-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCTDL036.cpp
107 lines (96 loc) · 2.49 KB
/
SCTDL036.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// A C++ Program to check whether a graph is tree or not
#include<iostream>
#include <list>
#include <limits.h>
using namespace std;
// Class for an undirected graph
class Graph
{
int V; // No. of vertices
int E; // No. of edges
list<int> *adj; // Pointer to an array for adjacency lists
void dfsTraversal(int v, bool visited[], int parent);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // to add an edge to graph
bool isConnected(); // returns true if graph is connected
bool isTree(); // returns true of the graph is tree
};
Graph::Graph(int V)
{
E = 0;
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
E++; // increase the number of edges
adj[v].push_back(w); // Add w to v’s list.
adj[w].push_back(v); // Add v to w’s list.
}
// A recursive dfs function that uses visited[] and parent to
// traverse the graph and mark visited[v] to true for visited nodes
void Graph::dfsTraversal(int v, bool visited[], int parent)
{
// Mark the current node as visited
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
// If an adjacent is not visited, then recur for
// that adjacent
if (!visited[*i])
{
dfsTraversal(*i, visited, v);
}
}
}
// Returns true if the graph is connected, else false.
bool Graph::isConnected()
{
// Mark all the vertices as not visited and not part of
// recursion stack
bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
// Performing DFS traversal of the graph and marking
// reachable vertices from 0 to true
dfsTraversal(0, visited, -1);
// If we find a vertex which is not reachable from 0
// (not marked by dfsTraversal(), then we return false
// since graph is not connected
for (int u = 0; u < V; u++)
if (!visited[u])
return false;
// since all nodes were reachable so we returned true and
// and hence graph is connected
return true;
}
bool Graph::isTree()
{
// as we proved earlier if a graph is connected and has
// V - 1 edges then it is a tree i.e. E = V - 1
return isConnected() and E == V - 1;
}
int main()
{
int t;
cin >> t;
while (t--)
{
int n;
cin >> n;
Graph g(n);
int u, v;
for (int i = 0; i < n - 1; i++)
{
cin >> u >> v;
g.addEdge(u-1,v-1);
}
if (g.isTree()) {
cout << "YES" << endl;
} else cout << "NO" << endl;
}
return 0;
}