-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize_sensor.py
220 lines (189 loc) · 9.64 KB
/
visualize_sensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# https://blog.csdn.net/qq_40206371/article/details/134698358
import folium
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib.colors import to_hex
def visualize_sensor(dataset, key_index=None, indices=None, filename=None, ext=None):
if dataset.lower() == 'metr_la':
filepath = f'libcity/cache/graph_sensor_locations.csv'
df = pd.read_csv(filepath)
else:
filepath = 'libcity/cache/graph_sensor_locations_bay.csv'
df = pd.read_csv(filepath, names=['sensor_id', 'latitude', 'longitude'])
df.insert(0, 'index', range(len(df)), allow_duplicates=False)
if indices is None:
indices = range(len(df))
if key_index is None:
key_index = []
mean_latitude = df['latitude'].mean()
mean_longitude = df['longitude'].mean()
m = folium.Map(location=(mean_latitude, mean_longitude), zoom_start=12)
for data in df.iterrows():
tmp_index = int(data[1]['index'])
if tmp_index not in indices and tmp_index not in key_index:
continue
tmp_latitude = data[1]['latitude']
tmp_longitude = data[1]['longitude']
tmp_sensor_id = int(data[1]['sensor_id'])
icon = folium.Icon(color='red') if tmp_index in key_index else None
testing_result = '' if ext is None else ext[tmp_index]
folium.Marker(location=(tmp_latitude, tmp_longitude), tooltip=f'{tmp_index}',
popup=f'{tmp_sensor_id}={testing_result}:({tmp_latitude},{tmp_longitude})', icon=icon).add_to(m)
if filename is None:
m.save(f'map_{dataset}.html')
else:
m.save(filename)
def visualize_sensor_marked(dataset, key_index, filename=None, ext=None, scaled=0.1):
"""只突出标记最不显著的scaled比例的传感器"""
if dataset.lower() == 'metr_la':
filepath = f'libcity/cache/graph_sensor_locations.csv'
df = pd.read_csv(filepath)
else:
filepath = 'libcity/cache/graph_sensor_locations_bay.csv'
df = pd.read_csv(filepath, names=['sensor_id', 'latitude', 'longitude'])
df.insert(0, 'index', len(df), allow_duplicates=False)
mean_latitude = df['latitude'].mean()
mean_longitude = df['longitude'].mean()
sorted_items = sorted(ext.items(), key=lambda x: x[1])
indices = [item[0] for item in sorted_items[-int(scaled * len(sorted_items)):]]
m = folium.Map(location=(mean_latitude, mean_longitude), zoom_start=12)
for data in df.iterrows():
tmp_index = int(data[1]['index'])
tmp_latitude = data[1]['latitude']
tmp_longitude = data[1]['longitude']
tmp_sensor_id = int(data[1]['sensor_id'])
if tmp_index == key_index:
folium.Marker(location=(tmp_latitude, tmp_longitude), tooltip=f'{tmp_index}',
popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})',
icon=folium.Icon(color='red')).add_to(m)
# folium.CircleMarker(location=[tmp_latitude, tmp_longitude],
# radius=10,
# color='blue',
# fill=True,
# fill_color='blue',
# fill_opacity=1,
# tooltip=f'{tmp_index}',
# popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})').add_to(m)
elif tmp_index in indices:
folium.CircleMarker(location=[tmp_latitude, tmp_longitude],
radius=10,
color='red',
fill=True,
fill_color='red',
fill_opacity=1,
tooltip=f'{tmp_index}',
popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})').add_to(m)
else:
folium.CircleMarker(location=[tmp_latitude, tmp_longitude],
radius=10,
color='blue',
fill=True,
fill_color='blue',
fill_opacity=1,
tooltip=f'{tmp_index}',
popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})').add_to(m)
if filename is None:
m.save(f'map_{dataset}.html')
else:
m.save(filename)
def visualize_sensor_varying(dataset, key_index, ext, filename=None, adjust=False, scaled=None, speeds=None, normalized=False):
if dataset.lower() == 'metr_la':
filepath = f'libcity/cache/graph_sensor_locations.csv'
df = pd.read_csv(filepath)
