-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathPCGModel.py
135 lines (110 loc) · 4.11 KB
/
PCGModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""Build Point Cloud Generator Pytorch model"""
import torch
from torch import nn
from torch.nn import functional as F
def conv2d_block(in_c, out_c):
return nn.Sequential(
nn.Conv2d(in_c, out_c, 3, stride=2, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(),
)
# def deconv2d_block(in_c, out_c):
# return nn.Sequential(
# nn.ConvTranspose2d(in_c, out_c, 3, stride=2,
# padding=1, output_padding=1, bias=True),
# nn.BatchNorm2d(out_c),
# nn.ReLU(),
# )
def deconv2d_block(in_c, out_c):
return nn.Sequential(
nn.Conv2d(in_c, out_c, 3, stride=1, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(),
)
def linear_block(in_c, out_c):
return nn.Sequential(
nn.Linear(in_c, out_c),
nn.BatchNorm1d(out_c),
nn.ReLU(),
)
def pixel_bias(outViewN, outW, outH, renderDepth):
X, Y = torch.meshgrid([torch.arange(outH), torch.arange(outW)])
X, Y = X.float(), Y.float() # [H,W]
initTile = torch.cat([
X.repeat([outViewN, 1, 1]), # [V,H,W]
Y.repeat([outViewN, 1, 1]), # [V,H,W]
torch.ones([outViewN, outH, outW]).float() * renderDepth,
torch.zeros([outViewN, outH, outW]).float(),
], dim=0) # [4V,H,W]
return initTile.unsqueeze_(dim=0) # [1,4V,H,W]
class Encoder(nn.Module):
"""Encoder of Structure Generator"""
def __init__(self):
super(Encoder, self).__init__()
self.conv1 = conv2d_block(3, 96)
self.conv2 = conv2d_block(96, 128)
self.conv3 = conv2d_block(128, 192)
self.conv4 = conv2d_block(192, 256)
self.fc1 = linear_block(4096, 2048) # After flatten
self.fc2 = linear_block(2048, 1024)
self.fc3 = nn.Linear(1024, 512)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.fc1(x.view(-1, 4096))
x = self.fc2(x)
x = self.fc3(x)
return x
class Decoder(nn.Module):
"""Build Decoder"""
def __init__(self, outViewN, outW, outH, renderDepth):
super(Decoder, self).__init__()
self.outViewN = outViewN
self.relu = nn.ReLU()
self.fc1 = linear_block(512, 1024)
self.fc2 = linear_block(1024, 2048)
self.fc3 = linear_block(2048, 4096)
self.deconv1 = deconv2d_block(256, 192)
self.deconv2 = deconv2d_block(192, 128)
self.deconv3 = deconv2d_block(128, 96)
self.deconv4 = deconv2d_block(96, 64)
self.deconv5 = deconv2d_block(64, 48)
self.pixel_conv = nn.Conv2d(48, outViewN*4, 1, stride=1, bias=False)
self.pixel_bias = pixel_bias(outViewN, outW, outH, renderDepth)
def forward(self, x):
x = self.relu(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = x.view([-1, 256, 4, 4])
x = self.deconv1(F.interpolate(x, scale_factor=2))
x = self.deconv2(F.interpolate(x, scale_factor=2))
x = self.deconv3(F.interpolate(x, scale_factor=2))
x = self.deconv4(F.interpolate(x, scale_factor=2))
x = self.deconv5(F.interpolate(x, scale_factor=2))
x = self.pixel_conv(x) + self.pixel_bias.to(x.device)
XYZ, maskLogit = torch.split(
x, [self.outViewN * 3, self.outViewN], dim=1)
return XYZ, maskLogit
class Structure_Generator(nn.Module):
"""Structure generator components in PCG"""
def __init__(self, encoder=None, decoder=None,
outViewN=8, outW=128, outH=128, renderDepth=1.0):
super(Structure_Generator, self).__init__()
if encoder: self.encoder = encoder
else: self.encoder = Encoder()
if decoder: self.decoder = decoder
else: self.decoder = Decoder(outViewN, outW, outH, renderDepth)
def forward(self, x):
latent = self.encoder(x)
XYZ, maskLogit = self.decoder(latent)
return XYZ, maskLogit
# TESTING
if __name__ == '__main__':
import options
cfg = options.get_arguments()
encoder = Encoder()
decoder = Decoder(cfg.outViewN, cfg.outW, cfg.outH, cfg.renderDepth)
model = Structure_Generator()