|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "8e123e97", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# GroupBy for NestedPandas\n", |
| 9 | + "\n", |
| 10 | + "This notebook explores how Pandas' built-in `groupby` interacts with `NestedPandas` structures.\n", |
| 11 | + "\n", |
| 12 | + "Because Nested-Pandas extends the Pandas library, native ``pandas.DataFrame.groupby`` works with nested-pandas out of the box in some ways. " |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "id": "ccb69ebe", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# This will be the nf example used in this doc\n", |
| 23 | + "from nested_pandas.datasets import generate_data\n", |
| 24 | + "\n", |
| 25 | + "nf = generate_data(5, 10, seed=1)\n", |
| 26 | + "nf[\"c\"] = [0, 0, 1, 1, 1]\n", |
| 27 | + "nf" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "markdown", |
| 32 | + "id": "20933f5a", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "`groupby` works on *non-nested* columns and will return a `pandas.groupby` object. \n", |
| 36 | + "Grouping by nested columns does **not** work since nested values are mutable objects so they are unhashable.\n", |
| 37 | + "\n", |
| 38 | + "Use base columns as group keys or extract scalar identifiers from nested data first.\n", |
| 39 | + "\n" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "id": "3a45b96e", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "nf.groupby(\"c\") # returns a Pandas GroupBy object" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "id": "a7b19d3d", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "## Basic Aggregations\n", |
| 58 | + "\n", |
| 59 | + "- Some built-in methods like `count` work but not as expected (view nested column as a single object).\n", |
| 60 | + "- Others (`min`, `max`, `mean`) fail on nested columns.\n", |
| 61 | + "- Interestingly, `describe` will work as expected with the automatic flattened nested column." |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": null, |
| 67 | + "id": "0487e613", |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [], |
| 70 | + "source": [ |
| 71 | + "# count is viewing nested columns as single objects\n", |
| 72 | + "nf.groupby(\"c\").count()" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": null, |
| 78 | + "id": "fec633b6", |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "# min/max/mean fail on nested columns\n", |
| 83 | + "try:\n", |
| 84 | + " grouped_min = nf.groupby(\"c\").min()\n", |
| 85 | + " print(grouped_min)\n", |
| 86 | + "except TypeError as e:\n", |
| 87 | + " print(f\"Cannot compute min on nested columns: {e}\")" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "id": "201774f2", |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "# describe works as expected with automatic flattened nested column\n", |
| 98 | + "nf.groupby(\"c\").describe()" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "id": "555bdaa3", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "## Type Preservation\n", |
| 107 | + "Within each group, the object remains accessible as a ``NestedFrame`` object and the nested columns remain ``NestedSeries``.\n", |
| 108 | + "\n", |
| 109 | + "We can check this by applying a custom function on our 2-group `groupby` object:" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "id": "6a02ee47", |
| 116 | + "metadata": {}, |
| 117 | + "outputs": [], |
| 118 | + "source": [ |
| 119 | + "# check the type\n", |
| 120 | + "def type_check(df):\n", |
| 121 | + " print(\"Group DataFrame Type:\", type(df))\n", |
| 122 | + " print(\"Nested Column Type:\", type(df[\"nested\"]))\n", |
| 123 | + " print()\n", |
| 124 | + " # return df\n", |
| 125 | + "\n", |
| 126 | + "\n", |
| 127 | + "nf.groupby(\"c\").apply(type_check, include_groups=False)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "markdown", |
| 132 | + "id": "117ad069", |
| 133 | + "metadata": {}, |
| 134 | + "source": [ |
| 135 | + "An important note is that when trying to accsss the row of each group with `.iloc[]`, **numeric row-wise indexing** and **slice-based indexing** will output different types." |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "id": "197f26e9", |
| 141 | + "metadata": {}, |
| 142 | + "source": [ |
| 143 | + "For `NestedFrame`, when we try to access the first row, row-wise indexing (`.iloc[0]`) will collapse the result in to 1-D `pandas.Series` with the nested column stored as a `DataFrame`. However, slice-based indexing (`.iloc[0:1]`) will preserve the nested structure and still output the row as a `NestedFrame` with nested column still being `NestedSeries`." |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": null, |
| 149 | + "id": "6639d290", |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "# check the full row type\n", |
| 154 | + "def row_type_check(df):\n", |
| 155 | + " print(\"df.iloc[0]: \", type(df.iloc[0]))\n", |
| 156 | + " print(\"df.iloc[0:1]:\", type(df.iloc[0:1]))\n", |
| 157 | + " print(\"\\n Accessing nested column for both ways:\")\n", |
