-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo_o.py
494 lines (420 loc) · 23.2 KB
/
demo_o.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import os
import numpy as np
import torch
import yaml
from modules.generator import OcclusionAwareSPADEGeneratorEam
from modules.keypoint_detector import KPDetector, HEEstimator
import argparse
import imageio
from modules.transformer import Audio2kpTransformerBBoxQDeepPrompt as Audio2kpTransformer
from modules.prompt import EmotionDeepPrompt, EmotionalDeformationTransformer
from scipy.io import wavfile
from modules.model_transformer import get_rotation_matrix, keypoint_transformation
from skimage import io, img_as_float32
from skimage.transform import resize
import torchaudio
import soundfile as sf
from scipy.spatial import ConvexHull
import torch.nn.functional as F
import glob
from tqdm import tqdm
import gzip
from extract_ds_features import return_deepfeature
emo_label = ['ang', 'con', 'dis', 'fea', 'hap', 'neu', 'sad', 'sur']
emo_label_full = ['angry', 'contempt', 'disgusted', 'fear', 'happy', 'neutral', 'sad', 'surprised']
latent_dim = 16
MEL_PARAMS_25 = {
"n_mels": 80,
"n_fft": 2048,
"win_length": 640,
"hop_length": 640
}
to_melspec = torchaudio.transforms.MelSpectrogram(**MEL_PARAMS_25)
mean, std = -4, 4
expU = torch.from_numpy(np.load('./expPCAnorm_fin/U_mead.npy')[:,:32])
expmean = torch.from_numpy(np.load('./expPCAnorm_fin/mean_mead.npy'))
root_wav = '/mnt/sdb/cxh/liwen/EAT_code/demo/video_processed/obama/obama'
def normalize_kp(kp_source, kp_driving, kp_driving_initial,
use_relative_movement=True, use_relative_jacobian=True):
kp_new = {k: v for k, v in kp_driving.items()}
if use_relative_movement:
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
kp_new['value'] = kp_value_diff + kp_source['value']
if use_relative_jacobian:
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
return kp_new
def _load_tensor(data):
wave_path = data
wave, sr = sf.read(wave_path)
wave_tensor = torch.from_numpy(wave).float()
return wave_tensor
def build_model(config, device_ids=[0]):
generator = OcclusionAwareSPADEGeneratorEam(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
print('cuda is available')
generator.to(device_ids[0])
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
kp_detector.to(device_ids[0])
audio2kptransformer = Audio2kpTransformer(**config['model_params']['audio2kp_params'], face_ea=True)
if torch.cuda.is_available():
audio2kptransformer.to(device_ids[0])
sidetuning = EmotionalDeformationTransformer(**config['model_params']['audio2kp_params'])
if torch.cuda.is_available():
sidetuning.to(device_ids[0])
emotionprompt = EmotionDeepPrompt()
if torch.cuda.is_available():
emotionprompt.to(device_ids[0])
return generator, kp_detector, audio2kptransformer, sidetuning, emotionprompt
def prepare_test_data(img_path, audio_path, opt, emotype, use_otherimg=True):
if use_otherimg:
source_latent = np.load(img_path.replace('cropped', 'latent')[:-4]+'.npy', allow_pickle=True)
# print("source_latent", source_latent.shape)
# print("source_latent", source_latent)
else:
source_latent = np.load(img_path.replace('images', 'latent')[:-9]+'.npy', allow_pickle=True)
he_source = {}
for k in source_latent[1].keys():
he_source[k] = torch.from_numpy(source_latent[1][k][0]).unsqueeze(0).cuda()
# source images
source_img = img_as_float32(io.imread(img_path)).transpose((2, 0, 1))
# print("source_img", source_img.shape) # C H W
asp = os.path.basename(audio_path)[:-4]
# latent code
y_trg = emo_label.index(emotype)
