-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
54 lines (42 loc) · 1.35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy
import torch
from flask import Flask, request, render_template
from model import *
from PIL import Image
import torchvision.transforms as transforms
app = Flask(__name__)
@app.route('/')
def index():
return render_template('test.html')
@app.route('/', methods=['POST'])
def process():
# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = siamese()
model.load_state_dict(torch.load('model_siamese.pth', map_location=device))
model.eval()
# 获取上传的文件
img1 = request.files['image1']
img2 = request.files['image2']
img1 = Image.open(img1)
img2 = Image.open(img2)
img1 = img1.convert('L')
img2 = img2.convert('L')
# 进行图像处理
transform = transforms.Compose([
transforms.Resize((160, 160)), # 调整图片大小
transforms.ToTensor() # 转换为 Tensor 格式
])
img1 = transform(img1)
img2 = transform(img2)
print(img1)
ans = model(img1, img2)
print(ans)
if ans > 0.5:
result = '两个签名属于同一个人'
else:
result = '两个签名不属于同一个人'
# 将处理后的结果返回到前端页面
return render_template('test.html', result=result)
if __name__ == '__main__':
app.run(debug=True)