-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBehaviors.py
92 lines (80 loc) · 3.57 KB
/
Behaviors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#General static behavior class for simple automata,
#which can react to their environment according to
#if/then conditions.
from __future__ import print_function
from Motions import *
class Behavior():
def __init__(self, blocks, **kwargs):
self.blocks = blocks
for (variable, assignment) in kwargs.items():
variable = assignment
def __call__(self, animal):
done = False
self.marker = 0
while (not done):
self.current_block = self.blocks[self.marker]
if (self.current_block == 'END'):
done = True
break
else:
self.condition = self.current_block[0]
self.actions = self.current_block[1]
self.if_to = self.current_block[2]
self.else_to = self.current_block[3]
if (self.condition(animal)):
for action in self.actions:
if animal.alive:
action_receipt = action(animal)
if (action_receipt == "!"):
done = True
break
else:
done = True
break
if (not done):
self.marker = self.if_to
else:
self.marker = self.else_to
self.animal=None
#--------------------------------------------------------------------------------------------------------------------
#A simple behavior, the default of Swampy's TurmiteWorld.
langton_blocks = [
[lambda animal: animal.get_cell().is_marked(), [lambda animal: lt(animal)], 2, 1],
[lambda animal: True, [lambda animal: rt(animal)], 2, None],
[lambda animal: True, [lambda animal: animal.get_cell().toggle()], 3, None],
[lambda animal: True, [lambda animal: fd(animal)], 4, None],
'END'
]
langton_ant = Behavior(langton_blocks, cell=None)
#Langton's Ant modified for GrayCells.
gray_langton_blocks = [
[lambda animal: animal.get_cell().shade > 127, [lambda animal: lt(animal)], 2, 1],
[lambda animal: True, [lambda animal: rt(animal)], 2, None],
[lambda animal: True, [lambda animal: animal.get_cell().change_shade(255-animal.get_cell().shade)], 3, None],
[lambda animal: True, [lambda animal: fd(animal)], 4, None],
'END'
]
gray_langton_ant = Behavior(gray_langton_blocks, cell=None)
# A simple behavior on GrayCells that takes advantage of GrayCell's extension of BoolCell.
eat_dust_blocks = [
[lambda animal: animal.get_cell().shade > 0, [lambda animal: animal.eat_dust()], 1, 3],
[lambda animal: animal.get_cell().shade > 127, [lambda animal: rt(animal)], 3, 2],
[lambda animal: True, [lambda animal: lt(animal)], 3, None],
[lambda animal: True, [lambda animal: animal.use_energy(), lambda animal: fd(animal)], 4, None],
'END'
]
eat_dust = Behavior(eat_dust_blocks, cell=None)
# A greedy behavior that chooses the dustiest of the immediately accessible blocks.
greedy_eat_dust_blocks = [
[lambda animal: animal.get_cell().shade > 0, [lambda animal: animal.eat_dust()], 1, 1],
[lambda animal: True, [lambda animal: animal.choose_action()[0](animal)], 2, None],
[lambda animal: animal.choose_action()[1] == True, [lambda animal: animal.use_energy(), lambda animal: fd(animal)], 3, 3],
'END'
]
greedy_eat_dust = Behavior(greedy_eat_dust_blocks, cell=None)
#redistribute_dust_blocks = [
# [lambda animal: animal.get_cell().shade in range(1, 255), [], 1, 3],
# [lambda animal: animal.get_cell().shade < 127, [lambda animal: ], ]
#--------------------------------------------------------------------------------------------------------------------------------
#A running dictionary of all implemented behaviors, for use in Maingui.
behaviors = {'langton_ant':langton_ant, 'gray_langton_ant':gray_langton_ant, 'eat_dust':eat_dust, 'greedy_eat_dust': greedy_eat_dust}