial, transform=transform_train)
# generate the idx of each person identity
color_pos, thermal_pos = GenIdx(trainset.train_color_label, trainset.train_thermal_label)
# testing set
query_img, query_label = process_test_regdb(data_path, trial = args.trial, modal = 'visible')
gall_img, gall_label = process_test_regdb(data_path, trial = args.trial, modal = 'thermal')
gallset = TestData(gall_img, gall_label, transform = transform_test, img_size =(args.img_w,args.img_h))
gall_loader = data.DataLoader(gallset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
print('Data Loading Time:\t {:.3f}'.format(time.time()-end))
feature_dim = 2048
if args.arch =='resnet50':
pool_dim = 2048
elif args.arch =='resnet18':
pool_dim = 512
def extract_gall_feat(gall_loader):
net.eval()
print ('Extracting Gallery Feature...')
start = time.time()
ptr = 0
gall_feat = np.zeros((ngall, feature_dim))
gall_feat_att = np.zeros((ngall, pool_dim))
with torch.no_grad():
for batch_idx, (input, label ) in enumerate(gall_loader):
batch_num = input.size(0)
input = Variable(input.cuda())
feat, feat_att = net(input, input, 0, test_mode[0])
gall_feat[ptr:ptr+batch_num,: ] = feat.detach().cpu().numpy()
gall_feat_att[ptr:ptr+batch_num,: ] = feat_att.detach().cpu().numpy()
ptr = ptr + batch_num
print('Extracting Time:\t {:.3f}'.format(time.time()-start))
return gall_feat, gall_feat_att
def extract_query_feat(query_loader):
net.eval()
print ('Extracting Query Feature...')
start = time.time()
ptr = 0
query_feat = np.zeros((nquery, feature_dim))
query_feat_att = np.zeros((nquery, pool_dim))
with torch.no_grad():
for batch_idx, (input, label ) in enumerate(query_loader):
batch_num = input.size(0)
input = Variable(input.cuda())
feat, feat_att = net(input, input, 0, test_mode[1])
query_feat[ptr:ptr+batch_num,: ] = feat.detach().cpu().numpy()
query_feat_att[ptr:ptr+batch_num,: ] = feat_att.detach().cpu().numpy()
ptr = ptr + batch_num
print('Extracting Time:\t {:.3f}'.format(time.time()-start))
return query_feat, query_feat_att
query_feat, query_feat_att = extract_query_feat(query_loader)
all_cmc = 0
all_mAP = 0
all_cmc_pool = 0
for trial in range(10):
gall_img, gall_label, gall_cam = process_gallery_sysu(data_path, mode = args.mode, trial = trial)
trial_gallset = TestData(gall_img, gall_label, transform = transform_test,img_size =(args.img_w,args.img_h))
trial_gall_loader = data.DataLoader(trial_gallset, batch_size=args.test_batch, shuffle=False, num_workers=4)
gall_feat, gall_feat_att = extract_gall_feat(trial_gall_loader)
# fc feature
distmat = np.matmul(query_feat, np.transpose(gall_feat))
cmc, mAP, mINP = eval_sysu(-distmat, query_label, gall_label,query_cam, gall_cam)
# attention feature
distmat_att = np.matmul(query_feat_att, np.transpose(gall_feat_att))
cmc_att, mAP_att, mINP_att = eval_sysu(-distmat_att, query_label, gall_label,query_cam, gall_cam)
if trial ==0:
all_cmc = cmc
all_mAP = mAP
all_mINP = mINP
all_cmc_att = cmc_att
all_mAP_att = mAP_att
all_mINP_att = mINP_att
else:
all_cmc = all_cmc + cmc
all_mAP = all_mAP + mAP
all_mINP = all_mINP + mINP
all_cmc_att = all_cmc_att + cmc_att
all_mAP_att = all_mAP_att + mAP_att
all_mINP_att = all_mINP_att + mINP_att
print('Test Trial: {}'.format(trial))
print('FC: Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%}| Rank-20: {:.2%}| mAP: {:.2%}| mINP: {:.2%}'.format(
cmc[0], cmc[4], cmc[9], cmc[19], mAP, mINP))
print('FC_att: Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%}| Rank-20: {:.2%}| mAP: {:.2%}| mINP: {:.2%}'.format(
cmc_att[0], cmc_att[4], cmc_att[9], cmc_att[19], mAP_att, mINP_att))
cmc = all_cmc /10
mAP = all_mAP /10
mINP = all_mINP /10
cmc_att = all_cmc_att /10
mAP_att = all_mAP_att /10
mINP_att = all_mINP_att /10
print ('All Average:')
print('FC: Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%}| Rank-20: {:.2%}| mAP: {:.2%}| mINP: {:.2%}'.format(
cmc[0], cmc[4], cmc[9], cmc[19], mAP, mINP))
print('FC_att: Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%}| Rank-20: {:.2%}| mAP: {:.2%}| mINP: {:.2%}'.format(
cmc_att[0], cmc_att[4], cmc_att[9], cmc_att[19], mAP_att, mINP_att))