-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_mnist_targets.py
64 lines (52 loc) · 2.56 KB
/
generate_mnist_targets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
【Data Generation Process】
Select the corresponding serial number according to the classification label for the following comparison.
`python generate_mnist_targets.py --log True`
"""
import shutil
import time
import numpy as np
import pandas as pd
import torchvision
from utils.utils_file import generate_mnist_or_cifar10_targets_filename
from utils.utils_parser import DefaultArgumentParser, init_config
def generate_mnist_targets():
_dataset = torchvision.datasets.MNIST(root=opt.data_dir,
train=True,
transform=torchvision.transforms.ToTensor(),
download=True)
_targets = _dataset.targets.cpu().numpy()
_writer = pd.ExcelWriter(generate_mnist_or_cifar10_targets_filename(opt, train=True))
for target in range(10):
_indices = np.argwhere(_targets == target)
_pd_data = pd.DataFrame(_indices)
_pd_data.to_excel(_writer, sheet_name=f'target{target}', index=False, header=False)
_writer.close()
_dataset = torchvision.datasets.MNIST(root=opt.data_dir,
train=False,
transform=torchvision.transforms.ToTensor(),
download=True)
_targets = _dataset.targets.cpu().numpy()
_writer = pd.ExcelWriter(generate_mnist_or_cifar10_targets_filename(opt, train=False))
for target in range(10):
_indices = np.argwhere(_targets == target)
_pd_data = pd.DataFrame(_indices)
_pd_data.to_excel(_writer, sheet_name=f'target{target}', index=False, header=False)
_writer.close()
if __name__ == '__main__':
start_time = time.time()
parser = DefaultArgumentParser().get_parser()
opt = parser.parse_args()
opt.exp_name = 'generate_mnist_targets'
opt.data = 'mnist'
init_config(opt)
generate_mnist_targets()
if opt.log:
opt.logger.info('Copying targets indices.xlsx from `timestamp` to `data`')
shutil.copyfile(generate_mnist_or_cifar10_targets_filename(opt, train=True, last=False),
generate_mnist_or_cifar10_targets_filename(opt, train=True, last=True))
shutil.copyfile(generate_mnist_or_cifar10_targets_filename(opt, train=False, last=False),
generate_mnist_or_cifar10_targets_filename(opt, train=False, last=True))
end_time = time.time()
elapse_time = end_time - start_time
opt.logger.info(f'All end in {elapse_time // 60:.0f}m {elapse_time % 60:.0f}s.')