-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathconfig.py
135 lines (125 loc) · 6.99 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import math
import torch
import folder_paths
class Config:
def __init__(self) -> None:
self.ms_supervision = True
self.out_ref = self.ms_supervision and True
self.dec_ipt = True
self.dec_ipt_split = True
self.locate_head = False
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
self.mul_scl_ipt = ['', 'add', 'cat'][2]
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
self.progressive_ref = self.refine and True
self.ender = self.progressive_ref and False
self.scale = self.progressive_ref and 2
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
self.auxiliary_classification = False
self.refine_iteration = 1
self.freeze_bb = False
self.precisionHigh = True
self.compile = True
self.load_all = True
self.verbose_eval = True
self.size = 1024
self.batch_size = 2
self.IoU_finetune_last_epochs = [0, -20][1] # choose 0 to skip
if self.dec_blk == 'HierarAttDecBlk':
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
self.model = [
'BiRefNet',
][0]
# Components
self.lat_blk = ['BasicLatBlk'][0]
self.dec_channels_inter = ['fixed', 'adap'][0]
# Backbone
self.bb = [
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
'pvt_v2_b2', 'pvt_v2_b5', # 3-bs10, 4-bs5
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs6
'swin_v1_t', 'swin_v1_s', # 7, 8
'pvt_v2_b0', 'pvt_v2_b1', # 9, 10
][6]
self.lateral_channels_in_collection = {
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
}[self.bb]
if self.mul_scl_ipt == 'cat':
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
# self.sys_home_dir = '/root/autodl-tmp'
# self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
# self.weights = {
# 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
# 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
# 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
# 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
# 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
# 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
# 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
# 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
# }
weight_paths_name = "birefnet"
self.weights = {
'pvt_v2_b2': folder_paths.get_full_path(weight_paths_name, 'pvt_v2_b2.pth'),
'pvt_v2_b5': folder_paths.get_full_path(weight_paths_name, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
'swin_v1_b': folder_paths.get_full_path(weight_paths_name, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
'swin_v1_l': folder_paths.get_full_path(weight_paths_name, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
'swin_v1_t': folder_paths.get_full_path(weight_paths_name, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
'swin_v1_s': folder_paths.get_full_path(weight_paths_name, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
'pvt_v2_b0': folder_paths.get_full_path(weight_paths_name, ['pvt_v2_b0.pth'][0]),
'pvt_v2_b1': folder_paths.get_full_path(weight_paths_name, ['pvt_v2_b1.pth'][0]),
}
# Training
self.num_workers = 5 # will be decrease to min(it, batch_size) at the initialization of the data_loader
self.optimizer = ['Adam', 'AdamW'][0]
self.lr = 1e-5 * math.sqrt(self.batch_size / 5) # adapt the lr linearly
self.lr_decay_epochs = [1e4] # Set to negative N to decay the lr in the last N-th epoch.
self.lr_decay_rate = 0.5
self.only_S_MAE = False
self.SDPA_enabled = False # Bug. Slower and errors occur in multi-GPUs
# Data
# self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
self.task = ['DIS5K', 'COD', 'HRSOD'][0]
self.training_set = {
'DIS5K': 'DIS-TR',
'COD': 'TR-COD10K+TR-CAMO',
'HRSOD': ['TR-DUTS', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][1]
}[self.task]
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
# Loss
self.lambdas_pix_last = {
# not 0 means opening this loss
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
'bce': 30 * 1, # high performance
'iou': 0.5 * 1, # 0 / 255
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
'mse': 150 * 0, # can smooth the saliency map
'triplet': 3 * 0,
'reg': 100 * 0,
'ssim': 10 * 1, # help contours,
'cnt': 5 * 0, # help contours
}
self.lambdas_cls = {
'ce': 5.0
}
# Adv
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
# others
self.device = [0, 'cpu'][0 if torch.cuda.is_available() else 1] # .to(0) == .to('cuda:0')
self.batch_size_valid = 1
self.rand_seed = 7
# run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
# with open(run_sh_file[0], 'r') as f:
# lines = f.readlines()
# self.save_last = int([l.strip() for l in lines if 'val_last=' in l][0].split('=')[-1])
# self.save_step = int([l.strip() for l in lines if 'step=' in l][0].split('=')[-1])
# self.val_step = [0, self.save_step][0]