z_trg = torch.randn(latent_dim)
# driving latent
latent_path_driving = f'{root_wav}/latent_evp_25/{asp}.npy'
pose_gz = gzip.GzipFile(f'{root_wav}/poseimg/{asp}.npy.gz', 'r')
poseimg = np.load(pose_gz)
# deepfeature = np.load(f'{root_wav}/deepfeature32/{asp}.npy')
deepfeature = return_deepfeature("/mnt/sdb/cxh/liwen/EAT_code/audio_temp/tmp.wav")
driving_latent = np.load(latent_path_driving[:-4]+'.npy', allow_pickle=True)
he_driving = driving_latent[1]
print(driving_latent[0])
# gt frame number
frames = glob.glob(f'{root_wav}/images_evp_25/cropped/*.jpg')
num_frames = len(frames)
wave_tensor = _load_tensor(audio_path)
if len(wave_tensor.shape) > 1:
wave_tensor = wave_tensor[:, 0]
mel_tensor = to_melspec(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor) - mean) / std
name_len = min(mel_tensor.shape[1], poseimg.shape[0], deepfeature.shape[0])
audio_frames = []
poseimgs = []
deep_feature = []
pad, deep_pad = np.load('pad.npy', allow_pickle=True)
if name_len < num_frames:
diff = num_frames - name_len
if diff > 2:
print(f"Attention: the frames are {diff} more than name_len, we will use name_len to replace num_frames")
num_frames=name_len
for k in he_driving.keys():
he_driving[k] = he_driving[k][:name_len, :]
for rid in range(0, num_frames):
audio = []
poses = []
deeps = []
for i in range(rid - opt['num_w'], rid + opt['num_w'] + 1):
if i < 0:
audio.append(pad)
poses.append(poseimg[0])
deeps.append(deep_pad)
elif i >= name_len:
audio.append(pad)
poses.append(poseimg[-1])
deeps.append(deep_pad)
else:
audio.append(mel_tensor[:, i])
poses.append(poseimg[i])
deeps.append(deepfeature[i])
audio_frames.append(torch.stack(audio, dim=1))
poseimgs.append(poses)
deep_feature.append(deeps)
audio_frames = torch.stack(audio_frames, dim=0)
poseimgs = torch.from_numpy(np.array(poseimgs))
deep_feature = torch.from_numpy(np.array(deep_feature)).to(torch.float)
return audio_frames, poseimgs, deep_feature, source_img, he_source, he_driving, num_frames, y_trg, z_trg, latent_path_driving
def load_ckpt(ckpt, kp_detector, generator, audio2kptransformer, sidetuning, emotionprompt):
checkpoint = torch.load(ckpt, map_location=torch.device('cpu'))
if audio2kptransformer is not None:
audio2kptransformer.load_state_dict(checkpoint['audio2kptransformer'])
if generator is not None:
generator.load_state_dict(checkpoint['generator'])
if kp_detector is not None:
kp_detector.load_state_dict(checkpoint['kp_detector'])
if sidetuning is not None:
sidetuning.load_state_dict(checkpoint['sidetuning'])
if emotionprompt is not None:
emotionprompt.load_state_dict(checkpoint['emotionprompt'])
import cv2
import dlib
from tqdm import tqdm
from skimage import transform as tf
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('./demo/shape_predictor_68_face_landmarks.dat')
def shape_to_np(shape, dtype="int"):
# initialize the list of (x, y)-coordinates
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# loop over all facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coords
def crop_image(image_path, out_path):
template = np.load('./demo/M003_template.npy')
# print(template.shape) # 68,2
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1) #detect human face
if len(rects) != 1:
return 0
for (j, rect) in enumerate(rects):
shape = predictor(gray, rect) #detect 68 points
shape = shape_to_np(shape)
pts2 = np.float32(template[:47,:]) # 除了嘴部区域的所有点
pts1 = np.float32(shape[:47,:]) # eye and nose
tform = tf.SimilarityTransform()
tform.estimate(pts2, pts1) # Set the transformation matrix with the explicit parameters.
