Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

目标检测 #19

Open
maiff opened this issue Feb 10, 2020 · 1 comment
Open

目标检测 #19

maiff opened this issue Feb 10, 2020 · 1 comment

Comments

@maiff
Copy link
Owner

maiff commented Feb 10, 2020

一文读懂faster rcnn
feture上的anchor box是通过缩放到原图上的

目标检测|YOLO原理与实现 - 小小将的文章 - 知乎

目标检测|YOLOv2原理与实现

目标检测|SSD原理与实现
1、negative example过多造成它的loss太大,以至于把positive的loss都淹没掉了,不利于目标的收敛;

2、大多negative example不在前景和背景的过渡区域上,分类很明确(这种易分类的negative称为easy negative),训练时对应的背景类score会很大,换个角度看就是单个example的loss很小,反向计算时梯度小。梯度小造成easy negative example对参数的收敛作用很有限,我们更需要loss大的对参数收敛影响也更大的example,即hard positive/negative example。
这里要注意的是前一点我们说了negative的loss很大,是因为negative的绝对数量多,所以总loss大;后一点说easy negative的loss小,是针对单个example而言。

@maiff
Copy link
Owner Author

maiff commented Mar 9, 2020

  • Region Proposal Networks(RPN) 目标检测,anchor
  • ROI RoI Pooling Layer RoI Pooling确实是从Spatial Pyramid Pooling
    Global Context
  • FPN
    kHpccR.png

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant