-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathhamiltonian-monte-carlo.Rmd
390 lines (292 loc) · 10.3 KB
/
hamiltonian-monte-carlo.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Hamiltonian Monte Carlo
The following demonstrates Hamiltonian Monte Carlo, the technique that Stan
uses, and which is a different estimation approach than the Gibbs sampler in
BUGS/JAGS. If you are interested in the details enough to be reading this, I
highly recommend Betancourt's [conceptual introduction to
HMC](https://arxiv.org/pdf/1701.02434.pdf). This example is largely based on
the code in the appendix of Gelman.
- Gelman et al. 2013. Bayesian Data Analysis. 3rd ed.
## Data Setup
As with the [Metropolis Hastings chapter][Metropolis Hastings], we use some data for a standard linear regression.
```{r hmc-setup}
library(tidyverse)
# set seed for replicability
set.seed(8675309)
# create a N x k matrix of covariates
N = 250
K = 3
covariates = replicate(K, rnorm(n = N))
colnames(covariates) = c('X1', 'X2', 'X3')
# create the model matrix with intercept
X = cbind(Intercept = 1, covariates)
# create a normally distributed variable that is a function of the covariates
coefs = c(5, .2, -1.5, .9)
sigma = 2
mu = X %*% coefs
y = rnorm(N, mu, sigma)
# same as
# y = 5 + .2*X1 - 1.5*X2 + .9*X3 + rnorm(N, mean = 0, sd = 2)
# Run lm for later comparison; but go ahead and examine now if desired
fit_lm = lm(y ~ ., data = data.frame(X[, -1]))
# summary(fit_lm)
```
## Functions
First we start with the log posterior function.
```{r hmc-func-log-post}
log_posterior <- function(X, y, th) {
# Args
# X: the model matrix
# y: the target vector
# th: theta, the current parameter estimates
beta = th[-length(th)] # reg coefs to be estimated
sigma = th[length(th)] # sigma to be estimated
sigma2 = sigma^2
mu = X %*% beta
# priors are b0 ~ N(0, sd=10), sigma2 ~ invGamma(.001, .001)
priorbvarinv = diag(1/100, 4)
prioralpha = priorbeta = .001
if (is.nan(sigma) | sigma<=0) { # scale parameter must be positive, so post
return(-Inf) # density is zero if it jumps below zero
}
# log posterior in this conjugate setting. conceptually it's (log) prior +
# (log) likelihood. (See commented 'else' for alternative)
else {
-.5*nrow(X)*log(sigma2) - (.5*(1/sigma2) * (crossprod(y-mu))) +
-.5*ncol(X)*log(sigma2) - (.5*(1/sigma2) * (t(beta) %*% priorbvarinv %*% beta)) +
-(prioralpha + 1)*log(sigma2) + log(sigma2) - priorbeta/sigma2
}
# else {
# ll = mvtnorm::dmvnorm(y, mean=mu, sigma=diag(sigma2, length(y)), log=T)
# priorb = mvtnorm::dmvnorm(beta, mean=rep(0, length(beta)), sigma=diag(100, length(beta)), log=T)
# priors2 = dgamma(1/sigma2, prioralpha, priorbeta, log=T)
# logposterior = ll + priorb + priors2
# logposterior
# }
}
```
The following is the numerical gradient function as given in BDA3 p. 602. It has
the same arguments as the log posterior function.
```{r hmc-func-gradient}
gradient_theta <- function(X, y, th) {
d = length(th)
e = .0001
diffs = numeric(d)
for (k in 1:d) {
th_hi = th
th_lo = th
th_hi[k] = th[k] + e
th_lo[k] = th[k] - e
diffs[k] = (log_posterior(X, y, th_hi) - log_posterior(X, y, th_lo)) / (2 * e)
}
diffs
}
```
The following is a function for a single HMC iteration. ϵ and L are drawn randomly at each
iteration to explore other areas of the posterior (starting with `epsilon0` and
`L0`); The mass matrix `M`, expressed as a vector, is a bit of a magic number in
this setting. It regards the mass of a particle whose position is represented by
$\theta$, and momentum by $\phi$. See the [sampling section of the Stan
manual](https://mc-stan.org/docs/2_18/reference-manual/hamiltonian-monte-carlo.html)
for more detail.
```{r hmc-func-iter}
hmc_iteration <- function(X, y, th, epsilon, L, M) {
# Args
# epsilon: the stepsize
# L: the number of leapfrog steps
# M: a diagonal mass matrix
# initialization
M_inv = 1/M
d = length(th)
phi = rnorm(d, 0, sqrt(M))
th_old = th
log_p_old = log_posterior(X, y, th) - .5*sum(M_inv * phi^2)
phi = phi + .5 * epsilon * gradient_theta(X, y, th)
for (l in 1:L) {
th = th + epsilon*M_inv*phi
phi = phi + ifelse(l == L, .5, 1) * epsilon * gradient_theta(X, y, th)
}
# here we get into standard MCMC stuff, jump or not based on a draw from a
# proposal distribution
phi = -phi
log_p_star = log_posterior(X, y, th) - .5*sum(M_inv * phi^2)
r = exp(log_p_star - log_p_old)
if (is.nan(r)) r = 0
p_jump = min(r, 1)
if (runif(1) < p_jump) {
th_new = th
}
else {
th_new = th_old
}
# returns estimates and acceptance rate
list(th = th_new, p_jump = p_jump)
}
```
Main HMC function.
```{r hmc-func-run}
hmc_run <- function(starts, iter, warmup, epsilon_0, L_0, M, X, y) {
# # Args:
# starts: starting values
# iter: total number of simulations for each chain (note chain is based on the dimension of starts)
# warmup: determines which of the initial iterations will be ignored for inference purposes
# epsilon0: the baseline stepsize
# L0: the baseline number of leapfrog steps
# M: is the mass vector
chains = nrow(starts)
d = ncol(starts)
sims = array(NA,
c(iter, chains, d),
dimnames = list(NULL, NULL, colnames(starts)))
p_jump = matrix(NA, iter, chains)
for (j in 1:chains) {
th = starts[j,]
for (t in 1:iter) {
epsilon = runif(1, 0, 2*epsilon_0)
L = ceiling(2*L_0*runif(1))
temp = hmc_iteration(X, y, th, epsilon, L, M)
p_jump[t,j] = temp$p_jump
sims[t,j,] = temp$th
th = temp$th
}
}
# acceptance rate
acc = round(colMeans(p_jump[(warmup + 1):iter,]), 3)
message('Avg acceptance probability for each chain: ',
paste0(acc[1],', ',acc[2]), '\n')
list(sims = sims, p_jump = p_jump)
}
```
## Estimation
With the primary functions in place, we set the starting values and choose other settings for for the HMC process. The coefficient starting values are based on random draws from a uniform distribution, while $\sigma$ is set to a value of one in each case. As in the other examples we'll have 5000 total draws with warm-up set to 2500. I don't have any thinning option here, but that could be added or simply done as part of the <span class="pack">coda</span> package preparation.
```{r hmc-est-initial1}
# Starting values and mcmc settings
parnames = c(paste0('beta[', 1:4, ']'), 'sigma')
d = length(parnames)
chains = 2
theta_start = t(replicate(chains, c(runif(d-1, -1, 1), 1)))
colnames(theta_start) = parnames
nsim = 1000
wu = 500
```
We can fiddle with these sampling parameters to get a desirable acceptance rate of around .80. The following work well with the data we have.
```{r hmc-est-initial2}
stepsize = .08
nLeap = 10
vars = rep(1, 5)
mass_vector = 1 / vars
```
We are now ready to run the model. On my machine and with the above settings, it took a couple seconds. Once complete we can use the <span class="pack">coda</span> package if desired as we have done before.
```{r hmc-est}
# Run the model
fit_hmc = hmc_run(
starts = theta_start,
iter = nsim,
warmup = wu,
epsilon_0 = stepsize,
L_0 = nLeap,
M = mass_vector,
X = X,
y = y
)
# str(fit_hmc, 1)
```
Using <span class="pack" style = "">coda</span>, we can get some nice summary information. Results not shown.
```{r hmc-est-coda}
library(coda)
theta = as.mcmc.list(list(as.mcmc(fit_hmc$sims[(wu+1):nsim, 1,]),
as.mcmc(fit_hmc$sims[(wu+1):nsim, 2,])))
# summary(theta)
fit_summary = summary(theta)$statistics[,'Mean']
beta_est = fit_summary[1:4]
sigma_est = fit_summary[5]
# log_posterior(X, y, fit_summary)
```
Instead we can use <span class="pack" style = "">rstan's</span> <span class="func" style = "">monitor</span> function on `fit_hmc$sims` to produce typical Stan output.
```{r hmc-est-show, echo=FALSE}
init = rstan::monitor(
fit_hmc$sims,
warmup = wu,
digits_summary = 5,
probs = c(.025, .975),
se = FALSE,
print = F
) %>%
as_tibble(rownames = 'parameter')
init %>%
select(parameter, mean, sd:Rhat, Bulk_ESS, Tail_ESS) %>%
kable_df(caption = glue::glue('log posterior = ', {
round(log_posterior(X, y, fit_summary), 3)
}))
```
## Comparison
Our estimates look pretty good, and inspection of the diagnostics would show
good mixing and convergence as well. At this point we can compare it to the Stan
output. For the following, I use the same inverse gamma prior and tweaked the
control options for a little bit more similarity, but that's not necessary.
```{stan hmc-compare, output.var='stan_hmc'}
data { // Data block
int<lower = 1> N; // Sample size
int<lower = 1> K; // Dimension of model matrix
matrix [N, K] X; // Model Matrix
vector[N] y; // Target variable
}
parameters { // Parameters block; declarations only
vector[K] beta; // Coefficient vector
real<lower = 0> sigma; // Error scale
}
model { // Model block
vector[N] mu;
mu = X * beta; // Creation of linear predictor
// priors
beta ~ normal(0, 10);
sigma ~ inv_gamma(.001, .001); // changed to gamma a la code above
// likelihood
y ~ normal(mu, sigma);
}
```
```{r hmc-stan-est, results='hide', echo=FALSE}
dat = list(N = N,
K = ncol(X),
y = y,
X = X)
library(rstan)
# standard stan
# fit = stan(
# model_code = stan_hmc_code_as_string,
# data = dat,
# iter = nsim,
# warmup = wu,
# thin = 1,
# chains = chains,
# verbose = F
# )
# perhaps closer to above settings?
fit_stan = sampling(
stan_hmc,
data = dat,
iter = nsim,
warmup = wu,
thin = 1,
chains = chains,
verbose = FALSE,
control = list(
adapt_engaged = FALSE,
stepsize = stepsize,
adapt_t0 = nLeap
)
)
```
Here are the results.
```{r hmc-compare-stan, echo=FALSE}
broom.mixed::tidy(fit_stan, conf.int = TRUE) %>%
kable_df(
caption = glue::glue('log posterior = ', round(get_posterior_mean(fit_stan, par='lp__')[,3],3))
)
```
And finally, the standard least squares fit (Residual standard error = sigma).
```{r hmc-compare-lm, echo=FALSE}
pander::pander(summary(fit_lm))
```
## Source
Original demo here:
https://m-clark.github.io/bayesian-basics/appendix.html#hamiltonian-monte-carlo-example