dst = tf.warp(image, tform, output_shape=(256, 256))
dst = np.array(dst * 255, dtype=np.uint8)
cv2.imwrite(out_path, dst)
def preprocess_imgs(allimgs, tmp_allimgs_cropped):
name_cropped = []
for path in tmp_allimgs_cropped:
name_cropped.append(os.path.basename(path))
for path in allimgs:
if os.path.basename(path) in name_cropped:
continue
else:
out_path = path.replace('imgs/', 'imgs_cropped/')
crop_image(path, out_path)
from sync_batchnorm import DataParallelWithCallback
def load_checkpoints_extractor(config_path, checkpoint_path, cpu=False):
with open(config_path) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
if not cpu:
kp_detector.cuda()
he_estimator = HEEstimator(**config['model_params']['he_estimator_params'],
**config['model_params']['common_params'])
if not cpu:
he_estimator.cuda()
if cpu:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
else:
checkpoint = torch.load(checkpoint_path)
kp_detector.load_state_dict(checkpoint['kp_detector'])
he_estimator.load_state_dict(checkpoint['he_estimator'])
if not cpu:
kp_detector = DataParallelWithCallback(kp_detector)
he_estimator = DataParallelWithCallback(he_estimator)
kp_detector.eval()
he_estimator.eval()
return kp_detector, he_estimator
def estimate_latent(driving_video, kp_detector, he_estimator):
with torch.no_grad():
predictions = []
driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3).cuda()
kp_canonical = kp_detector(driving[:, :, 0])
he_drivings = {'yaw': [], 'pitch': [], 'roll': [], 't': [], 'exp': []}
for frame_idx in range(driving.shape[2]):
driving_frame = driving[:, :, frame_idx]
he_driving = he_estimator(driving_frame)
for k in he_drivings.keys():
he_drivings[k].append(he_driving[k])
return [kp_canonical, he_drivings]
def extract_keypoints(extract_list):
kp_detector, he_estimator = load_checkpoints_extractor(config_path='config/vox-256-spade.yaml', checkpoint_path='./ckpt/pretrain_new_274.pth.tar')
if not os.path.exists('./demo/imgs_latent/'):
os.makedirs('./demo/imgs_latent/')
for imgname in tqdm(extract_list):
path_frames = [imgname]
filesname=os.path.basename(imgname)[:-4]
file_path = f'./demo/imgs_latent/'+filesname+'.npy'
if os.path.exists(file_path):
continue
driving_frames = []
for im in path_frames:
driving_frames.append(imageio.imread(im)) # H W C R G B
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_frames]
kc, he = estimate_latent(driving_video, kp_detector, he_estimator)
kc = kc['value'].cpu().numpy()
for k in he:
he[k] = torch.cat(he[k]).cpu().numpy()
# print(he[k].shape)
# print(he) # 五个键值yaw、pitch、roll、t、exp
np.save(file_path, [kc, he])
def preprocess_cropped_imgs(allimgs_cropped):
extract_list = []
for img_path in allimgs_cropped:
if not os.path.exists(img_path.replace('cropped', 'latent')[:-4]+'.npy'):
extract_list.append(img_path)
if len(extract_list) > 0:
print('=========', "Extract latent keypoints from New image", '======')
extract_keypoints(extract_list)
def save_img_tensor(img_tensor):
img_nor = img_tensor.squeeze(0).permute(1, 2, 0)*255
img_np = img_nor.cpu().numpy()
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
cv2.imwrite("/mnt/sdb/cxh/liwen/EAT_code/demo/mytest/out_result/test1.png", img_np)
def test(ckpt, emotype, save_dir=" "):
# with open("config/vox-transformer2.yaml") as f:
with open("config/deepprompt_eam3d_st_tanh_304_3090_all.yaml") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
cur_path = os.getcwd()
generator, kp_detector, audio2kptransformer, sidetuning, emotionprompt = build_model(config)
load_ckpt(ckpt, kp_detector=kp_detector, generator=generator, audio2kptransformer=audio2kptransformer, sidetuning=sidetuning, emotionprompt=emotionprompt)
audio2kptransformer.eval()
generator.eval()
kp_detector.eval()
sidetuning.eval()
