-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathproblems.py
451 lines (386 loc) · 14.7 KB
/
problems.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# a hack to ensure scripts search cwd
import sys
sys.path.append('.')
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn.functional as F
import numpy as np
import torch.utils.data as td
import argparse
from convex_adversarial import epsilon_from_model, DualNetBounds
from convex_adversarial import Dense, DenseSequential
import math
import os
def model_wide(in_ch, out_width, k):
model = nn.Sequential(
nn.Conv2d(in_ch, 4*k, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(4*k, 8*k, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(8*k*out_width*out_width,k*128),
nn.ReLU(),
nn.Linear(k*128, 10)
)
return model
def model_deep(in_ch, out_width, k, n1=8, n2=16, linear_size=100):
def group(inf, outf, N):
if N == 1:
conv = [nn.Conv2d(inf, outf, 4, stride=2, padding=1),
nn.ReLU()]
else:
conv = [nn.Conv2d(inf, outf, 3, stride=1, padding=1),
nn.ReLU()]
for _ in range(1,N-1):
conv.append(nn.Conv2d(outf, outf, 3, stride=1, padding=1))
conv.append(nn.ReLU())
conv.append(nn.Conv2d(outf, outf, 4, stride=2, padding=1))
conv.append(nn.ReLU())
return conv
conv1 = group(in_ch, n1, k)
conv2 = group(n1, n2, k)
model = nn.Sequential(
*conv1,
*conv2,
Flatten(),
nn.Linear(n2*out_width*out_width,linear_size),
nn.ReLU(),
nn.Linear(100, 10)
)
return model
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
def mnist_loaders(batch_size, shuffle_test=False):
mnist_train = datasets.MNIST("./data", train=True, download=True, transform=transforms.ToTensor())
mnist_test = datasets.MNIST("./data", train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=shuffle_test, pin_memory=True)
return train_loader, test_loader
def fashion_mnist_loaders(batch_size):
mnist_train = datasets.MNIST("./fashion_mnist", train=True,
download=True, transform=transforms.ToTensor())
mnist_test = datasets.MNIST("./fashion_mnist", train=False,
download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, pin_memory=True)
return train_loader, test_loader
def mnist_500():
model = nn.Sequential(
Flatten(),
nn.Linear(28*28,500),
nn.ReLU(),
nn.Linear(500, 10)
)
return model
def mnist_model():
model = nn.Sequential(
nn.Conv2d(1, 16, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(32*7*7,100),
nn.ReLU(),
nn.Linear(100, 10)
)
return model
def mnist_model_wide(k):
return model_wide(1, 7, k)
def mnist_model_deep(k):
return model_deep(1, 7, k)
def mnist_model_large():
model = nn.Sequential(
nn.Conv2d(1, 32, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(64*7*7,512),
nn.ReLU(),
nn.Linear(512,512),
nn.ReLU(),
nn.Linear(512,10)
)
return model
def replace_10_with_0(y):
return y % 10
def svhn_loaders(batch_size):
train = datasets.SVHN("./data", split='train', download=True, transform=transforms.ToTensor(), target_transform=replace_10_with_0)
test = datasets.SVHN("./data", split='test', download=True, transform=transforms.ToTensor(), target_transform=replace_10_with_0)
train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=False, pin_memory=True)
return train_loader, test_loader
def svhn_model():
model = nn.Sequential(
nn.Conv2d(3, 16, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(32*8*8,100),
nn.ReLU(),
nn.Linear(100, 10)
).cuda()
return model
def har_loaders(batch_size):
X_te = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/test/X_test.txt')).float()
X_tr = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/train/X_train.txt')).float()
y_te = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/test/y_test.txt')-1).long()
y_tr = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/train/y_train.txt')-1).long()
har_train = td.TensorDataset(X_tr, y_tr)
har_test = td.TensorDataset(X_te, y_te)
train_loader = torch.utils.data.DataLoader(har_train, batch_size=batch_size, shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(har_test, batch_size=batch_size, shuffle=False, pin_memory=True)
return train_loader, test_loader
def har_500_model():
model = nn.Sequential(
nn.Linear(561, 500),
nn.ReLU(),
nn.Linear(500, 6)
)
return model
def har_500_250_model():
model = nn.Sequential(
nn.Linear(561, 500),
nn.ReLU(),
nn.Linear(500, 250),
nn.ReLU(),
nn.Linear(250, 6)
)
return model
def har_500_250_100_model():
model = nn.Sequential(
nn.Linear(561, 500),
nn.ReLU(),
nn.Linear(500, 250),
nn.ReLU(),
nn.Linear(250, 100),
nn.ReLU(),
nn.Linear(100, 6)
)
return model
def har_resnet_model():
model = DenseSequential(
Dense(nn.Linear(561, 561)),
nn.ReLU(),
Dense(nn.Sequential(), None, nn.Linear(561,561)),
nn.ReLU(),
nn.Linear(561,6)
)
return model
def cifar_loaders(batch_size, shuffle_test=False):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.225, 0.225, 0.225])
train = datasets.CIFAR10('./data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]))
test = datasets.CIFAR10('./data', train=False,
transform=transforms.Compose([transforms.ToTensor(), normalize]))
train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size,
shuffle=True, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size,
shuffle=shuffle_test, pin_memory=True)
return train_loader, test_loader
def cifar_model():
model = nn.Sequential(
nn.Conv2d(3, 16, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(32*8*8,100),
nn.ReLU(),
nn.Linear(100, 10)
)
for m in model.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_()
return model
def cifar_model_large():
