-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ovnet.py
107 lines (90 loc) · 3.18 KB
/
train_ovnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
This code is based on the Detectron2 repository.
For usage, see the License of Detectron2 under:
https://github.com/facebookresearch/detectron2
Command for usage
python train_ovnet.py --resume --num-gpus 8 --config-file configs/coco_lsm.yaml
"""
import logging
from collections import OrderedDict
import torch
from prettytable import PrettyTable
from ast import literal_eval
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import verify_results
from detectron2.config import get_cfg
from ovr.engine.trainer import OVRTrainer as Trainer
from ovr.data.register_datasets import get_register_dataset
from ovr.config.config_utils import edit_output_dir_exp_specific
from ovr.config.config import add_ovr_config
def count_parameters(model):
table = PrettyTable(["Modules", "Parameters"])
total_params = 0
for name, parameter in model.named_parameters():
if not parameter.requires_grad:
continue
param = parameter.numel()
table.add_row([name, param])
total_params += param
print(table)
print(f"Total Trainable Params: {total_params}")
return total_params
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_ovr_config(cfg)
cfg.merge_from_file(args.config_file)
literal_ops = []
for x in args.opts:
try:
literal_ops.append(literal_eval(x))
except (SyntaxError, ValueError):
literal_ops.append(x)
cfg.merge_from_list(literal_ops)
cfg = edit_output_dir_exp_specific(cfg)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
for test_set in cfg.DATASETS.TEST:
register_dataset = get_register_dataset(test_set)
register_dataset(test_set)
if "coco" not in cfg.DATASETS.TRAIN[0] and "coco" in test_set:
register_dataset = get_register_dataset(cfg.DATASETS.TRAIN[0])
register_dataset(cfg.DATASETS.TRAIN[0])
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if comm.is_main_process():
verify_results(cfg, res)
return res
for train_set in cfg.DATASETS.TRAIN:
register_dataset = get_register_dataset(train_set)
register_dataset(train_set)
if cfg.TEST.EVAL_PERIOD > 0:
for test_set in cfg.DATASETS.TEST:
register_dataset = get_register_dataset(test_set)
register_dataset(test_set)
trainer = Trainer(cfg)
# count_parameters(trainer.model)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)