emotionprompt.eval()
all_wavs2 = [f'{root_wav}/{os.path.basename(root_wav)}.wav']
allimg = glob.glob('./demo/imgs/*.jpg')
tmp_allimg_cropped = glob.glob('./demo/imgs_cropped/*.jpg')
preprocess_imgs(allimg, tmp_allimg_cropped) # crop and align images
allimg_cropped = glob.glob('./demo/imgs_cropped/*.jpg')
preprocess_cropped_imgs(allimg_cropped) # extract latent keypoints if necessary
for ind in tqdm(range(len(all_wavs2))):
for img_path in tqdm(allimg_cropped):
audio_path = all_wavs2[ind]
# read in data
audio_frames, poseimgs, deep_feature, source_img, he_source, he_driving, num_frames, y_trg, z_trg, latent_path_driving = prepare_test_data(img_path, audio_path, config['model_params']['audio2kp_params'], emotype)
with torch.no_grad():
source_img = torch.from_numpy(source_img).unsqueeze(0).cuda()
print("source_img",source_img.shape)
save_img_tensor(source_img)
kp_canonical = kp_detector(source_img, with_feature=True) # {'value': value, 'jacobian': jacobian}
kp_cano = kp_canonical['value']
print("kp_canonical",kp_canonical.keys()) # kp_canonical dict_keys(['value', 'prediction_map'])
print(kp_canonical['value'].shape) # torch.Size([1, 15, 3])
print(kp_canonical['prediction_map'].shape) # torch.Size([1, 15, 16, 64, 64])
x = {}
x['mel'] = audio_frames.unsqueeze(1).unsqueeze(0).cuda()
x['z_trg'] = z_trg.unsqueeze(0).cuda()
x['y_trg'] = torch.tensor(y_trg, dtype=torch.long).cuda().reshape(1)
x['pose'] = poseimgs.cuda()
x['deep'] = deep_feature.cuda().unsqueeze(0)
x['he_driving'] = {'yaw': torch.from_numpy(he_driving['yaw']).cuda().unsqueeze(0),
'pitch': torch.from_numpy(he_driving['pitch']).cuda().unsqueeze(0),
'roll': torch.from_numpy(he_driving['roll']).cuda().unsqueeze(0),
't': torch.from_numpy(he_driving['t']).cuda().unsqueeze(0),
}
### emotion prompt
emoprompt, deepprompt = emotionprompt(x)
# print("emoprompt", emoprompt.shape)
# print("deepprompt", deepprompt.shape)
a2kp_exps = []
emo_exps = []
T = 5
if T == 1:
for i in range(x['mel'].shape[1]):
xi = {}
xi['mel'] = x['mel'][:,i,:,:,:].unsqueeze(1)
xi['z_trg'] = x['z_trg']
xi['y_trg'] = x['y_trg']
xi['pose'] = x['pose'][i,:,:,:,:].unsqueeze(0)
xi['deep'] = x['deep'][:,i,:,:,:].unsqueeze(1)
xi['he_driving'] = {'yaw': x['he_driving']['yaw'][:,i,:].unsqueeze(0),
'pitch': x['he_driving']['pitch'][:,i,:].unsqueeze(0),
'roll': x['he_driving']['roll'][:,i,:].unsqueeze(0),
't': x['he_driving']['t'][:,i,:].unsqueeze(0),
}
he_driving_emo_xi, input_st_xi = audio2kptransformer(xi, kp_canonical, emoprompt=emoprompt, deepprompt=deepprompt, side=True) # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp}
emo_exp = sidetuning(input_st_xi, emoprompt, deepprompt)
a2kp_exps.append(he_driving_emo_xi['emo'])
emo_exps.append(emo_exp)
elif T is not None:
for i in range(x['mel'].shape[1]//T+1):
if i*T >= x['mel'].shape[1]:
break
xi = {}
xi['mel'] = x['mel'][:,i*T:(i+1)*T,:,:,:]
xi['z_trg'] = x['z_trg']
xi['y_trg'] = x['y_trg']
xi['pose'] = x['pose'][i*T:(i+1)*T,:,:,:,:]
xi['deep'] = x['deep'][:,i*T:(i+1)*T,:,:,:]
xi['he_driving'] = {'yaw': x['he_driving']['yaw'][:,i*T:(i+1)*T,:],
'pitch': x['he_driving']['pitch'][:,i*T:(i+1)*T,:],
'roll': x['he_driving']['roll'][:,i*T:(i+1)*T,:],
't': x['he_driving']['t'][:,i*T:(i+1)*T,:],
}
print("-----------------------------------------------------")
print("xi['mel']", xi['mel'].shape) # torch.Size([1, 5, 1, 80, 11])
print("xi['z_trg']", xi['z_trg'].shape) # torch.Size([1, 16])
print("xi['y_trg']", xi['y_trg'].shape) # xi['y_trg'] torch.Size([1])
print("xi['pose']", xi['pose'].shape) # xi['pose'] torch.Size([5, 11, 1, 64, 64])
print("xi['deep']", xi['deep'].shape) # xi['deep'] torch.Size([1, 5, 11, 16, 29])
print("xi['he_driving']['yaw']", xi['he_driving']['yaw'].shape) # torch.Size([1, 5, 66])
