-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
153 lines (130 loc) · 5.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from layers import Standout
from utils import saveLog
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=100, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=1000, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.99)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10000, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--standout', action='store_true', default=False,
help='Activates standout training!')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self, standout):
super(Net, self).__init__()
#### SELF ARGS ####
self.standout = standout
#### MODEL PARAMS ####
self.fc1 = nn.Linear(784, 1000)
self.fc1_drop = Standout(self.fc1, 0.5, 1) if standout else nn.Dropout(0.5)
self.fc2 = nn.Linear(1000, 1000)
self.fc2_drop = Standout(self.fc2, 0.5, 1) if standout else nn.Dropout(0.5)
self.fc_final = nn.Linear(1000, 10)
def forward(self, x):
# Flatten input
x = x.view(-1, 784)
# Keep it for standout
#FIRST FC
previous = x
x_relu = F.relu(self.fc1(x))
# Select between dropouts styles
x = self.fc1_drop(previous, x_relu) if self.standout else self.fc1_drop(x_relu)
#SECOND FC
previous = x
x_relu = F.relu(self.fc2(x))
# Select between dropouts styles
x = self.fc2_drop(previous, x_relu) if self.standout else self.fc2_drop(x_relu)
x = self.fc_final(x)
return F.log_softmax(x, dim=1)
def train(model, epoch):
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test(model, standout, epoch):
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
test_acc = 100. * correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.5f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
test_acc))
if standout == True:
drop_way = "Standout"
else:
drop_way = "Dropout"
saveLog(test_loss, test_acc, correct, drop_way, args, epoch)
def run(standout=False):
model = Net(standout)
if torch.cuda.is_available():
model.cuda()
test(model, standout, 0)
for epoch in range(1, args.epochs + 1):
train(model, epoch)
test(model, standout, epoch)
def main():
print("RUNNING STANDOUT ONE")
run(standout=True)
print("RUNNING DROPOUT ONE")
run()
if __name__ == "__main__":
main()