-
Notifications
You must be signed in to change notification settings - Fork 1
/
thermal_cond.tex
60 lines (56 loc) · 2.27 KB
/
thermal_cond.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
\subsubsection{Eucken thermal conduction}
The Eucken thermal conduction is given by
\begin{equation}
\thermcond[s] = \vis[s]\left(\foreach \pre/\mod in {/vib,+/rot,+2.5/trans,+/elec}
{
\pre\specificHeat[\Vol,s]^{(\text{\mod})}
}
\right)
\label{thermal_cond:eucken:eq}
\end{equation}
\subsubsection{Pure species thermal conduction}
The thermal conduction of a species $s$ is given by
\begin{equation}
\begin{split}
\thermcond[s] & = \thermcond[s]^{(\text{rot})} + \thermcond[s]^{(\text{trans})} + \thermcond[s]^{(\text{vib})} \\
& = \frac{\vis[s]}{\Mm[s]} \left(
\foreach \signe/\mode in {/vib,+/rot,+/trans}
{\signe \specificHeat[\Vol,s]^{(\text{\mode})}\thermcond[s]^{(\text{\mode})}}
\right)
\end{split}
\label{transport:therm_cond}
\end{equation}
with
%%
\begin{equation}
\begin{split}
\thermcond[\Vol,s]^{(\text{vib})} & = \mass[s] \frac{\diff[s s]}{\vis[s]} \\
\thermcond[\Vol,s]^{(\text{rot})} & = \mass[s] \frac{\diff[s s]}{\vis[s]}\left(1 + \frac{2}{\pi}\frac{A}{B}\right) \\
\thermcond[\Vol,s]^{(\text{trans})} & = \frac{5}{2} \left(1 - \frac{2}{\pi}\frac{\specificHeat[\Vol,s]^{(\text{rot})}}{\specificHeat[\Vol,s]^{(\text{trans})}}\frac{A}{B}\right)
\end{split}
\label{thermal_cond:modes}
\end{equation}
%%
and
%%
\begin{equation}
\begin{split}
A & = \frac{5}{2} - \mass[s] \frac{\diff[s s]}{\vis[s]} \\
B & = \rotRelax + \frac{2}{\pi} \left(\frac{5}{3}\frac{\specificHeat[\Vol,s]^{(\text{rot})}}{\Rg} + \mass[s] \frac{\diff[s s]}{\vis[s]}\right)
\end{split}
\label{thermal_cond:A_B}
\end{equation}
%%
the rotational relaxation number is given by
\begin{equation}
\rotRelax[,s](\Temp) = \rotRelax[,s](298)\frac{F(298)}{F(\Temp)}
\label{thermal_cond:Zrot}
\end{equation}
with the function $F$ defined as
\begin{equation}
F(T) = 1 + \frac{\pi^{\frac{3}{2}}}{2}\sqrt{\left(\frac{\LJdepth[s]}{\Boltzmann\Temp}\right)}
+ \left(\frac{\pi^2}{4} + 2\right)\left(\frac{\LJdepth[s]}{\Boltzmann\Temp}\right)
+ \pi^{\frac{3}{2}}\left(\frac{\LJdepth[s]}{\Boltzmann\Temp}\right)^{\frac{3}{2}}
\label{therm_cond:F}
\end{equation}
The specific heat are given by the thermodynamic module (not documented here yet).