-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanomalyDetector.py
153 lines (127 loc) · 6.14 KB
/
anomalyDetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from torch.autograd import Variable
import torch
import numpy as np
import time
def fit_norm_distribution_param(args, model, train_dataset, channel_idx=0):
predictions = []
organized = []
errors = []
with torch.no_grad():
# Turn on evaluation mode which disables dropout.
model.eval()
pasthidden = model.init_hidden(1)
for t in range(len(train_dataset)):
out, hidden = model.forward(train_dataset[t].unsqueeze(0), pasthidden)
predictions.append([])
organized.append([])
errors.append([])
predictions[t].append(out.data.cpu()[0][0][channel_idx])
pasthidden = model.repackage_hidden(hidden)
for prediction_step in range(1,args.prediction_window_size):
out, hidden = model.forward(out, hidden)
predictions[t].append(out.data.cpu()[0][0][channel_idx])
if t >= args.prediction_window_size:
for step in range(args.prediction_window_size):
organized[t].append(predictions[step+t-args.prediction_window_size][args.prediction_window_size-1-step])
organized[t]= torch.FloatTensor(organized[t]).to(args.device)
errors[t] = organized[t] - train_dataset[t][0][channel_idx]
errors[t] = errors[t].unsqueeze(0)
errors_tensor = torch.cat(errors[args.prediction_window_size:],dim=0)
mean = errors_tensor.mean(dim=0)
cov = errors_tensor.t().mm(errors_tensor)/errors_tensor.size(0) - mean.unsqueeze(1).mm(mean.unsqueeze(0))
# cov: positive-semidefinite and symmetric.
return mean, cov
def anomalyScore(args, model, dataset, mean, cov, optimizer, criterion, online=True, channel_idx=0, score_predictor=None):
predictions = []
rearranged = []
errors = []
hiddens = []
predicted_scores = []
start = time.time()
#with torch.no_grad():
with torch.enable_grad() if online else torch.no_grad:
model.train() if online else model.eval()
pasthidden = model.init_hidden(1)
for t in range(len(dataset)):
optimizer.zero_grad()
out, hidden = model.forward(dataset[t].unsqueeze(0), pasthidden)
if online:
if(t==len(dataset)-1):
loss = criterion(out, dataset[t].unsqueeze(0))
else:
loss = criterion(out, dataset[t+1].unsqueeze(0))
loss.backward()
optimizer.step()
predictions.append([])
rearranged.append([])
errors.append([])
hiddens.append(model.extract_hidden(hidden))
if score_predictor is not None:
predicted_scores.append(score_predictor.predict(model.extract_hidden(hidden).numpy()))
predictions[t].append(out.data.cpu()[0][0][channel_idx])
pasthidden = model.repackage_hidden(hidden)
for prediction_step in range(1, args.prediction_window_size):
out, hidden = model.forward(out, hidden)
predictions[t].append(out.data.cpu()[0][0][channel_idx])
if t >= args.prediction_window_size:
for step in range(args.prediction_window_size):
rearranged[t].append(
predictions[step + t - args.prediction_window_size][args.prediction_window_size - 1 - step])
rearranged[t] =torch.FloatTensor(rearranged[t]).to(args.device).unsqueeze(0)
errors[t] = rearranged[t] - dataset[t][0][channel_idx]
else:
rearranged[t] = torch.zeros(1,args.prediction_window_size).to(args.device)
errors[t] = torch.zeros(1, args.prediction_window_size).to(args.device)
predicted_scores = np.array(predicted_scores)
scores = []
for error in errors:
mult1 = error-mean.unsqueeze(0) # [ 1 * prediction_window_size ]
mult2 = torch.inverse(cov) # [ prediction_window_size * prediction_window_size ]
mult3 = mult1.t() # [ prediction_window_size * 1 ]
score = torch.mm(mult1,torch.mm(mult2,mult3))
scores.append(score[0][0])
scores = torch.stack(scores)
rearranged = torch.cat(rearranged,dim=0)
errors = torch.cat(errors,dim=0)
exectime = time.time() - start
print('execution time: ' + str(exectime))
return scores, rearranged, errors, hiddens, predicted_scores, exectime
def get_precision_recall(args, score, label, num_samples, beta=1.0, sampling='log', predicted_score=None):
'''
:param args:
:param score: anomaly scores
:param label: anomaly labels
:param num_samples: the number of threshold samples
:param beta:
:param scale:
:return:
'''
if predicted_score is not None:
score = score - torch.FloatTensor(predicted_score).squeeze().to(args.device)
maximum = score.max()
if sampling=='log':
# Sample thresholds logarithmically
# The sampled thresholds are logarithmically spaced between: math:`10 ^ {start}` and: math:`10 ^ {end}`.
th = torch.logspace(0, torch.log10(torch.tensor(maximum)), num_samples).to(args.device)
else:
# Sample thresholds equally
# The sampled thresholds are equally spaced points between: attr:`start` and: attr:`end`
th = torch.linspace(0, maximum, num_samples).to(args.device)
precision = []
recall = []
for i in range(len(th)):
anomaly = (score > th[i]).float()
idx = anomaly * 2 + label
tn = (idx == 0.0).sum().item() # tn
fn = (idx == 1.0).sum().item() # fn
fp = (idx == 2.0).sum().item() # fp
tp = (idx == 3.0).sum().item() # tp
p = tp / (tp + fp + 1e-7)
r = tp / (tp + fn + 1e-7)
if p != 0 and r != 0:
precision.append(p)
recall.append(r)
precision = torch.FloatTensor(precision)
recall = torch.FloatTensor(recall)
f1 = (1 + beta ** 2) * (precision * recall).div(beta ** 2 * precision + recall + 1e-7)
return precision, recall, f1