-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmarginal-structural.Rmd
179 lines (126 loc) · 4.34 KB
/
marginal-structural.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Marginal Structural Model
This is a demonstration of a simple marginal structural model for estimation of so-called 'causal' effects using inverse probability weighting.
Example data is from, and comparison made to, the <span class="pack" style = "">ipw</span> package. See more [here](https://www.jstatsoft.org/article/view/v043i13/v43i13.pdf).
## Data Setup
This example is from the helpfile at `?ipwpoint`.
```{r msm-setup}
library(tidyverse)
library(ipw)
set.seed(16)
n = 1000
simdat = data.frame(l = rnorm(n, 10, 5))
a_lin = simdat$l - 10
pa = plogis(a_lin)
simdat = simdat %>%
mutate(
a = rbinom(n, 1, prob = pa),
y = 10 * a + 0.5 * l + rnorm(n, -10, 5)
)
ipw_result = ipwpoint(
exposure = a,
family = "binomial",
link = "logit",
numerator = ~ 1,
denominator = ~ l,
data = simdat
)
summary(ipw_result$ipw.weights)
ipwplot(ipw_result$ipw.weights)
```
We create the weights as follows using the probabilities from a logistic regression.
```{r msm-weights}
ps_num = fitted(glm(a ~ 1, data = simdat, family = 'binomial'))
ps_num[simdat$a == 0] = 1 - ps_num[simdat$a == 0]
ps_den = fitted(glm(a ~ l, data = simdat, family = 'binomial'))
ps_den[simdat$a == 0] = 1 - ps_den[simdat$a == 0]
wts = ps_num / ps_den
```
Compare the weights.
```{r msm-wts-compare}
rbind(summary(wts), summary(ipw_result$ipw.weights))
```
Add inverse probability weights to the data if desired.
```{r msm-add-weights}
simdat = simdat %>%
mutate(sw = ipw_result$ipw.weights)
```
## Function
Create the likelihood function for using the weights.
```{r msm-func}
msm_ll <- function(
par, # parameters to be estimated; first is taken to be sigma
X, # model matrix
y, # target variable
wts # estimated weights
) {
beta = par[-1]
lp = X %*% beta
sigma = exp(par[1]) # exponentiated value to stay positive
ll = dnorm(y, mean = lp, sd = sigma, log = TRUE)
-sum(ll * wts) # weighted likelihood
# same as
# ll = dnorm(y, mean = lp, sd = sigma)^wts
# -sum(log(ll))
}
```
## Estimation
We want to estimate the marginal structural model for the causal effect of `a` on `y` corrected for confounding by `l`, using inverse probability weighting with robust standard error from the <span class="pack" style = "">survey</span> package. Create the matrices for estimation, estimate the model, and extract results.
```{r msm-ml}
X = cbind(1, simdat$a)
y = simdat$y
fit = optim(
par = c(sigma = 0, intercept = 0, b = 0),
fn = msm_ll,
X = X,
y = y,
wts = wts,
hessian = TRUE,
method = 'BFGS',
control = list(abstol = 1e-12)
)
dispersion = exp(fit$par[1])^2
beta = fit$par[-1]
```
Now we compute the standard errors. The following uses the <span class="pack" style = "">survey</span> package raw version to get the appropriate standard errors, which the <span class="pack" style = "">ipw</span> approach uses.
```{r msm-se-1}
glm_basic = glm(y ~ a, data = simdat, weights = wts) # to get unscaled cov
res = resid(glm_basic, type = 'working') # residuals
glm_vcov_unsc = summary(glm_basic)$cov.unscaled # weighted vcov unscaled by dispersion solve(crossprod(qr(X)))
estfun = X * res * wts
x = estfun %*% glm_vcov_unsc
```
## Comparison
```{r msm-svy}
library("survey")
fit_msm = svyglm(
y ~ a,
design = svydesign(~ 1, weights = ~ sw, data = simdat)
)
summary(fit_msm)
```
Now get the standard errors.
```{r msm-se-2}
se = sqrt(diag(crossprod(x) * n/(n-1))) # a robust standard error
se_robust = sqrt(diag(sandwich::sandwich(glm_basic))) # an easier way to get it
se_msm = sqrt(diag(vcov(fit_msm))) # extract from msm model
```
Compare standard errors.
```{r msm-se-compare}
tibble(se, se_robust, se_msm)
```
Inspect the general fit and compare with the other.
```{r msm-comparison- show, echo=FALSE}
tibble(
Estimate = beta,
init_se = sqrt(diag(solve(fit$hessian)))[c('intercept', 'b')], # same as scaled se from glm_basic
se_robust = se_robust,
t = Estimate/se,
p = 2*pt(abs(t), df = n - ncol(X), lower.tail = FALSE),
dispersion = dispersion
) %>%
kable_df(caption = 'msm_ll')
broom::tidy(fit_msm) %>%
kable_df(caption = 'svyglm')
```
## Source
Original code available at https://github.com/m-clark/Miscellaneous-R-Code/blob/master/ModelFitting/ipw.R