-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathlsh.py
90 lines (74 loc) · 3.12 KB
/
lsh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import hasher
import functools
import numpy as np
import scipy.spatial.distance as distance
from pyspark.mllib.linalg import SparseVector
def distance_metric(kv):
"""
Generates a pairwise, summed Jaccard distance metric for all the elements
in a cluster / bucket. Input <k, v> pairs are of the form:
<bucket id, list of vectors>
Output <k, v> pair is: <bucket id, jaccard distance>
"""
bid, X = kv[0], kv[1].data
if type(X[0]) is SparseVector:
Y = np.array([x.toArray() for x in X])
X = Y
return [bid, distance.pdist(np.array(X), 'jaccard').sum()]
def run(data, p, m, n, b, c):
"""
Starts the main LSH process.
Parameters
----------
zdata : RDD[Vector]
RDD of data points. Acceptable vector types are numpy.ndarray
or PySpark SparseVector.
p : integer, larger than the largest value in data.
m : integer, number of bins for hashing.
n : integer, number of rows to split the signatures into.
b : integer, number of bands.
c : integer, minimum allowable cluster size.
"""
zdata = data.zipWithIndex()
seeds = np.vstack([np.random.random_integers(p, size = n), np.random.random_integers(0, p, size = n)]).T
hashes = [functools.partial(hasher.minhash, a = s[0], b = s[1], p = p, m = m) for s in seeds]
# Start by generating the signatures for each data point.
# Output format is:
# <(vector idx, band idx), minhash>
sigs = zdata.flatMap(lambda x: [[(x[1], i % b), hashes[i](x[0])] for i, h in enumerate(hashes)]).cache()
# Put together the vector minhashes in the same band.
# Output format is:
# <(band idx, minhash list), vector idx>
bands = sigs.groupByKey() \
.map(lambda x: [(x[0][1], hash(frozenset(x[1].data))), x[0][0]]) \
.groupByKey().cache()
# Should we filter?
if c > 0:
bands = bands.filter(lambda x: len(x[1]) > c).cache()
# Remaps each element to a cluster / bucket index.
# Output format is:
# <vector idx, bucket idx>
vector_bucket = bands.map(lambda x: frozenset(sorted(x[1]))).distinct() \
.zipWithIndex().flatMap(lambda x: map(lambda y: (np.long(y), x[1]), x[0])) \
.cache()
# Reverses indices, to key the vectors by their buckets.
# Output format is:
# <bucket idx, vector idx>
bucket_vector = vector_bucket.map(lambda x: (x[1], x[0])).cache()
# Joins indices up with original data to provide clustering results.
# Output format is:
# <bucket idx, list of vectors>
buckets = zdata.map(lambda x: (x[1], x[0])).join(vector_bucket) \
.map(lambda x: (x[1][1], x[1][0])).groupByKey().cache()
# Computes Jaccard similarity of each bucket.
scores = buckets.map(distance_metric).cache()
# Return a wrapper object around the metrics of interest.
return PyLSHModel(sigs, bands, vector_bucket, bucket_vector, buckets, scores)
class PyLSHModel:
def __init__(self, sigs, bands, v_b, b_v, buckets, scores):
self.signatures = sigs
self.bands = bands
self.vectors_buckets = v_b
self.buckets_vectors = b_v
self.buckets = buckets
self.scores = scores