-
Notifications
You must be signed in to change notification settings - Fork 479
/
data.py
244 lines (201 loc) · 7.54 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import tensorflow as tf
from tensorflow import keras
from functools import partial
import numpy as np
import os
import cv2
from tensorflow.keras.preprocessing.image import ImageDataGenerator
def crop_top(img, percent=0.15):
offset = int(img.shape[0] * percent)
return img[offset:]
def central_crop(img):
size = min(img.shape[0], img.shape[1])
offset_h = int((img.shape[0] - size) / 2)
offset_w = int((img.shape[1] - size) / 2)
return img[offset_h:offset_h + size, offset_w:offset_w + size]
def process_image_file(filepath, size, top_percent=0.08, crop=True):
img = cv2.imread(filepath)
img = crop_top(img, percent=top_percent)
if crop:
img = central_crop(img)
img = cv2.resize(img, (size, size))
return img
def process_image_file_medusa(filepath, size):
img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (size, size))
img = img.astype('float64')
img -= img.mean()
img /= img.std()
return np.expand_dims(img, -1)
def random_ratio_resize(img, prob=0.3, delta=0.1):
if np.random.rand() >= prob:
return img
ratio = img.shape[0] / img.shape[1]
ratio = np.random.uniform(max(ratio - delta, 0.01), ratio + delta)
if ratio * img.shape[1] <= img.shape[1]:
size = (int(img.shape[1] * ratio), img.shape[1])
else:
size = (img.shape[0], int(img.shape[0] / ratio))
dh = img.shape[0] - size[1]
top, bot = dh // 2, dh - dh // 2
dw = img.shape[1] - size[0]
left, right = dw // 2, dw - dw // 2
if size[0] > 480 or size[1] > 480:
print(img.shape, size, ratio)
img = cv2.resize(img, size)
img = cv2.copyMakeBorder(img, top, bot, left, right, cv2.BORDER_CONSTANT,
(0, 0, 0))
if img.shape[0] != 480 or img.shape[1] != 480:
raise ValueError(img.shape, size)
return img
_augmentation_transform = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
rotation_range=10,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True,
brightness_range=(0.9, 1.1),
zoom_range=(0.85, 1.15),
fill_mode='constant',
cval=0.,
)
def apply_augmentation(img):
img = random_ratio_resize(img)
img = _augmentation_transform.random_transform(img)
return img
def _process_csv_file(file):
with open(file, 'r') as fr:
files = fr.readlines()
return files
class BalanceCovidDataset(keras.utils.Sequence):
'Generates data for Keras'
def __init__(
self,
data_dir,
csv_file,
is_training=True,
batch_size=8,
medusa_input_shape=(256, 256),
input_shape=(480, 480),
n_classes=2,
num_channels=3,
mapping={
'negative': 0,
'positive': 1,
},
shuffle=True,
augmentation=apply_augmentation,
covid_percent=0.5,
class_weights=[1., 1.],
top_percent=0.08,
is_severity_model=False,
is_medusa_backbone=False,
):
'Initialization'
self.datadir = data_dir
self.dataset = _process_csv_file(csv_file)
self.is_training = is_training
self.batch_size = batch_size
self.N = len(self.dataset)
self.medusa_input_shape = medusa_input_shape
self.input_shape = input_shape
self.n_classes = n_classes
self.num_channels = num_channels
self.mapping = mapping
self.shuffle = shuffle
self.covid_percent = covid_percent
self.class_weights = class_weights
self.n = 0
self.augmentation = augmentation
self.top_percent = top_percent
self.is_severity_model = is_severity_model
self.is_medusa_backbone = is_medusa_backbone
# If using MEDUSA backbone load images without crop
if self.is_medusa_backbone:
self.load_image = partial(process_image_file, top_percent=0, crop=False)
else:
self.load_image = process_image_file
datasets = {}
for key in self.mapping.keys():
datasets[key] = []
for l in self.dataset:
datasets[l.split()[2]].append(l)
if self.is_severity_model:
self.datasets = [
datasets['level2'], datasets['level1']
]
elif self.n_classes == 2:
self.datasets = [
datasets['negative'], datasets['positive']
]
elif self.n_classes == 3:
self.datasets = [
datasets['normal'] + datasets['pneumonia'],
datasets['COVID-19'],
]
else:
raise Exception('Only binary or 3 class classification currently supported.')
print(len(self.datasets[0]), len(self.datasets[1]))
self.on_epoch_end()
def __next__(self):
# Get one batch of data
model_inputs = self.__getitem__(self.n)
# Batch index
self.n += 1
# If we have processed the entire dataset then
if self.n >= self.__len__():
self.on_epoch_end()
self.n = 0
return model_inputs
def __len__(self):
return int(np.ceil(len(self.datasets[0]) / float(self.batch_size)))
def on_epoch_end(self):
'Updates indexes after each epoch'
if self.shuffle == True:
for v in self.datasets:
np.random.shuffle(v)
def __getitem__(self, idx):
batch_x = np.zeros((self.batch_size, *self.input_shape, self.num_channels))
batch_y = np.zeros(self.batch_size)
if self.is_medusa_backbone:
batch_sem_x = np.zeros((self.batch_size, *self.medusa_input_shape, 1))
batch_files = self.datasets[0][idx * self.batch_size:(idx + 1) * self.batch_size]
# upsample covid cases
covid_size = max(int(len(batch_files) * self.covid_percent), 1)
covid_inds = np.random.choice(np.arange(len(batch_files)),
size=covid_size,
replace=False)
covid_files = np.random.choice(self.datasets[1],
size=covid_size,
replace=False)
for i in range(covid_size):
batch_files[covid_inds[i]] = covid_files[i]
for i in range(len(batch_files)):
sample = batch_files[i].split()
if self.is_training:
folder = 'train'
else:
folder = 'test'
image_file = os.path.join(self.datadir, folder, sample[1])
x = self.load_image(
image_file,
self.input_shape[0],
top_percent=self.top_percent,
)
if self.is_training and hasattr(self, 'augmentation'):
x = self.augmentation(x)
x = x.astype('float32') / 255.0
if self.is_medusa_backbone:
sem_x = process_image_file_medusa(image_file, self.medusa_input_shape[0])
batch_sem_x[i] = sem_x
y = self.mapping[sample[2]]
batch_x[i] = x
batch_y[i] = y
class_weights = self.class_weights
weights = np.take(class_weights, batch_y.astype('int64'))
batch_y = keras.utils.to_categorical(batch_y, num_classes=self.n_classes)
if self.is_medusa_backbone:
return batch_sem_x, batch_x, batch_y, weights, self.is_training
else:
return batch_x, batch_y, weights, self.is_training