-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtasks.py
432 lines (330 loc) · 14 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright (c) 2025 liangyuwang
# Licensed under the Apache License, Version 2.0
"""
Copied https://github.com/princeton-nlp/MeZO/blob/main/large_models/tasks.py
"""
from templates import *
from utils import temp_seed
import json
import os
from datasets import load_dataset
from dataclasses import dataclass
from typing import List, Union
import string
import random
import datasets
import sys
import numpy as np
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def get_task(task_name):
aa = task_name.split("__")
if len(aa) == 2:
task_group, subtask = aa
else:
task_group = aa[0]
subtask = None
class_ = getattr(sys.modules[__name__], f"{task_group}Dataset")
instance = class_(subtask)
return instance
@dataclass
class Sample:
id: int = None
data: dict = None
correct_candidate: Union[str, List[str]] = None
candidates: List[str] = None
class Dataset:
mixed_set = False
train_sep = "\n\n"
generation = False # whether this is a generation task
def __init__(self, subtask=None, **kwargs) -> None:
self.subtask = subtask
def get_task_name(self):
return self.subtask
def load_dataset():
raise NotImplementedError
def get_template(self, template_version=0):
templates = {0: Template}
return templates[template_version]
def build_sample(self, example):
return
def sample_train_sets(self, num_train=32, num_dev=None, num_eval=None, num_train_sets=None, seed=None):
if seed is not None:
# one train/demo set using the designated seed
seeds = [seed]
elif num_train_sets is not None:
# num_train_sets train/demo sets
seeds = list(range(num_train_sets))
else:
# one train/demo set per evaluation sample
assert num_dev is None # not supported
len_valid_samples = len(self.samples["valid"]) if num_eval is None else num_eval
with temp_seed(0):
seeds = np.random.randint(0, 10000, len_valid_samples)
train_samples = []
for i, set_seed in enumerate(seeds):
if self.mixed_set:
raise NotImplementedError
train_samples.append(self.sample_subset(data_split="valid", seed=set_seed, num=num_train, exclude=i))
else:
if num_dev is not None:
train_samples.append(self.sample_subset(data_split="train", seed=set_seed, num=num_train+num_dev)) # dev set is included at the end of train set
if num_train + num_dev > len(self.samples["train"]):
logger.warn("num_train + num_dev > available training examples")
else:
train_samples.append(self.sample_subset(data_split="train", seed=set_seed, num=num_train))
if num_dev is not None:
logger.info(f"Sample train set {len(train_samples[-1])}/{len(self.samples['train'])}")
logger.info(f"... including dev set {num_dev} samples")
return train_samples
def sample_subset(self, data_split="train", seed=0, num=100, exclude=None):
with temp_seed(seed):
samples = self.samples[data_split]
lens = len(samples)
index = np.random.permutation(lens).tolist()[:num if exclude is None else num+1]
if exclude is not None and exclude in index:
index.remove(exclude)
else:
index = index[:num]
return [samples[i] for i in index]
@property
def valid_samples(self):
return self.samples["valid"]
class SST2Dataset(Dataset):
train_sep = "\n\n"
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset('glue', 'sst2')
train_d = d["train"]
validation_d = d["validation"]
train_samples = [self.build_sample(example) for example in train_d]
valid_samples = [self.build_sample(example) for example in validation_d]
self.samples = {"train": train_samples, "valid": valid_samples}
# for generative tasks, candidates are []
def build_sample(self, example):
label = int(example["label"])
return Sample(id=example["idx"], data=example, correct_candidate=label, candidates=[0, 1])
def get_template(self, template_version=0):
return {0: SST2Template}[template_version]()
class CopaDataset(Dataset):
train_sep = "\n\n"
mixed_set = False
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
train_examples = load_dataset('super_glue', "copa")["train"]
valid_examples = load_dataset('super_glue', "copa")["validation"]
train_samples = [self.build_sample(example) for example in train_examples]
valid_samples = [self.build_sample(example) for example in valid_examples]
self.samples = {"train": train_samples, "valid": valid_samples}
# for generative tasks, candidates are []
def build_sample(self, example):
sample = \
Sample(
id=example["idx"],
data=example,
candidates=[example["choice1"], example["choice2"]],
