-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathridge.Rmd
117 lines (80 loc) · 2.15 KB
/
ridge.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
## L2 (ridge) regularization
Compare to the [lasso section][L1 (lasso) regularization].
### Data Setup
```{r ridge-setup}
library(tidyverse)
set.seed(8675309)
N = 500
p = 10
X = scale(matrix(rnorm(N * p), ncol = p))
b = c(.5, -.5, .25, -.25, .125, -.125, rep(0, 4))
y = scale(X %*% b + rnorm(N, sd = .5))
```
### Function
```{r ridge-function}
ridge <- function(w, X, y, lambda = .1) {
# X: model matrix;
# y: target;
# lambda: penalty parameter;
# w: the weights/coefficients
crossprod(y - X %*% w) + lambda * length(y) * crossprod(w)
}
```
### Estimation
Note, if `lambda = 0`, i.e. no penalty, the result is the same as what you would get from the base R <span class="func" style = "">lm.fit</span>.
```{r ridge-est}
fit_ridge = optim(
rep(0, ncol(X)),
ridge,
X = X,
y = y,
lambda = .1,
method = 'BFGS'
)
```
Analytical result.
```{r ridge-analytical}
fit_ridge2 = solve(crossprod(X) + diag(length(y)*.1, ncol(X))) %*% crossprod(X, y)
```
An alternative approach using 'augmented' data (note `sigma` is ignored as it equals 1, but otherwise
X/sigma and y/sigma).
```{r ridge-augmented}
X2 = rbind(X, diag(sqrt(length(y)*.1), ncol(X)))
y2 = c(y, rep(0, ncol(X)))
tail(X2)
tail(y2)
fit_ridge3 = solve(crossprod(X2)) %*% crossprod(X2, y2)
```
The <span class="pack" style = "">glmnet</span> approach is by default a mixture
of ridge and lasso penalties, setting `alpha = 1` reduces to lasso (`alpha = 0`
would be ridge). We set the lambda to a couple values while only wanting the one
set to the same lambda value as above (`s`).
```{r ridge-glmnet}
library(glmnet)
fit_glmnet = coef(
glmnet(
X,
y,
alpha = 0,
lambda = c(10, 1, .1),
thresh = 1e-12,
intercept = F
),
s = .1
)
```
### Comparison
We can now compare the coefficients of all our results.
```{r ridge-compare, echo=FALSE}
data.frame(
lm = coef(lm(y ~ . - 1, data.frame(X))),
ridge = fit_ridge$par,
ridge2 = fit_ridge2,
ridge3 = fit_ridge3,
glmnet = fit_glmnet[-1, 1],
truth = b
) %>%
kable_df()
```
### Source
Original code available at https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/ridge.R