We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
harris https://blog.csdn.net/zizi7/article/details/50112169
sift https://www.cnblogs.com/Alliswell-WP/p/SIFT.html hog https://shartoo.github.io/2019/03/04/HOG-feature/ Seam-Carving huofu变换 提取直线可以用这些
mean-shift 在未被标记的数据点中随机选择一个点作为起始中心点center; 找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C。同时在该聚类中记录数据点出现的次数加1。 以center为中心点,计算从center开始到集合M中每个元素的向量,将这些向量相加,得到向量shift。 center = center + shift。即center沿着shift的方向移动,移动距离是||shift||。 重复步骤2、3、4,直到shift的很小(就是迭代到收敛),记住此时的center。注意,这个迭代过程中遇到的点都应该归类到簇C。 如果收敛时当前簇C的center与其它已经存在的簇C2中心的距离小于阈值,那么把C2和C合并,数据点出现次数也对应合并。否则,把C作为新的聚类。 重复1、2、3、4、5直到所有的点都被标记为已访问。 分类:根据每个类,对每个点的访问频率,取访问频率最大的那个类,作为当前点集的所属类。
The text was updated successfully, but these errors were encountered:
No branches or pull requests
1
harris https://blog.csdn.net/zizi7/article/details/50112169
sift https://www.cnblogs.com/Alliswell-WP/p/SIFT.html
hog https://shartoo.github.io/2019/03/04/HOG-feature/
Seam-Carving
huofu变换
提取直线可以用这些
mean-shift
在未被标记的数据点中随机选择一个点作为起始中心点center;
找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C。同时在该聚类中记录数据点出现的次数加1。
以center为中心点,计算从center开始到集合M中每个元素的向量,将这些向量相加,得到向量shift。
center = center + shift。即center沿着shift的方向移动,移动距离是||shift||。
重复步骤2、3、4,直到shift的很小(就是迭代到收敛),记住此时的center。注意,这个迭代过程中遇到的点都应该归类到簇C。
如果收敛时当前簇C的center与其它已经存在的簇C2中心的距离小于阈值,那么把C2和C合并,数据点出现次数也对应合并。否则,把C作为新的聚类。
重复1、2、3、4、5直到所有的点都被标记为已访问。
分类:根据每个类,对每个点的访问频率,取访问频率最大的那个类,作为当前点集的所属类。
The text was updated successfully, but these errors were encountered: