-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultistepexamples.tex
94 lines (82 loc) · 2.59 KB
/
multistepexamples.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{geometry}
\geometry{margin=1in}
\begin{document}
\section*{Examples of Multi-Step Schemes for Solving Ordinary Differential Equations (ODEs)}
\subsection*{1. Adams–Bashforth Second-Order Method (Explicit)}
\[
y_{n+1} = y_n + \frac{h}{2} \left[ 3f(t_n, y_n) - f(t_{n-1}, y_{n-1}) \right]
\]
\begin{itemize}
\item \textbf{Order}: 2
\item \textbf{Type}: Explicit
\item \textbf{Steps}: 2
\end{itemize}
\subsection*{2. Adams–Bashforth Fourth-Order Method (Explicit)}
\[
y_{n+1} = y_n + \frac{h}{24} \left[ 55f(t_n, y_n) - 59f(t_{n-1}, y_{n-1}) + 37f(t_{n-2}, y_{n-2}) - 9f(t_{n-3}, y_{n-3}) \right]
\]
\begin{itemize}
\item \textbf{Order}: 4
\item \textbf{Type}: Explicit
\item \textbf{Steps}: 4
\end{itemize}
\subsection*{3. Adams–Moulton Second-Order Method (Implicit, Trapezoidal Rule)}
\[
y_{n+1} = y_n + \frac{h}{2} \left[ f(t_{n+1}, y_{n+1}) + f(t_n, y_n) \right]
\]
\begin{itemize}
\item \textbf{Order}: 2
\item \textbf{Type}: Implicit
\item \textbf{Steps}: 1
\end{itemize}
\subsection*{4. Adams–Moulton Third-Order Method (Implicit)}
\[
y_{n+1} = y_n + \frac{h}{12} \left[ 5f(t_{n+1}, y_{n+1}) + 8f(t_n, y_n) - f(t_{n-1}, y_{n-1}) \right]
\]
\begin{itemize}
\item \textbf{Order}: 3
\item \textbf{Type}: Implicit
\item \textbf{Steps}: 2
\end{itemize}
\subsection*{5. Backward Differentiation Formula (BDF2) (Implicit)}
\[
y_{n+1} = \frac{4}{3}y_n - \frac{1}{3}y_{n-1} + \frac{2h}{3}f(t_{n+1}, y_{n+1})
\]
\begin{itemize}
\item \textbf{Order}: 2
\item \textbf{Type}: Implicit
\item \textbf{Steps}: 2
\end{itemize}
\subsection*{6. Nyström Explicit Midpoint Method (Explicit)}
\[
y_{n+1} = y_{n-1} + 2h \cdot f(t_n, y_n)
\]
\begin{itemize}
\item \textbf{Order}: 2
\item \textbf{Type}: Explicit
\item \textbf{Steps}: 2
\end{itemize}
\subsection*{7. Milne's Fourth-Order Predictor (Explicit)}
\[
y_{n+1} = y_{n-3} + \frac{4h}{3} \left[ 2f(t_n, y_n) - f(t_{n-1}, y_{n-1}) + 2f(t_{n-2}, y_{n-2}) \right]
\]
\begin{itemize}
\item \textbf{Order}: 4
\item \textbf{Type}: Explicit
\item \textbf{Steps}: 4
\end{itemize}
\subsection*{8. Simpson's Fourth-Order Corrector (Implicit)}
\[
y_{n+1} = y_{n-1} + \frac{h}{3} \left[ f(t_{n+1}, y_{n+1}) + 4f(t_n, y_n) + f(t_{n-1}, y_{n-1}) \right]
\]
\begin{itemize}
\item \textbf{Order}: 4
\item \textbf{Type}: Implicit
\item \textbf{Steps}: 2
\end{itemize}
\section*{Summary}
These methods span explicit and implicit families (Adams–Bashforth, Adams–Moulton, BDF, and others) and vary in order and step count.
\end{document}