-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
76 lines (63 loc) · 2.44 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# coding: utf-8
# Author: lingff ([email protected])
# Description: For EfficientNet V2 evaluation.
# Create: 2021-12-2
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import argparse
import torch.nn as nn
from model import EfficientNetV2, get_efficientnetv2_params
from utils import *
from datasets import *
parser = argparse.ArgumentParser(description='Test EfficientNetV2.')
parser.add_argument('model_name', type=str, default='efficientnetv2-b0',
help='name of model')
parser.add_argument('dataset', type=str, default='cifar-10',
help='name of dataset')
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--workers', type=int, default=16)
parser.add_argument('--ckpt', type=str, default='', required=True)
def eval(model, val_loader, criterion, rank):
losses = AverageMeter()
top1 = AverageMeter()
model.eval()
with torch.no_grad():
# for epochs
for i, (images, targets) in enumerate(val_loader):
images = images.cuda(rank)
targets = targets.cuda(rank)
# predict
preds = model(images)
loss = criterion(preds, targets)
# acc
acc1 = accuracy(preds, targets)
losses.update(loss.item(), images.size(0))
top1.update(acc1[0].item(), images.size(0))
print(f"[Test] >>>>>>>>>> Loss: {losses.avg:.3f}, Acc@1: {top1.avg:.3f}")
return losses.avg, top1.avg
def main():
args = parser.parse_args()
# prepare params
num_classes = get_num_classes(args.dataset)
blocks_args, global_params = get_efficientnetv2_params(args.model_name, num_classes)
# prepare model
model = EfficientNetV2(blocks_args, global_params)
model.cuda()
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
# load model
if os.path.isfile(args.ckpt):
print("=> loading checkpoint '{}'".format(args.ckpt))
checkpoint = torch.load(args.ckpt)
best_acc1 = checkpoint['best_acc1']
print(f">>> best Acc@1 saved in ckpt: {best_acc1:.3f}")
model.load_state_dict(checkpoint['state_dict'])
else:
print(f"=> no checkpoint found at '{args.ckpt}'")
# prepare dataset
val_loader = get_dataloader(args.dataset, global_params.image_size, args, train=False)
# test
criterion = nn.CrossEntropyLoss().cuda()
eval(model, val_loader, criterion, None)
if __name__ == '__main__':
main()