-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.R
72 lines (55 loc) · 2.43 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
library(shiny)
library(shinydashboard)
library(ggfortify)
library(plotly)
header <- dashboardHeader(title = "Uploading Files")
sidebar <- dashboardSidebar(
sidebarMenu(id = "tabs",
menuItem("Documentation and Manuals",
# href='data/Documentation.html',
href = 'https://github.com/LuchaoQi/Shiny_clustering/blob/master/README.md'
)
# menuItem("Sample expression level matrix", href='data/expression.txt')
# menuItem("Download", href='https://raw.githubusercontent.com/LuchaoQi/Shiny_clustering/master/expression.txt')
),
downloadButton('expression.txt', 'Download expression level data'),
# tags$a(href='data/plasmid1.txt', target='blank', 'Documents'),
tags$hr(),
fileInput("file1", "Choose txt File: expression level matrix",
multiple = TRUE,
accept = c("text/comma-separated-values,text/plain",
"text/txt",
".txt")),
checkboxInput("header", "Header", TRUE),
radioButtons("sep", "Separator",
choices = c(Comma = ",",
Semicolon = ";",
Tab = "\t"),
selected = "\t"),
radioButtons("quote", "Quote",
choices = c(None = "",
"Double Quote" = '"',
"Single Quote" = "'"),
selected = '"'),
radioButtons("disp", "Display",
choices = c(Head = "head",
All = "all"),
selected = "head"),
tags$hr(), #horizontal line
# selectInput('algo','Algorithm',choices = list('kmeans' = 'km','partitioning around medoids' = 'pam',
# 'hierachical clustering' = 'hc','cmeans' = 'cm'),selected = 'cm'),
# textInput("algo","Algorithm:Options are 'km' (kmeans), 'pam' (partitioning around medoids),
# 'hc' (hierachical clustering), 'cm' (cmeans).",value = "cm"),
numericInput('k',"Number of clusters",value = 3)
# numericInput('iter.max','Iteration',value = 20)
)
body <- dashboardBody(tableOutput("contents"),
plotOutput("heatmap"),
plotlyOutput("threed_clustering"),
plotOutput('cluster_compare')
)
# body = dashboardBody(
#
# uiOutput("moduleUI")
# )
ui <- dashboardPage(header, sidebar, body)