else:
filepath = 'libcity/cache/graph_sensor_locations_bay.csv'
df = pd.read_csv(filepath, names=['sensor_id', 'latitude', 'longitude'])
df.insert(0, 'index', len(df), allow_duplicates=False)
mean_latitude = df['latitude'].mean()
mean_longitude = df['longitude'].mean()
# if adjust:
# sorted_items = sorted(ext.items(), key=lambda x: x[1])
# minVal = 1.1 * sorted_items[1][1] - 0.1 * sorted_items[-1][1]
# assert minVal > 0, f'diff={sorted_items[-1][1]}-{sorted_items[1][1]}'
# ext[sorted_items[0][0]] = minVal
# diff = max(ext.values()) - minVal
# ext = {key: 1 - (value - minVal) / diff for key, value in ext.items()}
if adjust:
sorted_items = sorted(ext.items(), key=lambda x: x[1])
minVal = sorted_items[0][1]
maxVal = 1.1 * sorted_items[-2][1] - 0.1 * minVal
ext[sorted_items[-1][0]] = maxVal
diff = maxVal - minVal
ext = {key: value - minVal / diff for key, value in ext.items()}
if scaled is not None:
sorted_items = sorted(ext.items(), key=lambda x: x[1])
n = len(sorted_items)
scaled_n = int(scaled * n)
for i in range(scaled_n):
ext[sorted_items[i][0]] = 0
for i in range(scaled_n):
ext[sorted_items[n - i - 1][0]] = 1
minVal = sorted_items[scaled_n][1]
maxVal = sorted_items[n - scaled_n - 1][1]
for i in range(scaled_n, n - scaled_n):
ext[sorted_items[i][0]] = (sorted_items[i][1] - minVal) / (maxVal - minVal)
if normalized:
minVal = min(ext.values())
maxVal = max(ext.values())
for k, v in ext.items():
ext[k] = (v - minVal) / (maxVal - minVal) + minVal
# 获取Viridis颜色映射的颜色列表
viridis_colors = [to_hex(c) for c in plt.cm.viridis(range(256))]
plasma_colors = [to_hex(c) for c in plt.cm.plasma(range(256))]
inferno_colors = [to_hex(c) for c in plt.cm.inferno(range(256))]
magma_colors = [to_hex(c) for c in plt.cm.magma(range(256))]
# 创建颜色映射,使用Viridis颜色映射
colormap = folium.LinearColormap(colors=viridis_colors, vmin=min(ext.values()), vmax=max(ext.values()))
# colormap = folium.LinearColormap(colors=['blue', 'red'], vmin=min(ext.values()), vmax=max(ext.values()))
m = folium.Map(location=(mean_latitude, mean_longitude), zoom_start=13)
for data in df.iterrows():
tmp_index = int(data[1]['index'])
tmp_latitude = data[1]['latitude']
tmp_longitude = data[1]['longitude']
tmp_sensor_id = int(data[1]['sensor_id'])
if tmp_index not in ext.keys():
print(f'Jump Sensor {tmp_index}.')
continue
if tmp_index == key_index:
folium.CircleMarker(location=[tmp_latitude, tmp_longitude],
radius=20,
color='red',
fill=True,
fill_color='red',
fill_opacity=1,
tooltip=f'{tmp_index}',
popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})').add_to(m)
# folium.Marker(location=(tmp_latitude, tmp_longitude), tooltip=f'{tmp_index}',
# popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})',
# radius=20,
# icon=folium.Icon(color='red')).add_to(m)
# folium.CircleMarker(location=[tmp_latitude, tmp_longitude],
# radius=10,
# color='blue',
# fill=True,
# fill_color='blue',
# fill_opacity=1,
# tooltip=f'{tmp_index}',
# popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude})').add_to(m)
else:
popup_content = '' if speeds is None else f':{speeds[tmp_index]}'
folium.CircleMarker(location=[tmp_latitude, tmp_longitude],
radius=20,
color=colormap(ext[tmp_index]),
fill=True,
fill_color=colormap(ext[tmp_index]),
fill_opacity=1,
tooltip=f'{tmp_index}',
popup=f'{tmp_sensor_id}={ext[tmp_index]}:({tmp_latitude},{tmp_longitude}){popup_content}').add_to(m)
# Add LinearColormap to the map
colormap.caption = 'Bayesian Evidence'
m.add_child(colormap)
# Add LayerControl to show/hide the color bar
folium.LayerControl().add_to(m)
if filename is None:
m.save(f'map_{dataset}.html')
else:
m.save(filename)
if __name__ == '__main__':
visualize_sensor('metr_la')
visualize_sensor('pems_bay')