-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathmnist.py
147 lines (125 loc) · 5.74 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# import waitGPU
# import setGPU
# waitGPU.wait(utilization=50, available_memory=10000, interval=60)
# waitGPU.wait(gpu_ids=[1,3], utilization=20, available_memory=10000, interval=60)
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
# cudnn.benchmark = True
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import setproctitle
import problems as pblm
from trainer import *
import math
import numpy as np
def select_model(m):
if m == 'large':
model = pblm.mnist_model_large().cuda()
_, test_loader = pblm.mnist_loaders(8)
elif m == 'wide':
print("Using wide model with model_factor={}".format(args.model_factor))
_, test_loader = pblm.mnist_loaders(64//args.model_factor)
model = pblm.mnist_model_wide(args.model_factor).cuda()
elif m == 'deep':
print("Using deep model with model_factor={}".format(args.model_factor))
_, test_loader = pblm.mnist_loaders(64//(2**args.model_factor))
model = pblm.mnist_model_deep(args.model_factor).cuda()
elif m == '500':
model = pblm.mnist_500().cuda()
else:
model = pblm.mnist_model().cuda()
return model
if __name__ == "__main__":
args = pblm.argparser(opt='adam', verbose=200, starting_epsilon=0.01)
print("saving file to {}".format(args.prefix))
setproctitle.setproctitle(args.prefix)
train_log = open(args.prefix + "_train.log", "w")
test_log = open(args.prefix + "_test.log", "w")
train_loader, _ = pblm.mnist_loaders(args.batch_size)
_, test_loader = pblm.mnist_loaders(args.test_batch_size)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
for X,y in train_loader:
break
kwargs = pblm.args2kwargs(args, X=Variable(X.cuda()))
best_err = 1
sampler_indices = []
model = [select_model(args.model)]
for _ in range(0,args.cascade):
if _ > 0:
# reduce dataset to just uncertified examples
print("Reducing dataset...")
train_loader = sampler_robust_cascade(train_loader, model, args.epsilon,
args.test_batch_size,
norm_type=args.norm_test, bounded_input=True, **kwargs)
if train_loader is None:
print('No more examples, terminating')
break
sampler_indices.append(train_loader.sampler.indices)
print("Adding a new model")
model.append(select_model(args.model))
if args.opt == 'adam':
opt = optim.Adam(model[-1].parameters(), lr=args.lr)
elif args.opt == 'sgd':
opt = optim.SGD(model[-1].parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
else:
raise ValueError("Unknown optimizer")
lr_scheduler = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.5)
eps_schedule = np.linspace(args.starting_epsilon,
args.epsilon,
args.schedule_length)
for t in range(args.epochs):
lr_scheduler.step(epoch=max(t-len(eps_schedule), 0))
if t < len(eps_schedule) and args.starting_epsilon is not None:
epsilon = float(eps_schedule[t])
else:
epsilon = args.epsilon
# standard training
if args.method == 'baseline':
train_baseline(train_loader, model[0], opt, t, train_log,
args.verbose)
err = evaluate_baseline(test_loader, model[0], t, test_log,
args.verbose)
# madry training
elif args.method=='madry':
train_madry(train_loader, model[0], args.epsilon,
opt, t, train_log, args.verbose)
err = evaluate_madry(test_loader, model[0], args.epsilon,
t, test_log, args.verbose)
# robust cascade training
elif args.cascade > 1:
train_robust(train_loader, model[-1], opt, epsilon, t,
train_log, args.verbose, args.real_time,
norm_type=args.norm_train, bounded_input=True,
**kwargs)
err = evaluate_robust_cascade(test_loader, model,
args.epsilon, t, test_log, args.verbose,
norm_type=args.norm_test, bounded_input=True, **kwargs)
# robust training
else:
train_robust(train_loader, model[0], opt, epsilon, t,
train_log, args.verbose, args.real_time,
norm_type=args.norm_train, bounded_input=True, **kwargs)
err = evaluate_robust(test_loader, model[0], args.epsilon,
t, test_log, args.verbose, args.real_time,
norm_type=args.norm_test, bounded_input=True, **kwargs)
if err < best_err:
best_err = err
torch.save({
'state_dict' : [m.state_dict() for m in model],
'err' : best_err,
'epoch' : t,
'sampler_indices' : sampler_indices
}, args.prefix + "_best.pth")
torch.save({
'state_dict': [m.state_dict() for m in model],
'err' : err,
'epoch' : t,
'sampler_indices' : sampler_indices
}, args.prefix + "_checkpoint.pth")