print("xi['he_driving']['pitch']", xi['he_driving']['pitch'].shape) # torch.Size([1, 5, 66])
print("xi['he_driving']['roll']", xi['he_driving']['roll'].shape) # torch.Size([1, 5, 66])
print("xi['he_driving']['t']", xi['he_driving']['t'].shape) # torch.Size([1, 5, 3])
print("kp_canonical", kp_canonical['value'].shape)
print("-----------------------------------------------------")
he_driving_emo_xi, input_st_xi = audio2kptransformer(xi, kp_canonical, emoprompt=emoprompt, deepprompt=deepprompt, side=True) # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp}
emo_exp = sidetuning(input_st_xi, emoprompt, deepprompt)
a2kp_exps.append(he_driving_emo_xi['emo'])
emo_exps.append(emo_exp)
if T is None:
he_driving_emo, input_st = audio2kptransformer(x, kp_canonical, emoprompt=emoprompt, deepprompt=deepprompt, side=True) # {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp}
emo_exps = sidetuning(input_st, emoprompt, deepprompt).reshape(-1, 45)
else:
he_driving_emo = {}
he_driving_emo['emo'] = torch.cat(a2kp_exps, dim=0)
emo_exps = torch.cat(emo_exps, dim=0).reshape(-1, 45)
exp = he_driving_emo['emo']
device = exp.get_device()
exp = torch.mm(exp, expU.t().to(device))
exp = exp + expmean.expand_as(exp).to(device)
exp = exp + emo_exps
source_area = ConvexHull(kp_cano[0].cpu().numpy()).volume
exp = exp * source_area
he_new_driving = {'yaw': torch.from_numpy(he_driving['yaw']).cuda(),
'pitch': torch.from_numpy(he_driving['pitch']).cuda(),
'roll': torch.from_numpy(he_driving['roll']).cuda(),
't': torch.from_numpy(he_driving['t']).cuda(),
'exp': exp}
he_driving['exp'] = torch.from_numpy(he_driving['exp']).cuda()
kp_source = keypoint_transformation(kp_canonical, he_source, False)
mean_source = torch.mean(kp_source['value'], dim=1)[0]
kp_driving = keypoint_transformation(kp_canonical, he_new_driving, False)
mean_driving = torch.mean(torch.mean(kp_driving['value'], dim=1), dim=0)
kp_driving['value'] = kp_driving['value']+(mean_source-mean_driving).unsqueeze(0).unsqueeze(0)
bs = kp_source['value'].shape[0]
predictions_gen = []
for i in tqdm(range(num_frames)):
kp_si = {}
kp_si['value'] = kp_source['value'][0].unsqueeze(0)
kp_di = {}
kp_di['value'] = kp_driving['value'][i].unsqueeze(0)
generated = generator(source_img, kp_source=kp_si, kp_driving=kp_di, prompt=emoprompt)
predictions_gen.append(
(np.transpose(generated['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0] * 255).astype(np.uint8))
log_dir = save_dir
os.makedirs(os.path.join(log_dir, "temp"), exist_ok=True)
f_name = os.path.basename(img_path[:-4]) + "_" + emotype + "_" + os.path.basename(latent_path_driving)[:-4] + ".mp4"
video_path = os.path.join(log_dir, "temp", f_name)
imageio.mimsave(video_path, predictions_gen, fps=25.0) # RGB
save_video = os.path.join(log_dir, f_name)
cmd = r'ffmpeg -loglevel error -y -i "%s" -i "%s" -vcodec copy -shortest "%s"' % (video_path, audio_path, save_video)
os.system(cmd)
os.remove(video_path)
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument("--save_dir", type=str, default="/mnt/sdb/cxh/liwen/EAT_code/demo/output/deepprompt_eam3d_all_final_313", help="path of the output video")
argparser.add_argument("--name", type=str, default="deepprompt_eam3d_all_final_313", help="path of the output video")
argparser.add_argument("--emo", type=str, default="con", help="emotion type ('ang', 'con', 'dis', 'fea', 'hap', 'neu', 'sad', 'sur')")
argparser.add_argument("--root_wav", type=str, default='/mnt/sdb/cxh/liwen/EAT_code/demo/video_processed/obama', help="emotion type ('ang', 'con', 'dis', 'fea', 'hap', 'neu', 'sad', 'sur')")
args = argparser.parse_args()
root_wav=args.root_wav
if len(args.name) > 1:
name = args.name
print(name)
test(f'./ckpt/{name}.pth.tar', args.emo, save_dir=f'./demo/output/{name}/')