| 158 | + " print(\"df.iloc[0] nested column:\", type(df.iloc[0][\"nested\"]))\n", |
| 159 | + " print(\"df.iloc[0:1] nested column:\", type(df.iloc[0:1][\"nested\"]))\n", |
| 160 | + " print()\n", |
| 161 | + " # return df\n", |
| 162 | + "\n", |
| 163 | + "\n", |
| 164 | + "nf.groupby(\"c\").apply(row_type_check, include_groups=False)" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "id": "ff198f4f", |
| 170 | + "metadata": {}, |
| 171 | + "source": [ |
| 172 | + "For nested column with type `NestedSeries`, accessing a single row from `df[\"nested\"]` will either output a `pandas.DataFrame` (`.iloc[0]`) or a `pandas.Series` (`.iloc[0:1]`).\n", |
| 173 | + "\n", |
| 174 | + "Note that outside groupby, `df[\"nested\"].iloc[0]` is stored as a `pandas.DataFrame`, which is expected. \n", |
| 175 | + "\n", |
| 176 | + "<!-- (NestedPandas stores the nested frames as serialized DataFrames?) -->" |
| 177 | + ] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": null, |
| 182 | + "id": "443447a1", |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [], |
| 185 | + "source": [ |
| 186 | + "# check the nested row type\n", |
| 187 | + "def nested_row_type_check(df):\n", |
| 188 | + " print('df[\"nested\"].iloc[0]:', type(df[\"nested\"].iloc[0]))\n", |
| 189 | + " print('df[\"nested\"].iloc[0:1]:', type(df[\"nested\"].iloc[0:1]))\n", |
| 190 | + " print()\n", |
| 191 | + " # return df\n", |
| 192 | + "\n", |
| 193 | + "\n", |
| 194 | + "nf.groupby(\"c\").apply(nested_row_type_check, include_groups=False)" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "markdown", |
| 199 | + "id": "684b697c", |
| 200 | + "metadata": {}, |
| 201 | + "source": [ |
| 202 | + "Other operations will preserve the nested structure in general, but if you need to work with the contents of a nested column directly, you may need to flatten it first using `.nest.to_flat()`." |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "markdown", |
| 207 | + "id": "a4ff3a6b", |
| 208 | + "metadata": {}, |
| 209 | + "source": [ |
| 210 | + "## Custom Functions with `apply`\n", |
| 211 | + "\n", |
| 212 | + "`.apply()` for nested operations is supported natively. It generally works if the function flattens or use index slicing to ensure matching type for operations. \n", |
| 213 | + "\n", |
| 214 | + "Some potential examples:" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": null, |
| 220 | + "id": "023b771c", |
| 221 | + "metadata": {}, |
| 222 | + "outputs": [], |
| 223 | + "source": [ |
| 224 | + "# custom function to flatten nested column\n", |
| 225 | + "def flatten_nested(df):\n", |
| 226 | + " return df[\"nested\"].nest.to_flat()\n", |
| 227 | + "\n", |
| 228 | + "\n", |
| 229 | + "nf.groupby(\"c\").apply(flatten_nested, include_groups=False)" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "code", |
| 234 | + "execution_count": null, |
| 235 | + "id": "4b0d063f", |
| 236 | + "metadata": {}, |
| 237 | + "outputs": [], |
| 238 | + "source": [ |
| 239 | + "import pandas as pd\n", |
| 240 | + "\n", |
| 241 | + "\n", |
| 242 | + "# custom function to perform aggregations on flattened nested column\n", |
| 243 | + "def mean_flux(df):\n", |
| 244 | + " flat = df[\"nested\"].nest.to_flat()\n", |
| 245 | + " return pd.Series({\"mean_flux\": flat[\"flux\"].mean(), \"mean_t\": flat[\"t\"].mean()})\n", |
| 246 | + "\n", |
| 247 | + "\n", |
| 248 | + "nf.groupby(\"c\").apply(mean_flux, include_groups=False)" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "markdown", |
| 253 | + "id": "63da5da8", |
| 254 | + "metadata": {}, |
| 255 | + "source": [ |
| 256 | + "## Summary\n", |
| 257 | + "- Always group by **base columns**, not nested columns. \n", |
| 258 | + "- Use **slice-based indexing** (`.iloc[0:1]`) to preserve nested types.\n", |
| 259 | + "- Use **`.nest.to_flat()`** to flatten a nested column when needed for numerical or aggregating operations.\n", |
| 260 | + "\n", |
| 261 | + "- Nested structures are designed to reduce the need for expensive groupby operations by allowing data to stay organized hierarchically. However, when grouping is necessary, pandas’ groupby still works with nested-pandas and maintains type consistency.\n", |
| 262 | + "\n", |
| 263 | + "- Some use cases may behave unexpectedly because of the nested structures. We encourage users to open issues if you run into unexpected behavior or edge cases.\n" |
| 264 | + ] |
| 265 | + } |
| 266 | + ], |
| 267 | + "metadata": { |
| 268 | + "kernelspec": { |
| 269 | + "display_name": ".venv", |
| 270 | + "language": "python", |
| 271 | + "name": "python3" |
| 272 | + }, |
| 273 | + "language_info": { |
| 274 | + "codemirror_mode": { |
| 275 | + "name": "ipython", |
| 276 | + "version": 3 |
| 277 | + }, |
| 278 | + "file_extension": ".py", |
| 279 | + "mimetype": "text/x-python", |
| 280 | + "name": "python", |
| 281 | + "nbconvert_exporter": "python", |
| 282 | + "pygments_lexer": "ipython3", |
| 283 | + "version": "3.13.8" |
| 284 | + } |
| 285 | + }, |
| 286 | + "nbformat": 4, |
| 287 | + "nbformat_minor": 5 |
| 288 | +} |
0 commit comments