correct_candidate=example[f"choice{example['label'] + 1}"],
)
return sample
def get_template(self, template_version=0):
return {0: CopaTemplate}[template_version]()
class BoolQDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("boolq")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=["Yes", "No"],
correct_candidate="Yes" if example["answer"] else "No",
)
return sample
def get_template(self, template_version=2):
return {0: BoolQTemplate, 1: BoolQTemplateV2, 2: BoolQTemplateV3}[template_version]()
class MultiRCDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("super_glue", "multirc")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=[0, 1],
correct_candidate=example['label']
)
return sample
def get_template(self, template_version=0):
return {0: MultiRCTemplate}[template_version]()
class CBDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("super_glue", "cb")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=[0, 1, 2],
correct_candidate=example['label']
)
return sample
def get_template(self, template_version=0):
return {0: CBTemplate}[template_version]()
class WICDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("super_glue", "wic")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=[0, 1],
correct_candidate=example['label']
)
return sample
def get_template(self, template_version=0):
return {0: WICTemplate}[template_version]()
class WSCDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("super_glue", "wsc.fixed")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=[0, 1],
correct_candidate=example['label']
)
return sample
def get_template(self, template_version=0):
return {0: WSCTemplate}[template_version]()
class ReCoRDDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("super_glue", "record")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=example['entities'],
correct_candidate=example['answers']
)
return sample
def get_template(self, template_version=0):
return {0: ReCoRDTemplateGPT3}[template_version]()
class RTEDataset(Dataset):
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset(subtask, **kwargs)
def load_dataset(self, path, **kwargs):
d = load_dataset("super_glue", "rte")
train_set = d["train"]
valid_set = d["validation"]
train_samples = [self.build_sample(example) for example in train_set]
valid_samples = [self.build_sample(example) for example in valid_set]
self.samples = {"train": train_samples, "valid": valid_samples}
def build_sample(self, example):
sample = \
Sample(
data=example,
candidates=[0, 1],
correct_candidate=example['label']
)
return sample
def get_template(self, template_version=0):
return {0: RTETemplate}[template_version]()
class SQuADDataset(Dataset):
metric_name = "f1"
generation = True
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset()
def load_dataset(self):
dataset = load_dataset("squad")
train_examples = dataset["train"]
valid_examples = dataset["validation"]
train_samples = [self.build_sample(example, idx) for idx, example in enumerate(train_examples)]
valid_samples = [self.build_sample(example, idx) for idx, example in enumerate(valid_examples)]
self.samples = {"train": train_samples, "valid": valid_samples}
# for generative tasks, candidates are []
def build_sample(self, example, idx):
answers = example['answers']['text']
assert len(answers) > 0
return Sample(
id=idx,
data={
"title": example['title'],
"context": example['context'],
"question": example['question'],
"answers": answers
},
candidates=None,
correct_candidate=answers
)
def get_template(self, template_version=0):
return {0: SQuADv2Template}[template_version]()
class DROPDataset(Dataset):
metric_name = "f1"
generation = True
def __init__(self, subtask=None, **kwargs) -> None:
self.load_dataset()
def load_dataset(self):
dataset = load_dataset("drop")
train_examples = dataset["train"]
valid_examples = dataset["validation"]
train_samples = [self.build_sample(example, idx) for idx, example in enumerate(train_examples)]
valid_samples = [self.build_sample(example, idx) for idx, example in enumerate(valid_examples)]
self.samples = {"train": train_samples, "valid": valid_samples}
# for generative tasks, candidates are []
def build_sample(self, example, idx):
answers = example['answers_spans']['spans']
assert len(answers) > 0
return Sample(
id=idx,
data={
"context": example['passage'],
"question": example['question'],
"answers": answers
},
candidates=None,
correct_candidate=answers
)
def get_template(self, template_version=0):
return {0: DROPTemplate}[template_version]()