model = nn.Sequential(
nn.Conv2d(3, 32, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(64*8*8,512),
nn.ReLU(),
nn.Linear(512,512),
nn.ReLU(),
nn.Linear(512,10)
)
return model
for m in model.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_()
return model
def cifar_model_resnet(N = 5, factor=10):
def block(in_filters, out_filters, k, downsample):
if not downsample:
k_first = 3
skip_stride = 1
k_skip = 1
else:
k_first = 4
skip_stride = 2
k_skip = 2
return [
Dense(nn.Conv2d(in_filters, out_filters, k_first, stride=skip_stride, padding=1)),
nn.ReLU(),
Dense(nn.Conv2d(in_filters, out_filters, k_skip, stride=skip_stride, padding=0),
None,
nn.Conv2d(out_filters, out_filters, k, stride=1, padding=1)),
nn.ReLU()
]
conv1 = [nn.Conv2d(3,16,3,stride=1,padding=1), nn.ReLU()]
conv2 = block(16,16*factor,3, False)
for _ in range(N):
conv2.extend(block(16*factor,16*factor,3, False))
conv3 = block(16*factor,32*factor,3, True)
for _ in range(N-1):
conv3.extend(block(32*factor,32*factor,3, False))
conv4 = block(32*factor,64*factor,3, True)
for _ in range(N-1):
conv4.extend(block(64*factor,64*factor,3, False))
layers = (
conv1 +
conv2 +
conv3 +
conv4 +
[Flatten(),
nn.Linear(64*factor*8*8,1000),
nn.ReLU(),
nn.Linear(1000, 10)]
)
model = DenseSequential(
*layers
)
for m in model.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
return model
def argparser(batch_size=50, epochs=20, seed=0, verbose=1, lr=1e-3,
epsilon=0.1, starting_epsilon=None,
proj=None,
norm_train='l1', norm_test='l1',
opt='sgd', momentum=0.9, weight_decay=5e-4):
parser = argparse.ArgumentParser()
# optimizer settings
parser.add_argument('--opt', default=opt)
parser.add_argument('--momentum', type=float, default=momentum)
parser.add_argument('--weight_decay', type=float, default=weight_decay)
parser.add_argument('--batch_size', type=int, default=batch_size)
parser.add_argument('--test_batch_size', type=int, default=batch_size)
parser.add_argument('--epochs', type=int, default=epochs)
parser.add_argument("--lr", type=float, default=lr)
# epsilon settings
parser.add_argument("--epsilon", type=float, default=epsilon)
parser.add_argument("--starting_epsilon", type=float, default=starting_epsilon)
parser.add_argument('--schedule_length', type=int, default=10)
# projection settings
parser.add_argument('--proj', type=int, default=proj)
parser.add_argument('--norm_train', default=norm_train)
parser.add_argument('--norm_test', default=norm_test)
# model arguments
parser.add_argument('--model', default=None)
parser.add_argument('--model_factor', type=int, default=8)
parser.add_argument('--cascade', type=int, default=1)
parser.add_argument('--method', default=None)
parser.add_argument('--resnet_N', type=int, default=1)
parser.add_argument('--resnet_factor', type=int, default=1)
# other arguments
parser.add_argument('--prefix')
parser.add_argument('--load')
parser.add_argument('--real_time', action='store_true')
parser.add_argument('--seed', type=int, default=seed)
parser.add_argument('--verbose', type=int, default=verbose)
parser.add_argument('--cuda_ids', default=None)
args = parser.parse_args()
if args.starting_epsilon is None:
args.starting_epsilon = args.epsilon
if args.prefix:
if args.model is not None:
args.prefix += '_'+args.model
if args.method is not None:
args.prefix += '_'+args.method
banned = ['verbose', 'prefix',
'resume', 'baseline', 'eval',
'method', 'model', 'cuda_ids', 'load', 'real_time',
'test_batch_size']
if args.method == 'baseline':
banned += ['epsilon', 'starting_epsilon', 'schedule_length',
'l1_test', 'l1_train', 'm', 'l1_proj']
# Ignore these parameters for filename since we never change them
banned += ['momentum', 'weight_decay']
if args.cascade == 1:
banned += ['cascade']
# if not using a model that uses model_factor,
# ignore model_factor
if args.model not in ['wide', 'deep']:
banned += ['model_factor']
# if args.model != 'resnet':
banned += ['resnet_N', 'resnet_factor']
for arg in sorted(vars(args)):
if arg not in banned and getattr(args,arg) is not None:
args.prefix += '_' + arg + '_' +str(getattr(args, arg))
if args.schedule_length > args.epochs:
raise ValueError('Schedule length for epsilon ({}) is greater than '
'number of epochs ({})'.format(args.schedule_length, args.epochs))
else:
args.prefix = 'temporary'
if args.cuda_ids is not None:
print('Setting CUDA_VISIBLE_DEVICES to {}'.format(args.cuda_ids))
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_ids
return args
def args2kwargs(args, X=None):
if args.proj is not None:
kwargs = {
'proj' : args.proj,
}
else:
kwargs = {
}
kwargs['parallel'] = (args.cuda_ids is not None)
return kwargs
def argparser_evaluate(epsilon=0.1, norm='l1'):
parser = argparse.ArgumentParser()
parser.add_argument("--epsilon", type=float, default=epsilon)
parser.add_argument('--proj', type=int, default=None)
parser.add_argument('--norm', default=norm)
parser.add_argument('--model', default=None)
parser.add_argument('--dataset', default='mnist')
parser.add_argument('--load')
parser.add_argument('--output')
parser.add_argument('--real_time', action='store_true')
# parser.add_argument('--seed', type=int, default=seed)
parser.add_argument('--verbose', type=int, default=True)
parser.add_argument('--cuda_ids', default=None)
args = parser.parse_args()
if args.cuda_ids is not None:
print('Setting CUDA_VISIBLE_DEVICES to {}'.format(args.cuda_ids))
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_ids
return args